vcglib/vcg/simplex/tetrahedron/base.h

419 lines
12 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.4 2004/04/28 11:37:14 pietroni
*** empty log message ***
Revision 1.3 2004/04/26 09:38:54 pietroni
*** empty log message ***
Revision 1.2 2004/04/20 12:42:37 pietroni
*** empty log message ***
Revision 1.1 2004/04/15 08:54:20 pietroni
*** empty log message ***
****************************************************************************/
#ifndef TETRA_TYPE
#pragma message("\nYou should never directly include this file\_n")
#else
#define NULL 0
#include<vcg/space/point3.h>
#include<vcg/space/tetra3.h>
namespace vcg {
/**
\ingroup tetrahedron
@name Tetrahedron
Class Tetrahedron.
This is the base class for definition of a Tetrahedron of the mesh.
@param VTYPE (Template Parameter) Specifies the type for the vertex.
*/
template < class VTYPE >
class TETRA_TYPE{
public:
/// The base type of the face
typedef TETRA_TYPE BaseTetraType;
/// The vertex type
typedef typename VTYPE VertexType;
/// The coordinate type used to represent the point (i.e. Point3f, Point3d, ...)
typedef typename VertexType::CoordType CoordType;
/// The scalar type used to represent coords (i.e. float, double, ...)
typedef typename VertexType::ScalarType ScalarType;
/***********************************************/
/** @name Tetrahedron Flags
For each Tetrahedron we store a set of boolean values packed in a int.
The default value for each flag is 0. Most commonly used flags are the \a deleted and the \a selected ones.
Users can ask and dispose for a bit for their own purposes with the vcg::TetrahedronFull::NewUserBit() and vcg::TetrahedronFull::DeleteUserBit() functions.
The value returned by these functions has to be passed to the
vcg::TetrahedronFull::SetUserBit() vcg::TetrahedronFull::ClearUserBit() and vcg::TetrahedronFull::IsUserBit() functions to check and modify the obtained bit flag.
**/
//@{
/// This are the flags of tetrahedron, the default value is 0
int _flags;
enum {
DELETED = 0x00000001, // deleted tetrahedron flag
SELECTED = 0x00000002, // Selection flag
BORDERF0 = 0x00000004, // Border flag, Face 0
BORDERF1 = 0x00000008, // Border flag, Face 1
BORDERF2 = 0x00000010, // Border flag, Face 2
BORDERF3 = 0x00000020, // Border flag, Face 3
BORDERE0 = 0x00000040, // Border flag, Edge 0
BORDERE1 = 0x00000080, // Border flag, Edge 1
BORDERE2 = 0x00000100, // Border flag, Edge 2
BORDERE3 = 0x00000200, // Border flag, Edge 3
BORDERE4 = 0x00000400, // Border flag, Edge 4
BORDERE5 = 0x00000800, // Border flag, Edge 5
USER0 = 0x00001000, // new flag for user
};
public:
/// Return the vector of _flags
inline int & Flags ()
{
assert( (_flags & DELETED) == 0 );
return _flags;
}
static int &LastBitFlag()
{
static int b =USER0;
return b;
}
static inline int NewBitFlag()
{
LastBitFlag()=LastBitFlag()<<1;
return LastBitFlag();
}
static inline bool DeleteBitFlag(int bitval)
{
if(LastBitFlag()==bitval) {
LastBitFlag()= LastBitFlag()>>1;
return true;
}
assert(0);
return false;
}
/// This function checks if the given user bit is true.
bool IsUserBit(int userBit){return (_flags & userBit) != 0;}
/// This function set the given user bit.
void SetUserBit(int userBit){_flags |=userBit;}
/// This function clear the given user bit.
void ClearUserBit(int userBit){_flags &= (~userBit);}
/// This function checks if the tetrahedron is deleted.
bool IsD() const {return (_flags & DELETED) != 0;}
/// This function mark the tetrahedron as deleted.
void SetD() {_flags |=DELETED;}
/// This function mark the tetrahedron as not deleted.
void ClearD() {_flags &=~DELETED;}
/// This function mark the tetrahedron as selected.
void SetS() {_flags |=SELECTED;}
/// This function mark the tetrahedron as not selected.
void ClearS() {_flags &=~SELECTED;}
/// This function return true if one face is extern.
bool HaveBorderF() {return ((_flags & (BORDERF0 | BORDERF1 | BORDERF2 | BORDERF3)) != 0);}
/// This function return true if the face is extern.
bool IsBorderF(int face) {
assert ((face<4)&&(face>-1));
return (this->TTp(face) == this);
}
//@}
/***********************************************/
/** @name Vertex Pointers
For each Tetrahedron we store 4 pointers to vertex
**/
//@{
/// The 4 vertices of the tetrahedron
protected:
VertexType *_v[4];
public:
/** Return the pointer to the j-th vertex of the terahedron.
@param j Index of the tetrahedron's vertex.
*/
inline VertexType * & V( const int j )
{
assert( (_flags & DELETED) == 0 );
assert(j >= 0);
assert(j < 4);
return _v[j];
}
inline const VertexType * const & V( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert(j>=0);
assert(j<4);
return _v[j];
}
inline const VertexType * const & cV( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert(j>=0);
assert(j<4);
return _v[j];
}
/***********************************************/
/** @name Topology Structures
For each Tetrahedron we store 2 array for Tatrahedron - Tetrahedron topology ( sharing Face)
and 2 array to implement the list of Vertex - Tetrahedron Topology (List of Tetrahedron sharing a vertex).
**/
//@{
#ifdef __VCGLIB_TETRA_AT
protected:
///pointers to tetrahedron for tetrahedron-tetrahedron topology (sharing same face)
TETRA_TYPE *_ttp[4];
///index of face for tetrahedron-tetrahedron topology (sharing same face)
int _tti[4];
public:
///Function to access the Tetrahedron that share the index-face (extern face returns a pointer to himself)
TETRA_TYPE *&TTp(const int &index)
{
return _ttp[index];
}
///Function to see the index of the face as seen from the other tetrahedron (extern face returns -1)
int &TTi(const int &index)
{
return _tti[index];
}
#endif
#ifdef __VCGLIB_TETRA_AV
protected:
///pointers to tetrahedron for vertex-tetrahedron topology (sharing same vertex)
TETRA_TYPE *_tvp[4];
///index of vertex for vertex-tetrahedron topology (sharing same vertex)
short int _tvi[4];
public:
///Function to access the Next Tetrahedron of the list that share the index-face (end of list is Null)
TETRA_TYPE *&TVp(const int &index)
{
return _tvp[index];
}
///Function to see the index of the Vertex as seen from the next tetrahedron of the list ( end of list is -1)
short int &TVi(const int &index)
{
return _tvi[index];
}
#endif
//@}
/***********************************************/
/** @Default Tatrahedron Functions**/
//@{
public:
///Constructor
TETRA_TYPE()
{
_flags=0;
}
///initialize default parameters of tetrahedron
virtual void Init(VertexType * p0,VertexType * p1,VertexType * p2,VertexType * p3)
{
_flags = 0;
_v[0]=p0;
_v[1]=p1;
_v[2]=p2;
_v[3]=p3;
if(ComputeVolume()<0 )
swap(_v[1],_v[2]);
#ifdef __VCGLIB_TETRA_TA
_z[0]=_z[1]=_z[2]=_z[3]=-1;
_t[0]=_t[1]=_t[2]=_t[3]=NULL;
#endif
#ifdef __VCGLIB_TETRA_TV
_zv[0]=_zv[1]=_zv[2]=_zv[3]=-1;
_tv[0]=_tv[1]=_tv[2]=_tv[3]=NULL;
#endif
}
///set border vertices using TT-topology
#ifdef __VCGLIB_TETRA_AT
void setBorderV()
{
int i;
for (i=0;i<4;i++)
if (T(i)==this)
{
FV(i,0)->SetB();
FV(i,1)->SetB();
FV(i,2)->SetB();
}
}
#endif
//@}
/***********************************************/
/** @Generic geometric and quality funtions of a tetrahedron**/
//@{
#ifdef __VCGLIB_TETRA_TN
private:
CoordType _n[4];
public:
#endif
///return the normal of a face of the tetrahedron
const CoordType & N(const int &i){
assert((i>=0)&&(i<4));
#ifdef __VCGLIB_TETRA_TN
return _n[i];
#else
Tetra3<ScalarType> T=Tetra3<ScalarType>();
T.P0(0)=V(0)->P();
T.P1(0)=V(1)->P();
T.P2(0)=V(2)->P();
T.P3(0)=V(3)->P();
return (Normal<Tetra3<ScalarType> >(T,i));
#endif
}
/// Calculate the normal to all the faces of a tetrahedron, the value is store in a position of vecton _n for each face
void ComputeNormal()
{
#ifdef __VCGLIB_TETRA_TN
Tetra3<ScalarType> T=Tetra3<ScalarType>();
T.P0(0)=V(0)->P();
T.P1(0)=V(1)->P();
T.P2(0)=V(2)->P();
T.P3(0)=V(3)->P();
for (int i=0;i<4;i++)
_n[i]=(Normal<Tetra3<ScalarType> >(T,i));
#else
assert(0);
#endif
}
//@}
/***********************************************/
/** @Generic geometric and quality funtions of a tetrahedron**/
//@{
#ifdef __VCGLIB_TETRA_TQ
ScalarType _volume;
ScalarType _aspect_ratio;
#endif
ScalarType ComputeVolume(){
Tetra3<ScalarType> T=Tetra3<ScalarType>();
T.P0(0)=V(0)->cP();
T.P1(0)=V(1)->cP();
T.P2(0)=V(2)->cP();
T.P3(0)=V(3)->cP();
#ifdef __VCGLIB_TETRA_TQ
_volume = T.ComputeVolume();
return _volume;
#else
return (T.ComputeVolume());
#endif
}
///return the volume of the tetrahedron
const double & Volume(){
#ifdef __VCGLIB_TETRA_TQ
return _volume;
#else
return (( V(2)->cP()-V(0)->cP())^(V(1)->cP()-V(0)->cP() ))*(V(3)->cP()-V(0)->cP())/6.0;
#endif
}
///return aspect ratio of the tetrahedron
double AspectRatio(){
#ifdef __VCGLIB_TETRA_TQ
return _aspect_ratio;
#else
return ComputeAspectRatio();
#endif
}
//@}
/***********************************************/
/** @name Reflection Functions
Static functions that give information about the current tetra type.
Reflection is a mechanism making it possible to investigate yourself. Reflection is used to investigate format of objects at runtime, invoke methods and access fields of these objects. Here we provide static const functions that are resolved at compile time and they give information about the data supported by the current tetra type.
**/
//@{
static bool HasTetraNormal() {
#ifdef __VCGLIB_TETRA_TN
return true;
#else
return false;
#endif
}
static bool HasTetraMark() {
#ifdef __VCGLIB_TETRA_TM
return true;
#else
return false;
#endif
}
static bool HasTetraQuality() {
#ifdef __VCGLIB_TETRA_TQ
return true;
#else
return false;
#endif
}
static bool HasTTAdjacency() {
#if (defined(__VCGLIB_TETRA_AT) || defined(__VCGLIB_TETRA_SAT))
return true;
#else
return false;
#endif
}
static bool HasVTAdjacency() {
#if (defined(__VCGLIB_TETRA_AV) || defined(__VCGLIB_TETRA_SAT))
return true;
#else
return false;
#endif
}
//@}
};//end class
}//end namespace
#endif