vcglib/apps/shadevis/visshader.h

529 lines
15 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.6 2004/09/10 14:02:20 cignoni
Added Cone directions
Revision 1.5 2004/09/09 22:59:21 cignoni
Removed many small warnings
Revision 1.4 2004/09/09 22:37:48 cignoni
Integrated lost modifications...
Revision 1.3 2004/09/09 14:35:54 ponchio
Various changes for gcc compatibility
Revision 1.2 2004/07/11 22:13:30 cignoni
Added GPL comments
****************************************************************************/
#ifndef __VCG_MESH_VISIBILITY
#define __VCG_MESH_VISIBILITY
#include <stdlib.h>
#include <bitset>
#include <vcg/math/matrix44.h>
#include <wrap/gl/math.h>
#include "simplepic.h"
#include "gen_normal.h"
namespace vcg {
// Base Class che definisce le varie interfaccie;
template <class MESH_TYPE, int MAXVIS=2048> class VisShader
{
public :
enum {VisMax=MAXVIS};
VisShader(MESH_TYPE &me):m(me)
{
CullFlag= false;
IsClosedFlag = false;
ZTWIST=1e-3;
SplitNum=1;
CameraViewing=false;
}
typedef Point3<typename MESH_TYPE::ScalarType> Point3x;
typedef typename MESH_TYPE::CoordType CoordType;
typedef typename MESH_TYPE::ScalarType ScalarType;
typedef typename MESH_TYPE::VertexType VertexType;
typedef typename MESH_TYPE::VertexPointer VertexPointer;
typedef typename MESH_TYPE::VertexIterator VertexIterator;
typedef typename MESH_TYPE::FaceIterator FaceIterator;
typedef typename MESH_TYPE::FaceType FaceType;
typedef Matrix44<ScalarType> Matrix44x;
typedef Box3<ScalarType> Box3x;
// The Basic Data the mesh and its wrapper;
MESH_TYPE &m;
std::vector<MESH_TYPE *> OMV; // Occluder Mesh Vector;
// la visibilita' e' in float, per ogni entita'
// 1 significa che e' totalmente visibile per una data direzione.
std::vector<float> VV;
std::vector< Point3x > VN; // Vettore delle normali che ho usato per calcolare la mask e i float in W;
// User defined parameters and flags
bool IsClosedFlag;
float ZTWIST;
bool CullFlag; // Enable the frustum culling. Useful when the splitting value is larger than 2
int SplitNum;
protected:
bool CameraViewing;
//Camera<ScalarType> Cam;
public:
/********************************************************/
// Generic functions with Specialized code for every subclass
virtual void MapVisibility(float Gamma=1, float LowPass=0, float HighPass=1,float Scale=1.0)=0;
//virtual void ApplyLightingEnvironment(std::vector<float> &W, float Gamma);
virtual int GLAccumPixel( std::vector<int> &PixSeen)=0;
virtual bool ReadVisibility(const char * /*filename*/){assert( 0); return false;}
virtual bool WriteVisibility(const char * /*filename*/){assert( 0); return false;}
/********************************************************/
// Generic functions with same code for every subclass
void Clear() {
fill(VV.begin(),VV.end(),0); }
void InitGL()
{
glPushAttrib(GL_COLOR_BUFFER_BIT );
::glClearColor (1.0, 1.0, 1.0, 0.0);
glMatrixMode (GL_PROJECTION);
glPushMatrix();
glMatrixMode (GL_MODELVIEW);
glPushMatrix();
}
void RestoreGL()
{
glMatrixMode (GL_PROJECTION);
glPopMatrix();
glMatrixMode (GL_MODELVIEW);
glPopMatrix();
glPopAttrib();
}
/*
Funzione principale di conversione in visibilita'
Dati i due vettori PixSeen e PixNotSeen che indicano per ogni entita' (vertice o faccia)
quanti sono, rispettivamente, i pixel visibili e occlusi,
questa funzione calcola un valore float per ogni entita' che indica quanto e' visibile lungo una data direzione camera
== 1 significa completamente visibile
== 0 significa completamente occluso.
*/
void AddPixelCount(std::vector<float> &_VV, const std::vector<int> &PixSeen)
{
assert(_VV.size()==PixSeen.size());
for(int i=0;i<PixSeen.size();++i)
if(PixSeen[i]>0) _VV[i]+= 1;
}
//void SetVisibilityMask(std::vector< std::bitset<MAXVIS> > &_VM, const std::vector<int> &PixSeen, const int dir)
// {
// assert(_VM.size()==PixSeen.size());
// for(int i=0;i<PixSeen.size();++i)
// if(PixSeen[i]>0) _VM[i][dir]=true;
// }
/*******************************
Funzioni ad alto livello che computano le Visibility Mask per varie distribuzioni di direzioni
*******************************/
// Funzione Generica chiamata da tutte le seguenti
void Compute( CallBack *cb)
{
//cb(buf.format("Start to compute %i dir\n",VN.size()));
InitGL();
int t00=clock();
VV.resize(m.vert.size());
std::vector<int> PixSeen(VV.size(),0);
int TotRay=0,HitRay=0;
for(int i=0;i<VN.size();++i)
{
int t0=clock();
fill(PixSeen.begin(),PixSeen.end(),0);
int added=SplittedRendering(VN[i], PixSeen,cb);
AddPixelCount(VV,PixSeen);
int t1=clock();
HitRay+=added;
TotRay+=VV.size();
printf("%3i/%i : %i msec -- TotRays %i, HitRays %i, ray/sec %3.1fk \n ",i,VN.size(),t1-t0,TotRay,HitRay,float(TotRay)/(clock()-t00));
}
RestoreGL();
}
void ComputeHalf(int nn, Point3x &dir, CallBack *cb)
{
std::string buf;
VN.clear();
std::vector<Point3x> nvt;
assert(0 && "This is only my guess (to compile). (Ponchio)");
assert(0 && "Was: GenNormal(nn*2, nvt);");
GenNormal<ScalarType>::Uniform(nn*2,nvt);
for(int i=0;i<nvt.size();++i)
if(dir*nvt[i]>0) VN.push_back(nvt[i]);
printf("Asked %i normal, got %i normals\n",nn,VN.size());
Compute(cb);
}
void ComputeUniformCone(int nn, std::vector<Point3x> &vv, ScalarType AngleRad, Point3x &ConeDir, CallBack *cb)
{
VN.clear();
GenNormal<ScalarType>::UniformCone(nn,VN,AngleRad,ConeDir);
typename std::vector<Point3x>::iterator vi;
for(vi=VN.begin();vi!=VN.end();++vi)
vv.push_back(*vi);
char buf[256];
sprintf(buf,"Asked %i normal, got %i normals\n",nn,VN.size());
cb(buf);
Compute(cb);
}
void ComputeUniform(int nn, std::vector<Point3x> &vv, CallBack *cb)
{
VN.clear();
GenNormal<ScalarType>::Uniform(nn,VN);
typename std::vector<Point3x>::iterator vi;
for(vi=VN.begin();vi!=VN.end();++vi)
vv.push_back(*vi);
char buf[256];
sprintf(buf,"Asked %i normal, got %i normals\n",nn,VN.size());
cb(buf);
Compute(cb);
}
void ComputeSingle(Point3x &dir, std::vector<Point3x> &vv,CallBack *cb)
{
VN.clear();
VN.push_back(dir);
vv.push_back(dir);
printf("Computing one direction (%f %f %f)\n",dir[0],dir[1],dir[2]);
Compute(cb);
}
/**********************************************************/
int SplittedRendering(Point3x &ViewDir, std::vector<int> &PixSeen, CallBack *cb=DummyCallBack)
{
int tt=0;
int i,j;
for(i=0;i<SplitNum;++i)
for(j=0;j<SplitNum;++j){
SetupOrthoViewMatrix(ViewDir, i,j,SplitNum);
tt+=GLAccumPixel(PixSeen);
}
return tt;
}
// Compute a rotation matrix that bring Axis parallel to Z.
void GenMatrix(Matrix44d &a, Point3d Axis, double angle)
{
const double eps=1e-3;
Point3d RotAx = Axis ^ Point3d(0,0,1);
double RotAngle = Angle(Axis,Point3d(0,0,1));
if(math::Abs(RotAx.Norm())<eps) { // in questo caso Axis e' collineare con l'asse z
RotAx=Axis ^ Point3d(0,1,0);
double RotAngle = Angle(Axis,Point3d(0,1,0));
}
//printf("Rotating around (%5.3f %5.3f %5.3f) %5.3f\n",RotAx[0],RotAx[1],RotAx[2],RotAngle);
RotAx.Normalize();
a.SetRotate(RotAngle,RotAx);
//Matrix44d rr;
//rr.SetRotate(-angle, Point3d(0,0,1));
//a=rr*a;
}
// Genera la matrice di proj e model nel caso di un rendering ortogonale.
// subx e suby indicano la sottoparte che si vuole
void SetupOrthoViewMatrix(Point3x &ViewDir, int subx, int suby,int LocSplit)
{
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
float dlt=2.0f/LocSplit;
glOrtho(-1+subx*dlt, -1+(subx+1)*dlt, -1+suby*dlt, -1+(suby+1)*dlt,-2,2);
glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();
Matrix44d rot;
Point3d qq; qq.Import(ViewDir);
GenMatrix(rot,qq,0);
glMultMatrix(rot);
double d=2.0/m.bbox.Diag();
glScalef(d,d,d);
glTranslate(-m.bbox.Center());
}
void ComputeSingleDirection(Point3x BaseDir, std::vector<int> &PixSeen, CallBack *cb=DummyCallBack)
{
int t0=clock();
std::string buf;
int added=SplittedRendering(BaseDir, PixSeen,cb);
int t1=clock();
printf("ComputeSingleDir %i msec\n",t1-t0);
}
void ComputeAverageVisibilityDirection()
{
int i,j;
VD.resize(VM.size());
for(j=0;j<VM.size();++j)
{
Point3x &nn=VD[j];
nn=Point3x(0,0,0);
bitset<VisMax> &msk=VM[j];
for(i=0;i<VN.size();++i)
if(msk[i]) nn+=VN[i];
}
for(j=0;j<VM.size();++j)
VD[j].Normalize();
}
// calcola un LightingEnvironment direzionale, cioe'un vettore di pesi per l'insieme di normali
// corrente tale che
// mette a 1 tutti i vettori che sono entro un angolo DegAngle1
// a 0 tutti quelli oltre DegAngle2 e
// sfuma linearmente nel mezzo.
void DirectionalLightingEnvironment(std::vector<float> &LE, Point3x dir, ScalarType DegAngle1, ScalarType DegAngle2)
{
LE.clear();
LE.resize(VN.size(),0);
int i;
for(i=0;i<VN.size();++i)
{
ScalarType a=ToDeg(Angle(dir,VN[i]));
if(a<DegAngle1) { LE[i]=1; continue; }
if(a>DegAngle2) { LE[i]=0; continue; }
LE[i] = 1.0-(a-DegAngle1)/(DegAngle2-DegAngle1);
}
// last step normalize the weights;
ScalarType sum=0;
for(i=0;i<VN.size();++i)
sum+=LE[i];
for(i=0;i<VN.size();++i)
LE[i]/=sum;
}
};
/***************************************************************************/
/***************************************************************************/
/***************************************************************************/
template <class MESH_TYPE> class VertexVisShader : public VisShader<MESH_TYPE>
{
public :
// Function Members
VertexVisShader(MESH_TYPE &me):VisShader<MESH_TYPE>(me)
{
// la mesh DEVE avere colore per vertice
if(! m.HasPerVertexColor()) assert(0);
}
void Init() { VV.resize(m.vert.size()); }
// Vis::VisMode Id() {return Vis::VMPerVert;};
void Compute(int nn);
void AddPixelCount(std::vector<float> &_VV, std::vector<int> &PixSeen, std::vector<int> &PixNotSeen )
{
for(int i=0;i<m.vert.size();++i)
_VV[i]+= float(PixSeen[i])/float(PixSeen[i]-PixNotSeen[i]);
}
void DrawFill(MESH_TYPE &mm)
{
glBegin(GL_TRIANGLES);
FaceIterator fi;
for(fi=mm.face.begin();fi!=mm.face.end();++fi)
{
glVertex((*fi).V(0)->P());
glVertex((*fi).V(1)->P());
glVertex((*fi).V(2)->P());
}
glEnd();
}
/***************************************************************************/
//VertexVisibility
// Funzione Principale restituisce per ogni entita' quanti px si vedono o no.
int GLAccumPixel( std::vector<int> &PixSeen)
{
SimplePic<float> snapZ;
SimplePic<Color4b> snapC;
glClearColor(Color4b::Black);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushAttrib(GL_CURRENT_BIT | GL_ENABLE_BIT | GL_LIGHTING_BIT | GL_POLYGON_BIT );
glDisable(GL_LIGHTING);
glDepthRange(0.0f,1.0f);
glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);
glDepthMask(GL_TRUE);
glDrawBuffer(GL_BACK);
glReadBuffer(GL_BACK);
/////** Si disegnano le front face **/////
glDepthRange(2.0*ZTWIST,1.0f);
if(IsClosedFlag) glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glColor(Color4b::Red);
DrawFill(m);
if(!IsClosedFlag) {
glCullFace(GL_FRONT);
glColor(Color4b::Black);
DrawFill(m);
snapC.OpenGLSnap();
}
int cnt=0;
snapZ.OpenGLSnap(GL_DEPTH_COMPONENT);
glDepthRange(0,1.0f-2.0*ZTWIST);
double MM[16];
glGetDoublev(GL_MODELVIEW_MATRIX,MM);
double MP[16];
glGetDoublev(GL_PROJECTION_MATRIX,MP);
int VP[4];
glGetIntegerv(GL_VIEWPORT,VP);
double tx,ty,tz;
for(int i=0;i<m.vert.size();++i)
{
gluProject(m.vert[i].P()[0],m.vert[i].P()[1],m.vert[i].P()[2],
MM,MP,VP,
&tx,&ty,&tz);
int col=1;
if(tx>=0 && tx<snapZ.sx && ty>=0 && ty<snapZ.sy)
{
int txi=floor(tx),tyi=floor(ty);
float sd=snapZ.Pix(tx,ty);
if(!IsClosedFlag) {
col = max( max(snapC.Pix(txi+0,tyi+0)[0],snapC.Pix(txi+1,tyi+0)[0]),
max(snapC.Pix(txi+0,tyi+1)[0],snapC.Pix(txi+1,tyi+1)[0]));
// col=snapC.Pix(txi+0,tyi+0)[0];
}
if(col!=0 && tz<sd) {
PixSeen[i]++;
cnt++;
}
}
}
glPopAttrib();
//printf("Seen %i vertexes on %i\n",cnt,m.vert.size());
return cnt;
}
void SmoothVisibility()
{
FaceIterator fi;
std::vector<float> VV2;
std::vector<int> VC(VV.size(),1);
VV2=VV;
for(fi=m.face.begin();fi!=m.face.end();++fi)
for(int i=0;i<3;++i)
{
VV2[(*fi).V(i)-&*m.vert.begin()] += VV[(*fi).V1(i)-&*m.vert.begin()];
++VC[(*fi).V(i)-&*m.vert.begin()];
}
for(unsigned int i=0;i<VV2.size();++i)
VV[i]=VV2[i]/VC[i];
}
/*
The visibility is mapped in [0..1]
then clamped to [low,high]
this value is mapped again in [0.1] and gamma corrected;
and at the end is scaled for 'Scale'
*/
void MapVisibility(float Gamma=1, float LowPass=0, float HighPass=1, float Scale= 1.0)
{
float minv=*min_element(VV.begin(),VV.end());
float maxv=*max_element(VV.begin(),VV.end());
printf("Visibility Range %f %f\n", minv,maxv);
VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi){
float gval=(VV[vi-m.vert.begin()]-minv)/(maxv-minv);
if(gval<LowPass) gval=LowPass;
if(gval>HighPass) gval=HighPass;
(*vi).C().SetGrayShade(Scale*pow((gval-LowPass)/(HighPass-LowPass),Gamma));
}
}
//void ApplyLightingEnvironment(std::vector<float> &W, float Gamma=1)
// {
// assert(W.size()==VN.size());
// MESH_TYPE::VertexIterator vi;
//
// for(vi=m.vert.begin();vi!=m.vert.end();++vi)
// {
// float gray=0;
// bitset<VisMax> &msk=VM[vi-m.vert.begin()];
// for(int i=0;i<VN.size();++i)
// if(msk[i]) gray+=W[i];
//
// (*vi).C().SetGrayShade(gray);
// }
// }
};
}
#endif // __VCG_MESH_VISIBILITY