288 lines
12 KiB
C++
288 lines
12 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCG_TRIANGLE3
|
|
#define __VCG_TRIANGLE3
|
|
|
|
#include <vcg/space/box3.h>
|
|
#include <vcg/space/point2.h>
|
|
#include <vcg/space/point3.h>
|
|
#include <vcg/space/plane3.h>
|
|
#include <vcg/space/segment3.h>
|
|
#include <vcg/space/triangle2.h>
|
|
|
|
namespace vcg {
|
|
|
|
/** \addtogroup space */
|
|
/*@{*/
|
|
/**
|
|
Templated class for storing a generic triangle in a 3D space.
|
|
Note the relation with the Face class of TriMesh complex, both classes provide the P(i) access functions to their points and therefore they share the algorithms on it (e.g. area, normal etc...)
|
|
*/
|
|
template <class ScalarTriangleType> class Triangle3
|
|
{
|
|
public:
|
|
typedef ScalarTriangleType ScalarType;
|
|
typedef Point3< ScalarType > CoordType;
|
|
/// The bounding box type
|
|
typedef Box3<ScalarType> BoxType;
|
|
|
|
/*********************************************
|
|
blah
|
|
blah
|
|
**/
|
|
Triangle3(){}
|
|
Triangle3(const CoordType & c0,const CoordType & c1,const CoordType & c2){_v[0]=c0;_v[1]=c1;_v[2]=c2;}
|
|
protected:
|
|
/// Vector of vertex pointer incident in the face
|
|
Point3<ScalarType> _v[3];
|
|
public:
|
|
|
|
/// Shortcut per accedere ai punti delle facce
|
|
inline CoordType & P( const int j ) { return _v[j];}
|
|
inline CoordType & P0( const int j ) { return _v[j];}
|
|
inline CoordType & P1( const int j ) { return _v[(j+1)%3];}
|
|
inline CoordType & P2( const int j ) { return _v[(j+2)%3];}
|
|
inline const CoordType & P( const int j ) const { return _v[j];}
|
|
inline const CoordType & cP( const int j ) const { return _v[j];}
|
|
inline const CoordType & P0( const int j ) const { return _v[j];}
|
|
inline const CoordType & P1( const int j ) const { return _v[(j+1)%3];}
|
|
inline const CoordType & P2( const int j ) const { return _v[(j+2)%3];}
|
|
inline const CoordType & cP0( const int j ) const { return _v[j];}
|
|
inline const CoordType & cP1( const int j ) const { return _v[(j+1)%3];}
|
|
inline const CoordType & cP2( const int j ) const { return _v[(j+2)%3];}
|
|
|
|
inline int VN() const { return 3;}
|
|
}; //end Class
|
|
|
|
/********************** Normal **********************/
|
|
|
|
/// Returns the normal to the plane passing through p0,p1,p2
|
|
template<class TriangleType>
|
|
typename TriangleType::CoordType TriangleNormal(const TriangleType &t)
|
|
{
|
|
return (( t.cP(1) - t.cP(0)) ^ (t.cP(2) - t.cP(0)));
|
|
}
|
|
/// Returns the normal to the plane passing through p0,p1,p2
|
|
template<class TriangleType>
|
|
typename TriangleType::CoordType NormalizedTriangleNormal(const TriangleType &t)
|
|
{
|
|
return (( t.cP(1) - t.cP(0)) ^ (t.cP(2) - t.cP(0))).Normalize();
|
|
}
|
|
template<class Point3Type>
|
|
Point3Type Normal( Point3Type const &p0, Point3Type const & p1, Point3Type const & p2)
|
|
{
|
|
return (( p1 - p0) ^ (p2 - p0));
|
|
}
|
|
|
|
/********************** Interpolation **********************/
|
|
|
|
// The function to computing barycentric coords of a point inside a triangle.
|
|
// it requires the knowledge of what is the direction that is more orthogonal to the face plane.
|
|
// ScalarType nx = math::Abs((*fi).cN()[0]);
|
|
// ScalarType ny = math::Abs((*fi).cN()[1]);
|
|
// ScalarType nz = math::Abs((*fi).cN()[2]);
|
|
// if(nx>ny && nx>nz) { axis = 0; }
|
|
// else if(ny>nz) { axis = 1 }
|
|
// else { axis = 2 }
|
|
// InterpolationParameters(*fp,axis,Point,L);
|
|
//
|
|
// This normal direction is used to project the triangle in 2D and solve the problem in 2D where it is simpler and often well defined.
|
|
|
|
template<class TriangleType, class ScalarType>
|
|
bool InterpolationParameters(const TriangleType t, const int Axis, const Point3<ScalarType> & P, Point3<ScalarType> & L)
|
|
{
|
|
typedef Point2<ScalarType> P2;
|
|
if(Axis==0) return InterpolationParameters2( P2(t.cP(0)[1],t.cP(0)[2]), P2(t.cP(1)[1],t.cP(1)[2]), P2(t.cP(2)[1],t.cP(2)[2]), P2(P[1],P[2]), L);
|
|
if(Axis==1) return InterpolationParameters2( P2(t.cP(0)[0],t.cP(0)[2]), P2(t.cP(1)[0],t.cP(1)[2]), P2(t.cP(2)[0],t.cP(2)[2]), P2(P[0],P[2]), L);
|
|
if(Axis==2) return InterpolationParameters2( P2(t.cP(0)[0],t.cP(0)[1]), P2(t.cP(1)[0],t.cP(1)[1]), P2(t.cP(2)[0],t.cP(2)[1]), P2(P[0],P[1]), L);
|
|
return false;
|
|
}
|
|
/// Handy Wrapper of the above one that uses the passed normal N to choose the right orientation
|
|
template<class TriangleType, class ScalarType>
|
|
bool InterpolationParameters(const TriangleType t, const Point3<ScalarType> & N, const Point3<ScalarType> & P, Point3<ScalarType> & L)
|
|
{
|
|
if(fabs(N[0])>fabs(N[1]))
|
|
{
|
|
if(fabs(N[0])>fabs(N[2]))
|
|
return InterpolationParameters(t,0,P,L); /* 0 > 1 ? 2 */
|
|
else
|
|
return InterpolationParameters(t,2,P,L); /* 2 > 1 ? 2 */
|
|
}
|
|
else
|
|
{
|
|
if(fabs(N[1])>fabs(N[2]))
|
|
return InterpolationParameters(t,1,P,L); /* 1 > 0 ? 2 */
|
|
else
|
|
return InterpolationParameters(t,2,P,L); /* 2 > 1 ? 2 */
|
|
}
|
|
}
|
|
|
|
// Function that computes the barycentric coords of a 2D triangle.
|
|
template<class ScalarType>
|
|
bool InterpolationParameters2(const Point2<ScalarType> &V1,
|
|
const Point2<ScalarType> &V2,
|
|
const Point2<ScalarType> &V3,
|
|
const Point2<ScalarType> &P, Point3<ScalarType> &L)
|
|
{
|
|
vcg::Triangle2<ScalarType> t2=vcg::Triangle2<ScalarType>(V1,V2,V3);
|
|
return (t2.InterpolationParameters(P,L.X(),L.Y(),L.Z() ));
|
|
}
|
|
|
|
/// Handy Wrapper of the above one that calculate the normal on the triangle
|
|
template<class TriangleType, class ScalarType>
|
|
bool InterpolationParameters(const TriangleType t, const Point3<ScalarType> & P, Point3<ScalarType> & L)
|
|
{
|
|
vcg::Point3<ScalarType> N=vcg::TriangleNormal<TriangleType>(t);
|
|
return (InterpolationParameters<TriangleType,ScalarType>(t,N,P,L));
|
|
}
|
|
|
|
|
|
/********************** Quality **********************/
|
|
|
|
/// Compute a shape quality measure of the triangle composed by points p0,p1,p2
|
|
/// It Returns 2*AreaTri/(MaxEdge^2),
|
|
/// the range is range [0.0, 0.866]
|
|
/// e.g. Equilateral triangle sqrt(3)/2, halfsquare: 1/2, ... up to a line that has zero quality.
|
|
template<class P3ScalarType>
|
|
P3ScalarType Quality( Point3<P3ScalarType> const &p0, Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2)
|
|
{
|
|
Point3<P3ScalarType> d10=p1-p0;
|
|
Point3<P3ScalarType> d20=p2-p0;
|
|
Point3<P3ScalarType> d12=p1-p2;
|
|
Point3<P3ScalarType> x = d10^d20;
|
|
|
|
P3ScalarType a = Norm( x );
|
|
if(a==0) return 0; // Area zero triangles have surely quality==0;
|
|
P3ScalarType b = SquaredNorm( d10 );
|
|
if(b==0) return 0; // Again: area zero triangles have surely quality==0;
|
|
P3ScalarType t = b;
|
|
t = SquaredNorm( d20 ); if ( b<t ) b = t;
|
|
t = SquaredNorm( d12 ); if ( b<t ) b = t;
|
|
return a/b;
|
|
}
|
|
|
|
|
|
/// Return the _q of the face, the return value is in [0,sqrt(3)/2] = [0 - 0.866.. ]
|
|
template<class TriangleType>
|
|
typename TriangleType::ScalarType QualityFace(const TriangleType &t)
|
|
{
|
|
return Quality(t.cP(0), t.cP(1), t.cP(2));
|
|
}
|
|
/// Compute a shape quality measure of the triangle composed by points p0,p1,p2
|
|
/// It Returns inradius/circumradius
|
|
/// the range is range [0, 1]
|
|
/// e.g. Equilateral triangle 1, halfsquare: 0.81, ... up to a line that has zero quality.
|
|
template<class P3ScalarType>
|
|
P3ScalarType QualityRadii(Point3<P3ScalarType> const &p0,
|
|
Point3<P3ScalarType> const &p1,
|
|
Point3<P3ScalarType> const &p2) {
|
|
|
|
P3ScalarType a=(p1-p0).Norm();
|
|
P3ScalarType b=(p2-p0).Norm();
|
|
P3ScalarType c=(p1-p2).Norm();
|
|
|
|
P3ScalarType sum = (a + b + c)*0.5;
|
|
P3ScalarType area2 = sum*(a+b-sum)*(a+c-sum)*(b+c-sum);
|
|
if(area2 <= 0) return 0;
|
|
//circumradius: (a*b*c)/(4*sqrt(area2))
|
|
//inradius: (a*b*c)/(4*circumradius*sum) => sqrt(area2)/sum;
|
|
return (8*area2)/(a*b*c*sum);
|
|
}
|
|
|
|
/// Compute a shape quality measure of the triangle composed by points p0,p1,p2
|
|
/// It Returns mean ratio 2sqrt(a, b)/(a+b) where a+b are the eigenvalues of the M^tM of the
|
|
/// transformation matrix into a regular simplex
|
|
/// the range is range [0, 1]
|
|
template<class P3ScalarType>
|
|
P3ScalarType QualityMeanRatio(Point3<P3ScalarType> const &p0,
|
|
Point3<P3ScalarType> const &p1,
|
|
Point3<P3ScalarType> const &p2) {
|
|
|
|
P3ScalarType a=(p1-p0).Norm();
|
|
P3ScalarType b=(p2-p0).Norm();
|
|
P3ScalarType c=(p1-p2).Norm();
|
|
P3ScalarType sum = (a + b + c)*0.5; //semiperimeter
|
|
P3ScalarType area2 = sum*(a+b-sum)*(a+c-sum)*(b+c-sum);
|
|
if(area2 <= 0) return 0;
|
|
return (4.0*sqrt(3.0)*sqrt(area2))/(a*a + b*b + c*c);
|
|
}
|
|
|
|
|
|
|
|
/// Return the Double of area of the triangle
|
|
// NOTE the old Area function has been removed to intentionally
|
|
// cause compiling error that will help people to check their code...
|
|
// A some people used Area assuming that it returns the double and some not.
|
|
// So please check your codes!!!
|
|
// And please DO NOT Insert any Area named function here!
|
|
|
|
template<class TriangleType>
|
|
typename TriangleType::ScalarType DoubleArea(const TriangleType &t)
|
|
{
|
|
return Norm( (t.cP(1) - t.cP(0)) ^ (t.cP(2) - t.cP(0)) );
|
|
}
|
|
|
|
template<class TriangleType>
|
|
typename TriangleType::ScalarType CosWedge(const TriangleType &t, int k)
|
|
{
|
|
typename TriangleType::CoordType
|
|
e0 = t.cP((k+1)%3) - t.cP(k),
|
|
e1 = t.cP((k+2)%3) - t.cP(k);
|
|
return (e0*e1)/(e0.Norm()*e1.Norm());
|
|
}
|
|
|
|
template<class TriangleType>
|
|
Point3<typename TriangleType::ScalarType> Barycenter(const TriangleType &t)
|
|
{
|
|
return ((t.cP(0)+t.cP(1)+t.cP(2))/(typename TriangleType::ScalarType) 3.0);
|
|
}
|
|
|
|
template<class TriangleType>
|
|
typename TriangleType::ScalarType Perimeter(const TriangleType &t)
|
|
{
|
|
return Distance(t.cP(0),t.cP(1))+
|
|
Distance(t.cP(1),t.cP(2))+
|
|
Distance(t.cP(2),t.cP(0));
|
|
}
|
|
|
|
template<class TriangleType>
|
|
Point3<typename TriangleType::ScalarType> Circumcenter(const TriangleType &t)
|
|
{
|
|
typename TriangleType::ScalarType a2 = (t.cP(1) - t.cP(2)).SquaredNorm();
|
|
typename TriangleType::ScalarType b2 = (t.cP(2) - t.cP(0)).SquaredNorm();
|
|
typename TriangleType::ScalarType c2 = (t.cP(0) - t.cP(1)).SquaredNorm();
|
|
Point3<typename TriangleType::ScalarType>c = t.cP(0)*a2*(-a2 + b2 + c2) +
|
|
t.cP(1)*b2*( a2 - b2 + c2) +
|
|
t.cP(2)*c2*( a2 + b2 - c2);
|
|
c /= 2*(a2*b2 + a2*c2 + b2*c2) - a2*a2 - b2*b2 - c2*c2;
|
|
return c;
|
|
}
|
|
|
|
|
|
} // end namespace
|
|
|
|
|
|
#endif
|
|
|