vcglib/wrap/miq/core/seams_initializer.h

394 lines
13 KiB
C++

#ifndef MIQ_SEAMS_INTIALIZER
#define MIQ_SEAMS_INTIALIZER
#include <vcg/complex/complex.h>
#include <vcg/simplex/face/pos.h>
#include <vcg/simplex/face/jumping_pos.h>
#include <vcg/simplex/face/topology.h>
#include <wrap/io_trimesh/import_field.h>
template <class MeshType>
class SeamsInitializer
{
private:
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::FaceIterator FaceIterator;
MeshType *mesh;
///per face per edge of mmatch in the solver
typename MeshType::template PerFaceAttributeHandle<vcg::Point3i> Handle_MMatch;
///per vertex singular or not
typename MeshType::template PerVertexAttributeHandle<bool> Handle_Singular;
///per vertex degree of a singularity
typename MeshType::template PerVertexAttributeHandle<int> Handle_SingularDegree;
///seam per face
typename MeshType::template PerFaceAttributeHandle<vcg::Point3<bool> > Handle_Seams;
///seam index per face
typename MeshType::template PerFaceAttributeHandle<vcg::Point3i > Handle_SeamsIndex;
bool IsRotSeam(const FaceType *f0,const int edge)
{
unsigned char MM=Handle_MMatch[f0][edge];//MissMatch(f0,edge);
return (MM!=0);
}
///return true if a vertex is singluar by looking at initialized missmatches
bool IsSingularByMMatch(const VertexType &v,int &missmatch)
{
///check that is on border..
if (v.IsB())return false;
std::vector<FaceType*> faces;
std::vector<int> edges;
vcg::face::Pos<FaceType> pos(v.cVFp(), v.cVFi());
vcg::face::VFOrderedStarFF(pos,faces,edges);
missmatch=0;
for (unsigned int i=0;i<faces.size();i++)
{
FaceType *curr_f=faces[i];
int currMM=Handle_MMatch[curr_f][edges[i]];
missmatch+=currMM;
}
missmatch=missmatch%4;
return(missmatch!=0);
}
///initialized mapping structures if are not already initialized
void AddAttributesIfNeeded()
{
bool HasHandleMMatch=vcg::tri::HasPerFaceAttribute(*mesh,std::string("MissMatch"));
if (!HasHandleMMatch)
Handle_MMatch = vcg::tri::Allocator<MeshType>::template AddPerFaceAttribute<vcg::Point3i>(*mesh,std::string("MissMatch"));
else
Handle_MMatch = vcg::tri::Allocator<MeshType>::template GetPerFaceAttribute<vcg::Point3i>(*mesh,std::string("MissMatch"));
bool HasHandleSingularity=vcg::tri::HasPerVertexAttribute(*mesh,std::string("Singular"));
if (!HasHandleSingularity)
Handle_Singular=vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<bool>(*mesh,std::string("Singular"));
else
Handle_Singular=vcg::tri::Allocator<MeshType>::template GetPerVertexAttribute<bool>(*mesh,std::string("Singular"));
bool HasHandleSingularityDegree=vcg::tri::HasPerVertexAttribute(*mesh,std::string("SingularityDegree"));
if (!HasHandleSingularityDegree)
Handle_SingularDegree=vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<int>(*mesh,std::string("SingularityDegree"));
else
Handle_SingularDegree=vcg::tri::Allocator<MeshType>::template GetPerVertexAttribute<int>(*mesh,std::string("SingularityDegree"));
bool HasHandleSeams=vcg::tri::HasPerFaceAttribute(*mesh,std::string("Seams"));
if (!HasHandleSeams)
Handle_Seams=vcg::tri::Allocator<MeshType>::template AddPerFaceAttribute<vcg::Point3<bool> >(*mesh,std::string("Seams"));
else
Handle_Seams=vcg::tri::Allocator<MeshType>::template GetPerFaceAttribute<vcg::Point3<bool> >(*mesh,std::string("Seams"));
bool HasHandleSeamsIndex=vcg::tri::HasPerFaceAttribute(*mesh,std::string("SeamsIndex"));
if (!HasHandleSeamsIndex)
Handle_SeamsIndex=vcg::tri::Allocator<MeshType>::template AddPerFaceAttribute<vcg::Point3i >(*mesh,std::string("SeamsIndex"));
else
Handle_SeamsIndex=vcg::tri::Allocator<MeshType>::template GetPerFaceAttribute<vcg::Point3i >(*mesh,std::string("SeamsIndex"));
}
void FloodFill(FaceType* start)
{
std::deque<FaceType*> d;
///clean the visited flag
start->SetV();
d.push_back(start);
while (!d.empty()){
FaceType *f = d.at(0); d.pop_front();
for (int s = 0; s<3; s++)
{
FaceType *g = f->FFp(s);
int j = f->FFi(s);
if ((!(IsRotSeam(f,s))) && (!(IsRotSeam(g,j))) && (!g->IsV()) )
{
Handle_Seams[f][s]=false;
Handle_Seams[g][j]=false;
g->SetV();
d.push_back(g);
}
}
}
}
void Retract(){
std::vector<int> e(mesh->vert.size(),0); // number of edges per vert
VertexType *vb = &(mesh->vert[0]);
for (FaceIterator f = mesh->face.begin(); f!=mesh->face.end(); f++) if (!f->IsD()){
for (int s = 0; s<3; s++){
//if (f->seam[s])
if (Handle_Seams[f][s])
if (f->FFp(s)<=&*f) {
e[ f->V(s) - vb ] ++;
e[ f->V1(s) - vb ] ++;
}
}
}
bool over=true;
int guard = 0;
do {
over = true;
for (FaceIterator f = mesh->face.begin(); f!=mesh->face.end(); f++) if (!f->IsD()){
for (int s = 0; s<3; s++){
//if (f->seam[s])
if (Handle_Seams[f][s])
if (!(IsRotSeam(&(*f),s))) // never retract rot seams
//if (f->FFp(s)<=&*f)
{
if (e[ f->V(s) - vb ] == 1) {
// dissolve seam
//f->seam[s] = false;
Handle_Seams[f][s]=false;
//f->FFp(s)->seam[(int)f->FFi(s)] = false;
Handle_Seams[f->FFp(s)][(int)f->FFi(s)]=false;
e[ f->V(s) - vb ] --;
e[ f->V1(s) - vb ] --;
over = false;
}
}
}
}
if (guard++>10000) over = true;
} while (!over);
}
void AddSeamsByMM()
{
for (unsigned int i=0;i<mesh->face.size();i++)
{
FaceType *f=&mesh->face[i];
if (f->IsD())continue;
for (int j=0;j<3;j++)
{
if (IsRotSeam(f,j))
Handle_Seams[f][j]=true;
//f->SetSeam(j);
}
}
}
void SelectSingularityByMM()
{
for (unsigned int i=0;i<mesh->vert.size();i++)
{
if (mesh->vert[i].IsD())continue;
int missmatch;
bool isSing=IsSingularByMMatch(mesh->vert[i],missmatch);
if (isSing)
{
//mesh->vert[i].SetS();
Handle_Singular[i]=true;
if (missmatch==3)missmatch=1;
else
if (missmatch==1)missmatch=3;
Handle_SingularDegree[i]=missmatch;
}
else
{
//mesh->vert[i].ClearS();
Handle_Singular[i]=false;
Handle_SingularDegree[i]=0;
}
}
}
int InitTopologycalCuts(){
vcg::tri::UpdateFlags<MeshType>::FaceClearV(*mesh);
for (FaceIterator f = mesh->face.begin(); f!=mesh->face.end(); f++)
if (!f->IsD())
{
Handle_Seams[f][0]=true;
Handle_Seams[f][1]=true;
Handle_Seams[f][2]=true;
}
int index=0;
for (FaceIterator f = mesh->face.begin(); f!=mesh->face.end(); f++)
if (!f->IsD())
{
if (!f->IsV())
{
index++;
FloodFill(&*f);
}
}
Retract();
return index;
}
void InitMMatch()
{
for (unsigned int i=0;i<mesh->face.size();i++)
{
FaceType *curr_f=&mesh->face[i];
for (int j=0;j<3;j++)
{
FaceType *opp_f=curr_f->FFp(j);
if (curr_f==opp_f)
Handle_MMatch[curr_f][j]=0;
else
Handle_MMatch[curr_f][j]=vcg::tri::CrossField<MeshType>::MissMatchByCross(*curr_f,*opp_f);
}
}
}
void InitSeamIndexes()
{
///initialize seams indexes
for (unsigned int i=0;i<mesh->face.size();i++)
{
FaceType *f=&mesh->face[i];
for (int j=0;j<3;j++)
Handle_SeamsIndex[f][j]=-1;
}
std::vector<std::vector<std::pair<FaceType*,int> > > seamsVert;
seamsVert.resize(mesh->vert.size());
for (unsigned int i=0;i<mesh->face.size();i++)
{
FaceType *f=&mesh->face[i];
for (int j=0;j<3;j++)
{
if (f->IsB(j))continue;
if (Handle_Seams[f][j])
{
VertexType *v0=f->V0(j);
VertexType *v1=f->V1(j);
if (v0>v1)continue;
int index0=v0-&mesh->vert[0];
int index1=v1-&mesh->vert[0];
std::pair<FaceType*,int> entry=std::pair<FaceType*,int>(f,j);
seamsVert[index0].push_back(entry);
seamsVert[index1].push_back(entry);
}
}
}
int curr_index=0;
for (unsigned int i=0;i<mesh->vert.size();i++)
{
VertexType *v_seam=&mesh->vert[i];
bool IsVertex=(Handle_Singular[i])||(seamsVert[i].size()>2)||
(v_seam->IsB());
if(!IsVertex)continue;
///then follows the seam
for (unsigned int j=0;j<seamsVert[i].size();j++)
{
FaceType *f=seamsVert[i][j].first;
int edge=seamsVert[i][j].second;
VertexType *v0=v_seam;
VertexType *v1=NULL;
///the index is already initialized
if (Handle_SeamsIndex[f][edge]!=-1)continue;
bool finished=false;
do
{
///otherwise follow the index
Handle_SeamsIndex[f][edge]=curr_index;///set current value
FaceType *f1=f->FFp(edge);
int edge1=f->FFi(edge);
Handle_SeamsIndex[f1][edge1]=curr_index;///set current value
assert((v0==f->V0(edge))||
(v0==f->V1(edge)));
if (f->V0(edge)==v0)
v1=f->V1(edge);
else
v1=f->V0(edge);
assert(v0!=v1);
//int index0=v0-&mesh->vert[0];
int index1=v1-&mesh->vert[0];
bool IsVertex=(Handle_Singular[v1])||
(seamsVert[index1].size()>2)||
(v1->IsB());
if(IsVertex)
finished=true;
else
{
assert(seamsVert[index1].size()==2);
FaceType *f_new[2];
int edge_new[2];
f_new[0]=seamsVert[index1][0].first;
edge_new[0]=seamsVert[index1][0].second;
f_new[1]=seamsVert[index1][1].first;
edge_new[1]=seamsVert[index1][1].second;
assert((f_new[0]==f)||(f_new[1]==f));
assert((edge_new[0]==edge)||(edge_new[1]==edge));
if ((f_new[0]==f)&&(edge_new[0]==edge))
{
f=f_new[1];
edge=edge_new[1];
}
else
{
f=f_new[0];
edge=edge_new[0];
}
v0=v1;
}
}
while (!finished);
//return;
curr_index++;
}
}
}
public:
void Init(MeshType *_mesh,
bool orient_globally,
bool initMM,
bool initCuts)
{
mesh=_mesh;
vcg::tri::UpdateFlags<MeshType>::VertexBorderFromNone(*mesh);
vcg::tri::UpdateFlags<MeshType>::FaceBorderFromNone(*mesh);
AddAttributesIfNeeded();
if (orient_globally)
vcg::tri::CrossField<MeshType>::MakeDirectionFaceCoherent(*mesh);
if (initMM)
InitMMatch();
SelectSingularityByMM();
if (initCuts)
{
InitTopologycalCuts();
AddSeamsByMM();
}
InitSeamIndexes();
}
SeamsInitializer(){mesh=NULL;}
};
#endif