376 lines
9.5 KiB
C++
376 lines
9.5 KiB
C++
#ifndef __VCGLIB__TEXTCOOORD_OPTIMIZATION
|
|
#define __VCGLIB__TEXTCOOORD_OPTIMIZATION
|
|
|
|
#include <vcg/container/simple_temporary_data.h>
|
|
|
|
|
|
/*
|
|
|
|
SINGLE PATCH TEXTURE OPTIMIZATIONS
|
|
|
|
A set of classes to perform optimizations of disk->disk parametrization.
|
|
|
|
Requires texture coords to be defined per vertex (replicate seams).
|
|
|
|
*/
|
|
|
|
|
|
namespace vcg
|
|
{
|
|
namespace tri
|
|
{
|
|
|
|
|
|
/* Base class for all Texture Optimizers*/
|
|
template<class MESH_TYPE>
|
|
class TextureOptimizer{
|
|
protected:
|
|
MESH_TYPE &m;
|
|
SimpleTempData<typename MESH_TYPE::VertContainer, int > isFixed;
|
|
public:
|
|
|
|
/* Tpyes */
|
|
typedef MESH_TYPE MeshType;
|
|
typedef typename MESH_TYPE::VertexIterator VertexIterator;
|
|
typedef typename MESH_TYPE::FaceIterator FaceIterator;
|
|
typedef typename MESH_TYPE::VertexType VertexType;
|
|
typedef typename MESH_TYPE::FaceType FaceType;
|
|
typedef typename MESH_TYPE::ScalarType ScalarType;
|
|
|
|
|
|
/* Access functions */
|
|
const MeshType & Mesh() const {return m;}
|
|
MeshType & Mesh() {return m;}
|
|
|
|
/* Constructior */
|
|
TextureOptimizer(MeshType &_m):m(_m),isFixed(_m.vert){
|
|
assert(m.HasPerVertexTexture());
|
|
}
|
|
|
|
// initializes on current geometry
|
|
virtual void TargetCurrentGeometry()=0;
|
|
|
|
// performs an interation. Returns largest movement.
|
|
virtual ScalarType Iterate()=0;
|
|
|
|
// performs an iteration (faster, but it does not tell how close it is to stopping)
|
|
virtual void IterateBlind()=0;
|
|
|
|
// performs <steps> iteration
|
|
virtual ScalarType IterateN(int step){
|
|
for (int i=0; i<step-1; i++) {
|
|
this->IterateBlind();
|
|
}
|
|
if (step>1) return this->Iterate(); else return 0;
|
|
}
|
|
|
|
// performs iterations until convergence.
|
|
bool IterateUntilConvergence(ScalarType threshold=0.0001, int maxite=5000){
|
|
int i;
|
|
while (Iterate()>threshold) {
|
|
if (i++>maxite) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// desctuctor: free temporary field
|
|
~TextureOptimizer(){
|
|
isFixed.Stop();
|
|
};
|
|
|
|
// set the current border as fixed (forced to stay in position during text optimization)
|
|
void SetBorderAsFixed(){
|
|
isFixed.Start();
|
|
for (VertexIterator v=m.vert.begin(); v!=m.vert.end(); v++) {
|
|
isFixed[v]=(v->IsB())?1:0;
|
|
}
|
|
}
|
|
|
|
// everything moves, no vertex must fixed during texture optimization)
|
|
void SetNothingAsFixed(){
|
|
isFixed.Start();
|
|
for (VertexIterator v=m.vert.begin(); v!=m.vert.end(); v++) {
|
|
isFixed[v]=0;
|
|
}
|
|
}
|
|
|
|
// fix a given vertex
|
|
void FixVertex(const VertexType *v, bool fix=true){
|
|
isFixed[v]=(fix)?1:0;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
|
|
/* Texture optimizer that balances area and angle distortions. */
|
|
template<class MESH_TYPE>
|
|
class AreaPreservingTextureOptimizer:public TextureOptimizer<MESH_TYPE>{
|
|
public:
|
|
/* Types */
|
|
typedef MESH_TYPE MeshType;
|
|
typedef typename MESH_TYPE::VertexIterator VertexIterator;
|
|
typedef typename MESH_TYPE::FaceIterator FaceIterator;
|
|
typedef typename MESH_TYPE::VertexType VertexType;
|
|
typedef typename MESH_TYPE::FaceType FaceType;
|
|
typedef typename MESH_TYPE::ScalarType ScalarType;
|
|
|
|
|
|
private:
|
|
typedef TextureOptimizer<MESH_TYPE> Super; // superclass (commodity)
|
|
|
|
// extra data per face: [0..3] -> cotangents. [4] -> area*2
|
|
SimpleTempData<typename MESH_TYPE::FaceContainer, Point4<ScalarType> > data;
|
|
SimpleTempData<typename MESH_TYPE::VertContainer, Point2<ScalarType> > sum;
|
|
|
|
ScalarType totArea;
|
|
ScalarType speed;
|
|
|
|
public:
|
|
|
|
|
|
// constructor and destructor
|
|
AreaPreservingTextureOptimizer(MeshType &_m):Super(_m),data(_m.face),sum(_m.vert){
|
|
speed=0.001;
|
|
}
|
|
|
|
~AreaPreservingTextureOptimizer(){
|
|
data.Stop();
|
|
sum.Stop();
|
|
Super::isFixed.Stop();
|
|
}
|
|
|
|
void SetSpeed(ScalarType _speed){
|
|
speed=_speed;
|
|
}
|
|
|
|
ScalarType GetSpeed(ScalarType _speed){
|
|
return speed;
|
|
}
|
|
|
|
void IterateBlind(){
|
|
/* todo: do as iterate, but without */
|
|
Iterate();
|
|
}
|
|
|
|
ScalarType Iterate(){
|
|
|
|
ScalarType max; // max displacement
|
|
|
|
#define v0 (f->V0(i)->T().P())
|
|
#define v1 (f->V1(i)->T().P())
|
|
#define v2 (f->V2(i)->T().P())
|
|
#define THETA 3
|
|
for (VertexIterator v=Super::m.vert.begin(); v!=Super::m.vert.end(); v++) {
|
|
sum[v].Zero();
|
|
}
|
|
|
|
ScalarType tot_proj_area=0;
|
|
for (FaceIterator f=Super::m.face.begin(); f!=Super::m.face.end(); f++) {
|
|
int i=0;
|
|
double area2 = ((v1-v0) ^ (v2-v0));
|
|
tot_proj_area+=area2;
|
|
}
|
|
|
|
double scale= 1.0; //tot_proj_area / tot_area ;
|
|
|
|
for (FaceIterator f=Super::m.face.begin(); f!=Super::m.face.end(); f++) {
|
|
int i=0; ScalarType area2 = ((v1-v0) ^ (v2-v0));
|
|
for (i=0; i<3; i++){
|
|
ScalarType
|
|
a = (v1-v0).Norm(),
|
|
b = ((v1-v0) * (v2-v0))/a,
|
|
c = area2 / a,
|
|
|
|
m0= data[f][i] / area2,
|
|
m1= data[f][(i+1)%3] / area2,
|
|
m2= data[f][(i+2)%3] / area2,
|
|
|
|
mx= (b-a)/area2,
|
|
my= c/area2, // 1.0/a
|
|
mA= data[f][3]/area2 * scale,
|
|
e = m0*((b-a)*(b-a)+c*c) + m1*(b*b+c*c) + m2*a*a, // as obvious
|
|
M1= mA + 1.0/mA,
|
|
M2= mA - 1.0/mA,
|
|
px= e*my,
|
|
py=-e*mx,
|
|
qx= m1*b+ m2*a,
|
|
qy= m1*c,
|
|
|
|
/* linear weightings
|
|
|
|
dx= (OMEGA) * (my * M2) +
|
|
(1-OMEGA) * ( px - 2.0*qx),
|
|
dy= (OMEGA) * (-mx * M2) +
|
|
(1-OMEGA) * ( py - 2.0*qy),*/
|
|
|
|
// exponential weighting
|
|
// 2d gradient
|
|
|
|
dx=M1*M1
|
|
*(px*(M1+ THETA*M2) - 2.0*qx*M1),
|
|
dy=M1*M1
|
|
*(py*(M1+ THETA*M2) - 2.0*qy*M1),
|
|
|
|
gy= dy/c,
|
|
gx= (dx - gy*b) / a;
|
|
|
|
// 3d gradient
|
|
|
|
sum[f->V(i)]
|
|
//f->V(i)->sum
|
|
+= ( (v1-v0) * gx + (v2-v0) * gy ) * data[f][3];
|
|
}
|
|
}
|
|
|
|
max=0; // max displacement
|
|
|
|
speed=0.001;
|
|
for (VertexIterator v=Super::m.vert.begin(); v!=Super::m.vert.end(); v++)
|
|
if ( !Super::isFixed[v] ) //if (!v->IsB())
|
|
{
|
|
ScalarType n=sum[v].Norm();
|
|
if ( n > 1 ) { sum[v]/=n; n=1.0;}
|
|
if ( n*speed<=0.1 ); {
|
|
v->T().P()-=(sum[v] * speed ) /** scale*/;
|
|
if (max<n) max=n;
|
|
}
|
|
//else rejected++;
|
|
}
|
|
return max;
|
|
#undef v0
|
|
#undef v1
|
|
#undef v2
|
|
#undef THETA
|
|
//printf("rejected %d\n",rejected);
|
|
}
|
|
|
|
void TargetCurrentGeometry(){
|
|
|
|
Super::isFixed.Start();
|
|
data.Start();
|
|
sum.Start();
|
|
|
|
totArea=0;
|
|
for (FaceIterator f=Super::m.face.begin(); f!=Super::m.face.end(); f++) {
|
|
double area2 = ((f->V(1)->P() - f->V(0)->P() )^(f->V(2)->P() - f->V(0)->P() )).Norm();
|
|
totArea+=area2;
|
|
//if ( Super::isFixed[f->V1(0)] )
|
|
for (int i=0; i<3; i++){
|
|
data[f][i]=(
|
|
(f->V1(i)->P() - f->V0(i)->P() )*(f->V2(i)->P() - f->V0(i)->P() )
|
|
)/area2;
|
|
data[f][3]=area2;
|
|
}
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/* texture coords general utility functions */
|
|
/*++++++++++++++++++++++++++++++++++++++++++*/
|
|
|
|
// returns false if any fold is present (faster than MarkFolds)
|
|
template<class MESH_TYPE>
|
|
bool IsFoldFree(MESH_TYPE &m){
|
|
|
|
assert(m.HasPerVertexTexture());
|
|
|
|
typedef typename MESH_TYPE::VertexType::TextureType::PointType PointType;
|
|
typedef typename MESH_TYPE::VertexType::TextureType::PointType::ScalarType ScalarType;
|
|
|
|
ScalarType lastsign=0;
|
|
for (typename MESH_TYPE::FaceIterator f=m.face.begin(); f!=m.face.end(); f++){
|
|
ScalarType sign=((f->V(1)->T().P()-f->V(0)->T().P()) ^ (f->V(2)->T().P()-f->V(0)->T().P()));
|
|
if (sign!=0) {
|
|
if (sign*lastsign<0) return false;
|
|
lastsign=sign;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// detects and marks folded faces, by setting their quality to 0 (or 1 otherwise)
|
|
// returns number of folded faces
|
|
template<class MESH_TYPE>
|
|
int MarkFolds(MESH_TYPE &m){
|
|
|
|
assert(m.HasPerVertexTexture());
|
|
assert(m.HasPerFaceQuality());
|
|
|
|
typedef typename MESH_TYPE::VertexType::TextureType::PointType PointType;
|
|
typedef typename MESH_TYPE::VertexType::TextureType::PointType::ScalarType ScalarType;
|
|
|
|
SimpleTempData<typename MESH_TYPE::FaceContainer, short> sign(m.face);
|
|
sign.Start(0);
|
|
|
|
// first pass, determine predominant sign
|
|
int npos=0, nneg=0;
|
|
ScalarType lastsign=0;
|
|
for (typename MESH_TYPE::FaceIterator f=m.face.begin(); f!=m.face.end(); f++){
|
|
ScalarType fsign=((f->V(1)->T().P()-f->V(0)->T().P()) ^ (f->V(2)->T().P()-f->V(0)->T().P()));
|
|
if (fsign<0) { sign[f]=-1; nneg++; }
|
|
if (fsign>0) { sign[f]=+1; npos++; }
|
|
}
|
|
|
|
// second pass, detect folded faces
|
|
int res=0;
|
|
short gsign= (nneg>npos)?-1:+1;
|
|
for (typename MESH_TYPE::FaceIterator f=m.face.begin(); f!=m.face.end(); f++){
|
|
if (sign[f]*gsign<0){
|
|
res++;
|
|
f->Q()=0;
|
|
} else f->Q()=1;
|
|
}
|
|
|
|
sign.Stop();
|
|
|
|
return res;
|
|
}
|
|
|
|
// Smooths texture coords.
|
|
// (can be useful to remove folds,
|
|
// e.g. these created when obtaining tecture coordinates after projections)
|
|
template<class MESH_TYPE>
|
|
void SmoothTextureCoords(MESH_TYPE &m){
|
|
|
|
assert(m.HasPerVertexTexture());
|
|
|
|
typedef typename MESH_TYPE::VertexType::TextureType::PointType PointType;
|
|
|
|
SimpleTempData<typename MESH_TYPE::VertContainer, int> div(m.vert);
|
|
SimpleTempData<typename MESH_TYPE::VertContainer, PointType > sum(m.vert);
|
|
|
|
div.Start();
|
|
sum.Start();
|
|
|
|
for (typename MESH_TYPE::VertexIterator v=m.vert.begin(); v!=m.vert.end(); v++) {
|
|
sum[v].Zero();
|
|
div[v]=0;
|
|
}
|
|
|
|
for (typename MESH_TYPE::FaceIterator f=m.face.begin(); f!=m.face.end(); f++){
|
|
div[f->V(0)] +=2; sum[f->V(0)] += f->V(2)->T().P(); sum[f->V(0)] += f->V(1)->T().P();
|
|
div[f->V(1)] +=2; sum[f->V(1)] += f->V(0)->T().P(); sum[f->V(1)] += f->V(2)->T().P();
|
|
div[f->V(2)] +=2; sum[f->V(2)] += f->V(1)->T().P(); sum[f->V(2)] += f->V(0)->T().P();
|
|
}
|
|
|
|
for (typename MESH_TYPE::VertexIterator v=m.vert.begin(); v!=m.vert.end(); v++) // if (!v->IsB())
|
|
{
|
|
if (v->div>0) {
|
|
v->T().P() = sum[v]/div[v];
|
|
}
|
|
}
|
|
|
|
div.Stop();
|
|
sum.Stop();
|
|
|
|
}
|
|
|
|
|
|
} } // End namespace vcg::tri
|
|
|
|
#endif // __VCGLIB__TEXTCOOORD_OPTIMIZATION
|