vcglib/apps/sample/trimesh_inertia/trimesh_inertia.cpp

123 lines
5.3 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/*! \file trimesh_inertia.cpp
\ingroup code_sample
\brief An example of computing the inertia properties of meshes
Two meshes are created a rectangular box and a torus and their mass properties are computed and shown.
The result should match the closed formula for these objects (with a reasonable approximation)
*/
#include<vcg/complex/complex.h>
#include<wrap/io_trimesh/import_off.h>
#include<vcg/complex/algorithms/inertia.h>
#include<vcg/complex/algorithms/create/platonic.h>
class MyEdge;
class MyFace;
class MyVertex;
struct MyUsedTypes : public vcg::UsedTypes< vcg::Use<MyVertex> ::AsVertexType,
vcg::Use<MyEdge> ::AsEdgeType,
vcg::Use<MyFace> ::AsFaceType>{};
class MyVertex : public vcg::Vertex<MyUsedTypes, vcg::vertex::Coord3f, vcg::vertex::Normal3f, vcg::vertex::BitFlags >{};
class MyFace : public vcg::Face< MyUsedTypes, vcg::face::FFAdj, vcg::face::Normal3f, vcg::face::VertexRef, vcg::face::BitFlags > {};
class MyEdge : public vcg::Edge<MyUsedTypes>{};
class MyMesh : public vcg::tri::TriMesh< std::vector<MyVertex>, std::vector<MyFace> , std::vector<MyEdge> > {};
int main( int argc, char **argv )
{
MyMesh boxMesh,torusMesh;
vcg::Matrix33f IT;
vcg::Point3f ITv;
vcg::tri::Hexahedron(boxMesh);
vcg::Matrix44f ScaleM,TransM;
ScaleM.SetScale(1.0f, 2.0f, 5.0f);
TransM.SetTranslate(2.0f,3.0f,4.0f);
vcg::tri::UpdatePosition<MyMesh>::Matrix(boxMesh,ScaleM);
vcg::tri::UpdatePosition<MyMesh>::Matrix(boxMesh,TransM);
vcg::tri::Inertia<MyMesh> Ib(boxMesh);
vcg::Point3f cc = Ib.CenterOfMass();
Ib.InertiaTensorEigen(IT,ITv);
printf("Box of size 2,4,10, centered in (2,3,4)\n");
printf("Volume %f \n",Ib.Mass());
printf("CenterOfMass %f %f %f\n",cc[0],cc[1],cc[2]);
printf("InertiaTensor Values %6.3f %6.3f %6.3f\n",ITv[0],ITv[1],ITv[2]);
printf("InertiaTensor Matrix\n");
printf(" %6.3f %6.3f %6.3f\n",IT[0][0],IT[0][1],IT[0][2]);
printf(" %6.3f %6.3f %6.3f\n",IT[1][0],IT[1][1],IT[1][2]);
printf(" %6.3f %6.3f %6.3f\n",IT[2][0],IT[2][1],IT[2][2]);
// Now we have a box with sides (h,w,d) 2,4,10, centered in (2,3,4)
// Volume is 80
// inertia tensor should be:
// I_h = 1/12 m *(w^2+d^2) = 1/12 * 80 * (16+100) = 773.33
// I_w = 1/12 m *(h^2+d^2) = 1/12 * 80 * (4+100) = 693.33
// I_d = 1/12 m *(h^2+w^2) = 1/12 * 80 * (4+16) = 133.33
vcg::tri::Torus(torusMesh,2,1,1024,512);
vcg::tri::Inertia<MyMesh> It(torusMesh);
cc = It.CenterOfMass();
It.InertiaTensorEigen(IT,ITv);
printf("\nTorus of radius 2,1\n");
printf("Mass %f \n",It.Mass());
printf("CenterOfMass %f %f %f\n",cc[0],cc[1],cc[2]);
printf("InertiaTensor Values %6.3f %6.3f %6.3f\n",ITv[0],ITv[1],ITv[2]);
printf("InertiaTensor Matrix\n");
printf(" %6.3f %6.3f %6.3f\n",IT[0][0],IT[0][1],IT[0][2]);
printf(" %6.3f %6.3f %6.3f\n",IT[1][0],IT[1][1],IT[1][2]);
printf(" %6.3f %6.3f %6.3f\n",IT[2][0],IT[2][1],IT[2][2]);
/*
Now we have a torus with c = 2, a = 1
c = radius of the ring
a = radius of the section
Volume is:
V= 2 PI^2 * a^2 * c = ~39.478
Inertia tensor should be:
| ( 5/8 a^2 + 1/2 c^2 ) M 0 0 |
| 0 ( 5/8 a^2 + 1/2 c^2 ) M 0 | =
| 0 0 (3/4 a^2 + c^2) M |
| ( 5/8+2 ) M 0 0 | | 103.630 0 0 |
= | 0 ( 5/8+2 ) M 0 | = | 0 103.630 0 |
| 0 0 (3/4+2) M | | 0 0 187.52 |
*/
return 0;
}