1181 lines
33 KiB
C++
1181 lines
33 KiB
C++
#ifndef VCG_BITQUAD_SUPPORT
|
|
#define VCG_BITQUAD_SUPPORT
|
|
#include <vector>
|
|
#include <set>
|
|
#include <vcg/complex/algorithms/subset.h>
|
|
#include <vcg/simplex/face/jumping_pos.h>
|
|
#include <vcg/simplex/face/topology.h>
|
|
#include <vcg/space/planar_polygon_tessellation.h>
|
|
|
|
/** BIT-QUAD creation support:
|
|
a few basic operations to work with bit-quads simplices
|
|
(quads defined by faux edges over a tri mesh backbone)
|
|
|
|
|
|
[ basic operations: ]
|
|
|
|
bool IsDoublet(const FaceType& f, int wedge)
|
|
void RemoveDoublet(FaceType &f, int wedge, MeshType& m)
|
|
- identifies and removed "Doublets" (pair of quads sharing two consecutive edges)
|
|
|
|
bool IsSinglet(const FaceType& f, int wedge)
|
|
void RemoveSinglet(FaceType &f, int wedge, MeshType& m)
|
|
|
|
void FlipDiag(FaceType &f)
|
|
- rotates the faux edge of a quad (quad only change internally)
|
|
|
|
bool RotateEdge(FaceType& f, int w0a);
|
|
- rotate a quad edge (clockwise or counterclockwise, specified via template)
|
|
|
|
bool RotateVertex(FaceType &f, int w0)
|
|
- rotate around a quad vertex ("wind-mill" operation)
|
|
|
|
void CollapseDiag(FaceType &f, ... p , MeshType& m)
|
|
- collapses a quad on its diagonal.
|
|
- p identifies the pos of collapsed point
|
|
(as either the parametric pos on the diagonal, or a fresh coordtype)
|
|
|
|
|
|
[ helper functions: ]
|
|
|
|
ScalarType quadQuality( ... );
|
|
- returns the quality for a given quad
|
|
- (should be made into a template parameter for methods using it)
|
|
- currently measures how squared each angle is
|
|
|
|
int FauxIndex(const FaceType* f);
|
|
- returns index of the only faux edge of a quad (otherwise, assert)
|
|
|
|
int CountBitPolygonInternalValency(const FaceType& f, int wedge)
|
|
- returns valency of vertex in terms of polygons (quads, tris...)
|
|
|
|
|
|
*/
|
|
|
|
// these should become a parameter in the corresponding class
|
|
#define DELETE_VERTICES 1
|
|
// Reason not to delete vertices:
|
|
// if not vertex TwoManyfold, the vertex could still be used elsewhere...
|
|
|
|
// if one, use length to determine if rotations are profitable
|
|
// if zero, maximize conformal quality
|
|
#define LENGTH_CRITERION 1
|
|
|
|
namespace vcg{namespace tri{
|
|
|
|
/* simple geometric-interpolation mono-function class used
|
|
as a default template parameter to BitQuad class */
|
|
template <class VertexType>
|
|
class GeometricInterpolator{
|
|
public:
|
|
typedef typename VertexType::ScalarType ScalarType;
|
|
static void Apply( const VertexType &a, const VertexType &b, ScalarType t, VertexType &res){
|
|
/*assert (&a != &b);*/
|
|
res.P() = a.P()*(1-t) + b.P()*(t);
|
|
if (a.IsB()||b.IsB()) res.SetB();
|
|
}
|
|
};
|
|
|
|
template <
|
|
// first template parameter: the tri mesh (with face-edges flagged)
|
|
class _MeshType,
|
|
// second template parameter: used to define interpolations between points
|
|
class Interpolator = GeometricInterpolator<typename _MeshType::VertexType>
|
|
>
|
|
class BitQuad{
|
|
public:
|
|
|
|
typedef _MeshType MeshType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FaceType* FaceTypeP;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
|
|
class Pos{
|
|
FaceType *f;
|
|
int e;
|
|
public:
|
|
enum{ PAIR, AROUND , NOTHING } mode;
|
|
FaceType* &F(){return f;}
|
|
FaceType* F() const {return f;}
|
|
VertexType* V() {return f->V(e);}
|
|
const VertexType* cV() const {return f->V(e);}
|
|
int& E(){return e;}
|
|
int E() const {return e;}
|
|
|
|
|
|
Pos(){ f=NULL; e=0; mode=AROUND;}
|
|
|
|
Pos(FaceType* _f, int _e){f=_f; e=_e;}
|
|
Pos NextE()const {return Pos(f, (e+1)%3); }
|
|
Pos PrevE(){return Pos(f, (e+2)%3); }
|
|
bool IsF(){return f->IsF(e);}
|
|
Pos FlipF(){return Pos(f->FFp(e), f->FFi(e)); }
|
|
|
|
};
|
|
|
|
|
|
|
|
static void MarkFaceF(FaceType *f){
|
|
f->V(0)->SetS();
|
|
f->V(1)->SetS();
|
|
f->V(2)->SetS();
|
|
int i=FauxIndex(f);
|
|
f->FFp( i )->V2( f->FFi(i) )->SetS();
|
|
f->V(0)->SetV();
|
|
f->V(1)->SetV();
|
|
f->V(2)->SetV();
|
|
f->FFp( i )->V2( f->FFi(i) )->SetV();
|
|
}
|
|
|
|
|
|
template <bool verse>
|
|
static bool RotateEdge(FaceType& f, int w0a, MeshType &m, Pos *affected=NULL){
|
|
FaceType *fa = &f;
|
|
assert(! fa->IsF(w0a) );
|
|
|
|
VertexType *v0, *v1;
|
|
v0= fa->V0(w0a);
|
|
v1= fa->V1(w0a);
|
|
|
|
int w1a = (w0a+1)%3;
|
|
int w2a = (w0a+2)%3;
|
|
|
|
FaceType *fb = fa->FFp(w0a);
|
|
|
|
MarkFaceF(fa);
|
|
MarkFaceF(fb);
|
|
|
|
int w0b = fa->FFi(w0a);
|
|
int w1b = (w0b+1)%3;
|
|
int w2b = (w0b+2)%3;
|
|
|
|
if (fa->IsF(w2a) == verse) {
|
|
if (!CheckFlipDiag(*fa)) return false;
|
|
FlipDiag(*fa);
|
|
// hack: recover edge index, so that (f, w0a) identifies the same edge as before
|
|
fa = fb->FFp(w0b);
|
|
w0a = fb->FFi(w0b);
|
|
}
|
|
|
|
if (fb->IsF(w2b) == verse) {
|
|
if (!CheckFlipDiag(*fb)) return false;
|
|
FlipDiag(*fb);
|
|
}
|
|
|
|
if (!CheckFlipEdge(*fa,w0a)) return false;
|
|
FlipEdge(*fa,w0a,m);
|
|
if (affected) {
|
|
affected->F() = fa;
|
|
affected->E() = (FauxIndex(fa)+2)%3;
|
|
affected->mode = Pos::PAIR;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* small helper function which returns the index of the only
|
|
faux index, assuming there is exactly one (asserts out otherwise)
|
|
*/
|
|
static int FauxIndex(const FaceType* f){
|
|
if (f->IsF(0)) return 0;
|
|
if (f->IsF(1)) return 1;
|
|
assert(f->IsF(2));
|
|
return 2;
|
|
}
|
|
|
|
// rotates the diagonal of a quad
|
|
static void FlipDiag(FaceType &f){
|
|
int faux = FauxIndex(&f);
|
|
FaceType* fa = &f;
|
|
FaceType* fb = f.FFp(faux);
|
|
vcg::face::FlipEdge(f, faux);
|
|
// ripristinate faux flags
|
|
fb->ClearAllF();
|
|
fa->ClearAllF();
|
|
for (int k=0; k<3; k++) {
|
|
if (fa->FFp(k) == fb) fa->SetF(k);
|
|
if (fb->FFp(k) == fa) fb->SetF(k);
|
|
}
|
|
}
|
|
|
|
|
|
// given a vertex (i.e. a face and a wedge),
|
|
// this function tells us how the totale edge lenght around a vertex would change
|
|
// if that vertex is rotated
|
|
static ScalarType EdgeLenghtVariationIfVertexRotated(const FaceType &f, int w0)
|
|
{
|
|
assert(!f.IsD());
|
|
|
|
ScalarType
|
|
before=0, // sum of quad edges (originating from v)
|
|
after=0; // sum of quad diag (orginating from v)
|
|
int guard = 0;
|
|
|
|
// rotate arond vertex
|
|
const FaceType* pf = &f;
|
|
int pi = w0;
|
|
int n = 0; // vertex valency
|
|
int na = 0;
|
|
do {
|
|
ScalarType triEdge = (pf->P0(pi) - pf->P1(pi) ).Norm();
|
|
if (pf->IsF(pi)) { after += triEdge; na++;}
|
|
else { before+= triEdge; n++; }
|
|
if ( pf->IsF((pi+1)%3)) { after += CounterDiag( pf ).Norm(); na++; }
|
|
|
|
const FaceType *t = pf;
|
|
t = pf->FFp( pi );
|
|
if (pf == t ) return std::numeric_limits<ScalarType>::max(); // it's a mesh border! flee!
|
|
pi = pf->cFFi( pi );
|
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
|
pf = t;
|
|
assert(guard++<100);
|
|
} while (pf != &f);
|
|
assert (na == n);
|
|
return (after-before);
|
|
}
|
|
|
|
// given a vertex (i.e. a face and a wedge),
|
|
// this function tells us how the totale edge lenght around a vertex would change
|
|
// if that vertex is rotated
|
|
static ScalarType QuadQualityVariationIfVertexRotated(const FaceType &f, int w0)
|
|
{
|
|
assert(!f.IsD());
|
|
|
|
ScalarType
|
|
before=0, // sum of quad quality around v
|
|
after=0; // same after the collapse
|
|
int guard = 0;
|
|
|
|
// rotate arond vertex
|
|
const FaceType* pf = &f;
|
|
int pi = w0;
|
|
int nb = 0; // vertex valency
|
|
int na = 0;
|
|
std::vector<const VertexType *> s; // 1 star around v
|
|
do {
|
|
// ScalarType triEdge = (pf->P0(pi) - pf->P1(pi) ).Norm();
|
|
if (!pf->IsF(pi)) {
|
|
if ( pf->IsF((pi+1)%3)) {
|
|
s.push_back(pf->cFFp((pi+1)%3)->V2( pf->cFFi((pi+1)%3) ));
|
|
} else {
|
|
s.push_back( pf->V2(pi) );
|
|
}
|
|
|
|
s.push_back( pf->V1(pi) );
|
|
}
|
|
|
|
const FaceType *t = pf;
|
|
t = pf->FFp( pi );
|
|
if (pf == t ) return std::numeric_limits<ScalarType>::max(); // it's a mesh border! flee!
|
|
pi = pf->cFFi( pi );
|
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
|
pf = t;
|
|
assert(guard++<100);
|
|
} while (pf != &f);
|
|
|
|
assert(s.size()%2==0);
|
|
int N = s.size();
|
|
for (int i=0; i<N; i+=2) {
|
|
int h = (i+N-1)%N;
|
|
int j = (i +1)%N;
|
|
int k = (i +2)%N;
|
|
before+= quadQuality( s[i]->P(),s[j]->P(),s[k]->P(),f.P(w0) );
|
|
after+=quadQuality( s[h]->P(),s[i]->P(),s[j]->P(),f.P(w0) );
|
|
}
|
|
|
|
assert (na == nb);
|
|
return (after-before);
|
|
}
|
|
|
|
/*
|
|
const FaceType* pf = &f;
|
|
int pi = wedge;
|
|
int res = 0, guard=0;
|
|
do {
|
|
if (!pf->IsAnyF()) return false; // there's a triangle!
|
|
if (!pf->IsF(pi)) res++;
|
|
const FaceType *t = pf;
|
|
t = pf->FFp( pi );
|
|
if (pf == t ) return false;
|
|
pi = pf->cFFi( pi );
|
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
|
pf = t;
|
|
assert(guard++<100);
|
|
} while (pf != &f);
|
|
*/
|
|
|
|
// given a vertex (i.e. a face and a wedge),
|
|
// this function tells us if it should be rotated or not
|
|
// (currently, we should iff it is shortened)
|
|
static bool TestVertexRotation(const FaceType &f, int w0)
|
|
{
|
|
assert(!f.IsD());
|
|
|
|
#if (LENGTH_CRITERION)
|
|
// rotate vertex IFF this way edges become shorter:
|
|
return EdgeLenghtVariationIfVertexRotated(f,w0)<0;
|
|
#else
|
|
// rotate vertex IFF overall Quality increase
|
|
#endif
|
|
return QuadQualityVariationIfVertexRotated(f,w0)<0;
|
|
}
|
|
|
|
|
|
static bool RotateVertex(FaceType &f, int w0, MeshType &m, Pos *affected=NULL)
|
|
{
|
|
|
|
int guard = 0;
|
|
|
|
FaceType* pf = &f;
|
|
int pi = w0;
|
|
int n = 0; // vertex valency
|
|
|
|
if (pf->IsF((pi+2) % 3)) {
|
|
pi = (pi+2)%3;
|
|
// do one step back
|
|
int tmp = pf->FFi(pi); pf = pf->FFp(pi); pi = tmp; // flipF
|
|
}
|
|
|
|
const FaceType* stopA = pf;
|
|
const FaceType* stopB = pf->FFp(FauxIndex(pf));
|
|
|
|
// rotate around vertex, flipping diagonals if necessary,
|
|
do {
|
|
bool mustFlip;
|
|
if (pf->IsF(pi)) {
|
|
// if next edge is faux, move on other side of quad
|
|
int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF
|
|
mustFlip = false;
|
|
}
|
|
else {
|
|
mustFlip = true;
|
|
}
|
|
|
|
FaceType *lastF = pf;
|
|
|
|
int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF
|
|
|
|
if (mustFlip) {
|
|
if (!CheckFlipDiag(*lastF)) return false; // cannot flip??
|
|
FlipDiag(*lastF);
|
|
}
|
|
MarkFaceF(pf);
|
|
} while (pf != stopA && pf!= stopB);
|
|
|
|
// last pass: rotate arund vertex again, changing faux status
|
|
stopA=pf;
|
|
do {
|
|
int j = pi;
|
|
if (pf->IsF(j))
|
|
{ pf->ClearF(j); IncreaseValency(pf->V1(j)); }
|
|
else
|
|
{ pf->SetF(j); DecreaseValencySimple(pf->V1(j),1); }
|
|
|
|
j = (j+2)%3;
|
|
if (pf->IsF(j)) pf->ClearF(j); else pf->SetF(j);
|
|
int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF flipV
|
|
} while (pf != stopA );
|
|
|
|
if (affected) {
|
|
affected->F() = pf;
|
|
affected->E()=pi;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// flips the faux edge of a quad
|
|
static void FlipEdge(FaceType &f, int k, MeshType &m){
|
|
assert(!f.IsF(k));
|
|
FaceType* fa = &f;
|
|
FaceType* fb = f.FFp(k);
|
|
assert(fa!=fb); // else, rotating a border edge
|
|
|
|
// backup prev other-quads-halves
|
|
FaceType* fa2 = fa->FFp( FauxIndex(fa) );
|
|
FaceType* fb2 = fb->FFp( FauxIndex(fb) );
|
|
|
|
IncreaseValency( fa->V2(k) );
|
|
IncreaseValency( fb->V2(f.FFi(k)) );
|
|
//DecreaseValency( fa->V0(k) );
|
|
//DecreaseValency( fa->V1(k) );
|
|
DecreaseValency(fa, k ,m);
|
|
DecreaseValency(fa,(k+1)%3,m );
|
|
|
|
|
|
vcg::face::FlipEdge(*fa, k);
|
|
|
|
// ripristinate faux flags
|
|
fb->ClearAllF();
|
|
fa->ClearAllF();
|
|
for (int k=0; k<3; k++) {
|
|
//if (fa->FFp(k) == fa2) fa->SetF(k);
|
|
//if (fb->FFp(k) == fb2) fb->SetF(k);
|
|
if (fa->FFp(k)->IsF( fa->FFi(k) )) fa->SetF(k);
|
|
if (fb->FFp(k)->IsF( fb->FFi(k) )) fb->SetF(k);
|
|
}
|
|
|
|
}
|
|
|
|
// check if a quad diagonal can be topologically flipped
|
|
static bool CheckFlipDiag(FaceType &f){
|
|
return (vcg::face::CheckFlipEdge(f, FauxIndex(&f) ) );
|
|
}
|
|
|
|
// given a face (part of a quad), returns its diagonal
|
|
static CoordType Diag(const FaceType* f){
|
|
int i = FauxIndex(f);
|
|
return f->P1( i ) - f->P0( i );
|
|
}
|
|
|
|
|
|
// given a face (part of a quad), returns other diagonal
|
|
static CoordType CounterDiag(const FaceType* f){
|
|
int i = FauxIndex(f);
|
|
return f->cP2( i ) - f->cFFp( i )->cP2(f->cFFi(i) ) ;
|
|
}
|
|
|
|
/* helper function:
|
|
collapses a single face along its faux edge.
|
|
Updates FF adj of other edges. */
|
|
static void _CollapseDiagHalf(FaceType &f, int faux, MeshType& m)
|
|
{
|
|
int faux1 = (faux+1)%3;
|
|
int faux2 = (faux+2)%3;
|
|
|
|
FaceType* fA = f.FFp( faux1 );
|
|
FaceType* fB = f.FFp( faux2 );
|
|
|
|
MarkFaceF(fA);
|
|
MarkFaceF(fB);
|
|
|
|
int iA = f.FFi( faux1 );
|
|
int iB = f.FFi( faux2 );
|
|
|
|
if (fA==&f && fB==&f) {
|
|
// both non-faux edges are borders: tri-face disappears, just remove the vertex
|
|
//if (DELETE_VERTICES)
|
|
//if (GetValency(f.V(faux2))==0) Allocator<MeshType>::DeleteVertex(m,*(f.V(faux2)));
|
|
} else {
|
|
if (fA==&f) {
|
|
fB->FFp(iB) = fB; fB->FFi(iB) = iB;
|
|
} else {
|
|
fB->FFp(iB) = fA; fB->FFi(iB) = iA;
|
|
}
|
|
|
|
if (fB==&f) {
|
|
fA->FFp(iA) = fA; fA->FFi(iA) = iA;
|
|
} else {
|
|
fA->FFp(iA) = fB; fA->FFi(iA) = iB;
|
|
}
|
|
}
|
|
|
|
|
|
//DecreaseValency(&f,faux2,m); // update valency
|
|
//Allocator<MeshType>::DeleteFace(m,f);
|
|
|
|
}
|
|
|
|
static void RemoveDoublet(FaceType &f, int wedge, MeshType& m, Pos* affected=NULL){
|
|
if (f.IsF((wedge+1)%3) ) {
|
|
VertexType *v = f.V(wedge);
|
|
FlipDiag(f);
|
|
// quick hack: recover wedge index after flip
|
|
if (f.V(0)==v) wedge = 0;
|
|
else if (f.V(1)==v) wedge = 1;
|
|
else {
|
|
assert(f.V(2)==v);
|
|
wedge = 2;
|
|
}
|
|
}
|
|
ScalarType k=(f.IsF(wedge))?1:0;
|
|
CollapseDiag(f, k, m, affected);
|
|
VertexType *v = f.V(wedge);
|
|
}
|
|
|
|
static void RemoveSinglet(FaceType &f, int wedge, MeshType& m, Pos* affected=NULL){
|
|
if (affected) affected->mode = Pos::NOTHING; // singlets leave nothing to update behind
|
|
|
|
if (f.V(wedge)->IsB()) return; // hack: lets detect
|
|
|
|
FaceType *fa, *fb; // these will die
|
|
FaceType *fc, *fd; // their former neight
|
|
fa = & f;
|
|
fb = fa->FFp(wedge);
|
|
int wa0 = wedge;
|
|
int wa1 = (wa0+1)%3 ;
|
|
int wa2 = (wa0+2)%3 ;
|
|
int wb0 = (fa->FFi(wa0)+1)%3;
|
|
int wb1 = (wb0+1)%3 ;
|
|
int wb2 = (wb0+2)%3 ;
|
|
assert (fb == fa->FFp( wa2 ) ); // otherwise, not a singlet
|
|
|
|
// valency decrease
|
|
DecreaseValency(fa, wa1, m);
|
|
DecreaseValency(fa, wa2, m);
|
|
if (fa->IsF(wa0)) {
|
|
DecreaseValency(fa,wa2,m); // double decrease of valency on wa2
|
|
} else {
|
|
DecreaseValency(fa,wa1,m); // double decrease of valency on wa1
|
|
}
|
|
|
|
// no need to MarkFaceF !
|
|
|
|
fc = fa->FFp(wa1);
|
|
fd = fb->FFp(wb1);
|
|
int wc = fa->FFi(wa1);
|
|
int wd = fb->FFi(wb1);
|
|
fc->FFp(wc) = fd;
|
|
fc->FFi(wc) = wd;
|
|
fd->FFp(wd) = fc;
|
|
fd->FFi(wd) = wc;
|
|
// faux status of survivors: unchanged
|
|
assert( ! ( fc->IsF( wc) ) );
|
|
assert( ! ( fd->IsF( wd) ) );
|
|
|
|
Allocator<MeshType>::DeleteFace( m,*fa );
|
|
Allocator<MeshType>::DeleteFace( m,*fb );
|
|
|
|
DecreaseValency(fa,wedge,m );
|
|
//if (DELETE_VERTICES)
|
|
//if (GetValency(fa->V(wedge))==0) Allocator<MeshType>::DeleteVertex( m,*fa->V(wedge) );
|
|
}
|
|
|
|
|
|
static bool TestAndRemoveDoublet(FaceType &f, int wedge, MeshType& m){
|
|
if (IsDoublet(f,wedge)) {
|
|
RemoveDoublet(f,wedge,m);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool TestAndRemoveSinglet(FaceType &f, int wedge, MeshType& m){
|
|
if (IsSinglet(f,wedge)) {
|
|
RemoveSinglet(f,wedge,m);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// given a face and a wedge, counts its valency in terms of quads (and triangles)
|
|
// uses only FF, assumes twomanyfold
|
|
// returns -1 if border
|
|
static int CountBitPolygonInternalValency(const FaceType& f, int wedge){
|
|
const FaceType* pf = &f;
|
|
int pi = wedge;
|
|
int res = 0;
|
|
do {
|
|
if (!pf->IsF(pi)) res++;
|
|
const FaceType *t = pf;
|
|
t = pf->FFp( pi );
|
|
if (pf == t ) return -1;
|
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
|
pf = t;
|
|
} while (pf != &f);
|
|
return res;
|
|
}
|
|
|
|
// given a face and a wedge, returns if it host a doubet
|
|
// assumes tri and quad only. uses FF topology only.
|
|
static bool IsDoubletFF(const FaceType& f, int wedge){
|
|
const FaceType* pf = &f;
|
|
int pi = wedge;
|
|
int res = 0, guard=0;
|
|
do {
|
|
if (!pf->IsAnyF()) return false; // there's a triangle!
|
|
if (!pf->IsF(pi)) res++;
|
|
const FaceType *t = pf;
|
|
t = pf->FFp( pi );
|
|
if (pf == t ) return false;
|
|
pi = pf->cFFi( pi );
|
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
|
pf = t;
|
|
assert(guard++<100);
|
|
} while (pf != &f);
|
|
return (res == 2);
|
|
}
|
|
|
|
// version that uses vertex valency
|
|
static bool IsDoublet(const FaceType& f, int wedge){
|
|
return (GetValency( f.V(wedge)) == 2) && (!f.V(wedge)->IsB() ) ;
|
|
}
|
|
|
|
static bool IsDoubletOrSinglet(const FaceType& f, int wedge){
|
|
return (GetValency( f.V(wedge)) <= 2) && (!f.V(wedge)->IsB() ) ;
|
|
}
|
|
|
|
static bool RemoveDoubletOrSinglet(FaceType& f, int wedge, MeshType& m, Pos* affected=NULL){
|
|
if (GetValency( f.V(wedge)) == 2) { RemoveDoublet(f,wedge,m,affected) ; return true; }
|
|
assert (GetValency( f.V(wedge)) == 1) ;
|
|
RemoveSinglet(f,wedge,m,affected) ;
|
|
return true;
|
|
}
|
|
|
|
// given a face and a wedge, returns if it host a singlets
|
|
// assumes tri and quad only. uses FF topology only.
|
|
static bool IsSingletFF(const FaceType& f, int wedge){
|
|
const FaceType* pf = &f;
|
|
int pi = wedge;
|
|
int res = 0, guard=0;
|
|
do {
|
|
if (!pf->IsAnyF()) return false; // there's a triangle!
|
|
if (!pf->IsF(pi)) res++;
|
|
const FaceType *t = pf;
|
|
t = pf->FFp( pi );
|
|
if (pf == t ) return false;
|
|
pi = pf->cFFi( pi );
|
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
|
pf = t;
|
|
assert(guard++<100);
|
|
} while (pf != &f);
|
|
return (res == 1);
|
|
}
|
|
|
|
// version that uses vertex valency
|
|
static bool IsSinglet(const FaceType& f, int wedge){
|
|
return (GetValency( f.V(wedge) ) == 1) && (!f.V(wedge)->IsB() ) ;
|
|
}
|
|
|
|
static bool CollapseEdgeDirect(FaceType &f, int w0, MeshType& m){
|
|
FaceType * f0 = &f;
|
|
|
|
assert( !f0->IsF(w0) );
|
|
|
|
VertexType *v0, *v1;
|
|
v0 = f0->V0(w0);
|
|
v1 = f0->V1(w0);
|
|
|
|
if (!RotateVertex(*f0,w0,m)) return false;
|
|
|
|
// quick hack: recover original wedge
|
|
if (f0->V(0) == v0) w0 = 0;
|
|
else if (f0->V(1) == v0) w0 = 1;
|
|
else if (f0->V(2) == v0) w0 = 2;
|
|
else assert(0);
|
|
|
|
assert( f0->V1(w0) == v1 );
|
|
assert( f0->IsF(w0) );
|
|
|
|
return CollapseDiag(*f0,PosOnDiag(*f0,false), m);
|
|
}
|
|
|
|
// collapses an edge. Optional output pos can be iterated around to find affected faces
|
|
static bool CollapseEdge(FaceType &f, int w0, MeshType& m, Pos *affected=NULL){
|
|
FaceTypeP f0 = &f;
|
|
assert(!f0->IsF(w0)); // don't use this method to collapse diag.
|
|
|
|
if (IsDoubletOrSinglet(f,w0)) return false; //{ RemoveDoubletOrSinglet(f,w0,m, affected); return true;}
|
|
if (IsDoubletOrSinglet(f,(w0+1)%3)) return false; //{ RemoveDoubletOrSinglet(f,(w0+1)%3,m, affected); return true;}
|
|
|
|
if (affected) {
|
|
int w1 = 3-w0-FauxIndex(f0); // the edge whihc is not the collapsed one nor the faux
|
|
affected->F() = f0->FFp(w1);
|
|
affected->E() = (f0->FFi(w1)+2+w1-FauxIndex(f0))%3;
|
|
}
|
|
|
|
FaceTypeP f1 = f0->FFp(w0);
|
|
int w1 = f0->FFi(w0);
|
|
|
|
assert(f0!=f1); // can't collapse border edges!
|
|
|
|
// choose: rotate around V0 or around V1?
|
|
if (
|
|
EdgeLenghtVariationIfVertexRotated(*f0,w0)
|
|
<
|
|
EdgeLenghtVariationIfVertexRotated(*f1,w1)
|
|
) return CollapseEdgeDirect(*f0,w0,m);
|
|
else return CollapseEdgeDirect(*f1,w1,m);
|
|
}
|
|
|
|
|
|
|
|
/** collapses a quad diagonal a-b
|
|
forming the new vertex in between the two old vertices.
|
|
if k == 0, new vertex is in a
|
|
if k == 1, new vertex is in b
|
|
if k == 0.5, new vertex in the middle, etc
|
|
*/
|
|
static bool CollapseCounterDiag(FaceType &f, ScalarType interpol, MeshType& m, Pos* affected=NULL){
|
|
if (!CheckFlipDiag(f)) return false;
|
|
FlipDiag(f);
|
|
return CollapseDiag(f,interpol,m,affected);
|
|
}
|
|
|
|
// rotates around vertex
|
|
class Iterator{
|
|
private:
|
|
typedef typename face::Pos<FaceType> FPos;
|
|
Pos start, cur;
|
|
bool over;
|
|
public:
|
|
Iterator(Pos& pos){
|
|
if (pos.mode==Pos::NOTHING) {over = true; return; }
|
|
start = pos; //FPos(pos.F(), pos.E());
|
|
if (start.F()->IsD()) { over = true; return;}
|
|
assert(!start.F()->IsD());
|
|
if (pos.mode==Pos::AROUND) {
|
|
if (start.F()->IsF((start.E()+2)%3))
|
|
{
|
|
int i = start.F()->FFi( start.E() );
|
|
start.F() = start.F()->FFp( start.E() );
|
|
start.E() = (i+1)%3;
|
|
}
|
|
}
|
|
cur=start;
|
|
over = false;
|
|
}
|
|
bool End() const {
|
|
return over;
|
|
}
|
|
void operator ++ () {
|
|
if (start.mode==Pos::PAIR) {
|
|
if (cur.F()!=start.F()) over=true;
|
|
int i = (cur.E()+2)%3;
|
|
cur.E() = (cur.F()->FFi( i )+1)%3;
|
|
cur.F() = cur.F()->FFp( i );
|
|
} else {
|
|
if (cur.F()->IsF(cur.E())) {
|
|
// jump over faux diag
|
|
int i = cur.F()->FFi( cur.E() );
|
|
cur.F() = cur.F()->FFp( cur.E() );
|
|
cur.E() = (i+1)%3;
|
|
}
|
|
// jump over real edge
|
|
FaceType *f =cur.F()->FFp( cur.E() );
|
|
if (f==cur.F()) over=true; // border found
|
|
cur.E() = (cur.F()->FFi( cur.E() ) +1 )%3;
|
|
cur.F() = f;
|
|
if (cur.F()==start.F()) over=true;
|
|
}
|
|
}
|
|
|
|
Pos GetPos(){
|
|
return cur;
|
|
}
|
|
};
|
|
|
|
static bool CollapseDiag(FaceType &f, ScalarType interpol, MeshType& m, Pos* affected=NULL){
|
|
|
|
FaceType* fa = &f; // fa lives
|
|
int fauxa = FauxIndex(fa);
|
|
|
|
//if (IsDoubletOrSinglet(f,fauxa)) { RemoveDoubletOrSinglet(f,fauxa,m, affected); return true;}
|
|
// if (IsDoubletOrSinglet(f,(fauxa+2)%3)) { RemoveDoubletOrSinglet(f,(fauxa+2)%3,m, affected); return true;}
|
|
if (IsDoubletOrSinglet(f,(fauxa+2)%3)) return false;
|
|
if (IsDoubletOrSinglet(*(f.FFp(fauxa)),(f.FFi(fauxa)+2)%3)) return false;
|
|
|
|
if (affected) {
|
|
int w1 = (fauxa+2)%3; // any edge but not the faux
|
|
affected->F() = fa->FFp(w1);
|
|
affected->E() = fa->FFi(w1);
|
|
if (affected->F() == fa){
|
|
int w1 = (fauxa+1)%3; // any edge but not the faux
|
|
affected->F() = fa->FFp(w1);
|
|
affected->E() = (fa->FFi(w1)+2)%3;
|
|
}
|
|
}
|
|
|
|
FaceType* fb = fa->FFp(fauxa); // fb dies
|
|
assert (fb!=fa); // otherwise, its a singlet
|
|
int fauxb = FauxIndex(fb);
|
|
|
|
VertexType* va = fa->V(fauxa); // va lives
|
|
VertexType* vb = fb->V(fauxb); // vb dies
|
|
|
|
Interpolator::Apply( *(f.V0(fauxa)), *(f.V1(fauxa)), interpol, *va);
|
|
|
|
bool border = false;
|
|
int val =0; // number of faces around vb, which dies
|
|
|
|
// update FV...
|
|
|
|
// rotate around vb, (same-sense-as-face)-wise
|
|
int pi = fauxb;
|
|
FaceType* pf = fb; /* pf, pi could be put in a Pos<FaceType> p(pb, fauxb) */
|
|
do {
|
|
//pf->V(pi) = va;
|
|
if (((pf->V2(pi) == va)||(pf->V1(pi) == va))
|
|
&&(pf!=fa)&&(pf!=fb))
|
|
return false;
|
|
pi=(pi+2)%3;
|
|
FaceType *t = pf->FFp(pi);
|
|
if (t==pf) { border= true; break; }
|
|
pi = pf->FFi(pi);
|
|
pf = t;
|
|
} while ((pf!=fb));
|
|
|
|
pi = fauxb;
|
|
pf = fb;
|
|
|
|
do {
|
|
pf->V(pi) = va;
|
|
|
|
pi=(pi+2)%3;
|
|
FaceType *t = pf->FFp(pi);
|
|
if (t==pf) { border= true; break; }
|
|
if (!pf->IsF(pi)) val++;
|
|
pi = pf->FFi(pi);
|
|
pf = t;
|
|
} while (pf!=fb);
|
|
|
|
// of found a border, also rotate around vb, (counter-sense-as-face)-wise
|
|
if (border) {
|
|
val++;
|
|
int pi = fauxa;
|
|
FaceType* pf = fa; /* pf, pi could be a Pos<FaceType> p(pf, pi) */
|
|
do {
|
|
pi=(pi+1)%3;
|
|
pf->V(pi) = va;
|
|
FaceType *t = pf->FFp(pi);
|
|
if (t==pf) break;
|
|
if (!pf->IsF(pi)) val++;
|
|
pi = pf->FFi(pi);
|
|
pf = t;
|
|
} while (pf!=fb);
|
|
}
|
|
|
|
// update FF, delete faces
|
|
_CollapseDiagHalf(*fb, fauxb, m);
|
|
_CollapseDiagHalf(*fa, fauxa, m);
|
|
|
|
SetValency(va, GetValency(va)+val-2);
|
|
DecreaseValency(fb,(fauxb+2)%3,m); // update valency
|
|
DecreaseValency(fa,(fauxa+2)%3,m); // update valency
|
|
Allocator<MeshType>::DeleteFace(m,*fa);
|
|
Allocator<MeshType>::DeleteFace(m,*fb);
|
|
|
|
//assert(val == GetValency(vb));
|
|
|
|
|
|
DecreaseValencyNoSingletTest(vb, val, m);
|
|
// note: don't directly kill vb. In non-twomanifold, it could still be referecned
|
|
// but: don't hunt for doublets either.
|
|
|
|
assert(GetValency(vb)!=1 || vb->IsB());
|
|
// if this asserts, you are in trouble.
|
|
// It means that the vertex that was supposed to die is still attached
|
|
// somewhere else (non-twomanifold)
|
|
// BUT in its other attachments it is a singlet, and that singlet cannot be
|
|
// found now (would require VF)
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
// helper function: find a good position on a diag to collapse a point
|
|
// currently, it is point in the middle,
|
|
// unless a mixed border-non border edge is collapsed, then it is an exreme
|
|
static ScalarType PosOnDiag(const FaceType& f, bool counterDiag){
|
|
bool b0, b1, b2, b3; // which side of the quads are border
|
|
|
|
const FaceType* fa=&f;
|
|
int ia = FauxIndex(fa);
|
|
const FaceType* fb=fa->cFFp(ia);
|
|
int ib = fa->cFFi(ia);
|
|
|
|
b0 = fa->FFp((ia+1)%3) == fa;
|
|
b1 = fa->FFp((ia+2)%3) == fa;
|
|
b2 = fb->FFp((ib+1)%3) == fb;
|
|
b3 = fb->FFp((ib+2)%3) == fb;
|
|
|
|
if (counterDiag) {
|
|
if ( (b0||b1) && !(b2||b3) ) return 1;
|
|
if ( !(b0||b1) && (b2||b3) ) return 0;
|
|
} else {
|
|
if ( (b1||b2) && !(b3||b0) ) return 0;
|
|
if ( !(b1||b2) && (b3||b0) ) return 1;
|
|
}
|
|
//if (f->FF( FauxIndex(f) )->IsB(
|
|
return 0.5f;
|
|
}
|
|
|
|
// trick! hide valency in flags
|
|
typedef enum { VALENCY_FLAGS = 24 } ___; // this bit and the 4 successive one are devoted to store valency
|
|
|
|
static void SetValency(VertexType *v, int n){
|
|
//v->Q() = n;
|
|
assert(n>=0 && n<=255);
|
|
v->Flags()&= ~(255<<VALENCY_FLAGS);
|
|
v->Flags()|= n<<VALENCY_FLAGS;
|
|
}
|
|
|
|
static int GetValency(const VertexType *v){
|
|
//return (int)(v->cQ());
|
|
return ( v->Flags() >> (VALENCY_FLAGS) ) & 255;
|
|
}
|
|
|
|
static void IncreaseValency(VertexType *v, int dv=1){
|
|
#ifdef NDEBUG
|
|
v->Flags() += dv<<VALENCY_FLAGS;
|
|
#else
|
|
SetValency( v, GetValency(v)+dv );
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
static void DecreaseValency(VertexType *v, int dv=1){
|
|
#ifdef NDEBUG
|
|
v->Flags() -= dv<<VALENCY_FLAGS;
|
|
#else
|
|
SetValency( v, GetValency(v)-dv );
|
|
#endif
|
|
}
|
|
*/
|
|
|
|
// decrease valency, kills singlets on sight, remove unreferenced vertices too...
|
|
static void DecreaseValency(FaceType *f, int wedge, MeshType &m){
|
|
VertexType *v = f->V(wedge);
|
|
int val = GetValency(v)-1;
|
|
SetValency( v, val );
|
|
if (val==0) Allocator<MeshType>::DeleteVertex(m,*v);
|
|
if (val==1) // singlet!
|
|
RemoveSinglet(*f,wedge,m); // this could be recursive...
|
|
}
|
|
|
|
// decrease valency, remove unreferenced vertices too, but don't check for singlets...
|
|
static void DecreaseValencyNoSingletTest(VertexType *v, int dv, MeshType &m){
|
|
int val = GetValency(v)-dv;
|
|
SetValency( v, val );
|
|
if (DELETE_VERTICES)
|
|
if (val==0) Allocator<MeshType>::DeleteVertex(m,*v);
|
|
}
|
|
|
|
static void DecreaseValencySimple(VertexType *v, int dv){
|
|
int val = GetValency(v)-dv;
|
|
SetValency( v, val );
|
|
}
|
|
|
|
static void UpdateValencyInFlags(MeshType& m){
|
|
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) {
|
|
SetValency(&*vi,0);
|
|
}
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
|
for (int w=0; w<3; w++)
|
|
if (!fi->IsF(w))
|
|
IncreaseValency( fi->V(w));
|
|
}
|
|
}
|
|
|
|
static void UpdateValencyInQuality(MeshType& m){
|
|
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) {
|
|
vi->Q() = 0;
|
|
}
|
|
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
|
for (int w=0; w<3; w++)
|
|
fi->V(w)->Q() += (fi->IsF(w)||fi->IsF((w+2)%3) )? 0.5f:1;
|
|
}
|
|
}
|
|
|
|
static bool HasConsistentValencyFlag(MeshType &m) {
|
|
UpdateValencyInQuality(m);
|
|
bool isok=true;
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
|
for (int k=0; k<3; k++)
|
|
if (GetValency(fi->V(k))!=fi->V(k)->Q()){
|
|
MarkFaceF(&*fi);
|
|
isok=false;
|
|
}
|
|
}
|
|
return isok;
|
|
}
|
|
|
|
// helper function:
|
|
// returns quality of a given (potential) quad
|
|
static ScalarType quadQuality(FaceType *f, int edge){
|
|
|
|
CoordType
|
|
a = f->V0(edge)->P(),
|
|
b = f->FFp(edge)->V2( f->FFi(edge) )->P(),
|
|
c = f->V1(edge)->P(),
|
|
d = f->V2(edge)->P();
|
|
|
|
return quadQuality(a,b,c,d);
|
|
|
|
}
|
|
|
|
/**
|
|
helper function:
|
|
given a quad edge, retruns:
|
|
0 if that edge should not be rotated
|
|
+1 if it should be rotated clockwise (+1)
|
|
-1 if it should be rotated counterclockwise (-1)
|
|
Currently an edge is rotated iff it is shortened by that rotations
|
|
(shortcut criterion)
|
|
*/
|
|
static int TestEdgeRotation(const FaceType &f, int w0, ScalarType *gain=NULL)
|
|
{
|
|
const FaceType *fa = &f;
|
|
assert(! fa->IsF(w0) );
|
|
ScalarType q0,q1,q2;
|
|
CoordType v0,v1,v2,v3,v4,v5;
|
|
int w1 = (w0+1)%3;
|
|
int w2 = (w0+2)%3;
|
|
|
|
v0 = fa->P(w0);
|
|
v3 = fa->P(w1);
|
|
|
|
if (fa->IsF(w2) ) {
|
|
v1 = fa->cFFp(w2)->V2( fa->cFFi(w2) )->P();
|
|
v2 = fa->P(w2);
|
|
} else {
|
|
v1 = fa->P(w2);
|
|
v2 = fa->cFFp(w1)->V2( fa->cFFi(w1) )->P();
|
|
}
|
|
|
|
const FaceType *fb = fa->cFFp(w0);
|
|
w0 = fa->cFFi(w0);
|
|
|
|
w1 = (w0+1)%3;
|
|
w2 = (w0+2)%3;
|
|
if (fb->IsF(w2) ) {
|
|
v4 = fb->cFFp(w2)->V2( fb->cFFi(w2) )->P();
|
|
v5 = fb->P(w2);
|
|
} else {
|
|
v4 = fb->P(w2);
|
|
v5 = fb->cFFp(w1)->V2( fb->cFFi(w1) )->P();
|
|
}
|
|
|
|
|
|
#if (!LENGTH_CRITERION)
|
|
// max overall CONFORMAL quality criterion:
|
|
q0 = quadQuality(v0,v1,v2,v3) + quadQuality(v3,v4,v5,v0); // keep as is?
|
|
q1 = quadQuality(v1,v2,v3,v4) + quadQuality(v4,v5,v0,v1); // rotate CW?
|
|
q2 = quadQuality(v5,v0,v1,v2) + quadQuality(v2,v3,v4,v5); // rotate CCW?
|
|
|
|
if (q0>=q1 && q0>=q2) return 0;
|
|
if (q1>=q2) return 1;
|
|
|
|
#else
|
|
// min distance (shortcut criterion)
|
|
q0 = (v0 - v3).SquaredNorm();
|
|
q1 = (v1 - v4).SquaredNorm();
|
|
q2 = (v5 - v2).SquaredNorm();
|
|
|
|
if (q0<=q1 && q0<=q2) return 0; // there's no rotation shortening this edge
|
|
|
|
//static int stop=0;
|
|
//static int go=0;
|
|
//if ((stop+go)%100==99) printf("Stop: %4.1f%%\n",(stop*100.0/(stop+go)) );
|
|
|
|
if (q1<=q2) {
|
|
if (gain) *gain = sqrt(q1)-sqrt(q0);
|
|
// test: two diagonals should become shorter (the other two reamin the same)
|
|
if (
|
|
(v0-v2).SquaredNorm() < (v4-v2).SquaredNorm() ||
|
|
(v3-v5).SquaredNorm() < (v1-v5).SquaredNorm()
|
|
) {
|
|
//stop++;
|
|
return 0;
|
|
}
|
|
//go++;
|
|
return 1;
|
|
}
|
|
|
|
{
|
|
if (gain) *gain = sqrt(q2)-sqrt(q0);
|
|
// diagonal test, as above:
|
|
if (
|
|
(v0-v4).SquaredNorm() < (v2-v4).SquaredNorm() ||
|
|
(v3-v1).SquaredNorm() < (v5-v1).SquaredNorm()
|
|
) {
|
|
//stop++;
|
|
return 0;
|
|
}
|
|
//go++;
|
|
return -1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
private:
|
|
|
|
// helper function:
|
|
// returns quality of a quad formed by points a,b,c,d
|
|
// quality is computed as "how squared angles are"
|
|
static ScalarType quadQuality(const CoordType &a, const CoordType &b, const CoordType &c, const CoordType &d){
|
|
ScalarType score = 0;
|
|
score += 1 - math::Abs( Cos( a,b,c) );
|
|
score += 1 - math::Abs( Cos( b,c,d) );
|
|
score += 1 - math::Abs( Cos( c,d,a) );
|
|
score += 1 - math::Abs( Cos( d,a,b) );
|
|
return score / 4;
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
// helper function:
|
|
// cos of angle abc. This should probably go elsewhere
|
|
static ScalarType Cos(const CoordType &a, const CoordType &b, const CoordType &c )
|
|
{
|
|
CoordType
|
|
e0 = b - a,
|
|
e1 = b - c;
|
|
ScalarType d = (e0.Norm()*e1.Norm());
|
|
if (d==0) return 0.0;
|
|
return (e0*e1)/d;
|
|
}
|
|
public:
|
|
/**
|
|
Generic quad triangulation function.
|
|
It take in input 4 vertex pointrs and rotate them so that a simple fan triangulation is Ok.
|
|
It uses geometric criteria for avoiding bad shaped triangles, and folds
|
|
and it use an internal set of already created diagonal to avoid the creation of non manifold situations.
|
|
At the begin you shoud call this function with an empty vector to reset the set of existing diagonals.
|
|
*/
|
|
static void QuadTriangulate(std::vector<VertexPointer> &q)
|
|
{
|
|
typedef typename std::set<std::pair<VertexPointer,VertexPointer> > diagSetType;
|
|
static diagSetType diagSet; // the set of already created diagonals
|
|
if(q.size()!=4)
|
|
{
|
|
diagSet.clear();
|
|
return;
|
|
}
|
|
const CoordType &P0=q[0]->cP();
|
|
const CoordType &P1=q[1]->cP();
|
|
const CoordType &P2=q[2]->cP();
|
|
const CoordType &P3=q[3]->cP();
|
|
|
|
CoordType N00 = Normal(P0,P1,P2);
|
|
CoordType N01 = Normal(P0,P2,P3);
|
|
CoordType N10 = Normal(P1,P2,P3);
|
|
CoordType N11 = Normal(P1,P3,P0);
|
|
|
|
ScalarType Angle0Rad=Angle(N00,N01);
|
|
ScalarType Angle1Rad=Angle(N10,N11);
|
|
|
|
// QualityRadii is inradius/circumradius; bad when close to zero.
|
|
// swap diagonal if the worst triangle improve.
|
|
bool qualityImprove = std::min(QualityRadii(P0,P1,P2),QualityRadii(P0,P2,P3)) < std::min(QualityRadii(P1,P2,P3),QualityRadii(P1,P3,P0));
|
|
bool swapCauseFlip = (Angle1Rad > M_PI/2.0) && (Angle0Rad <M_PI/2.0);
|
|
|
|
if ( qualityImprove && ! swapCauseFlip)
|
|
std::rotate(q.begin(), q.begin()+1, q.end());
|
|
|
|
std::pair<typename diagSetType::iterator,bool> res;
|
|
if(q[0]<q[2]) res= diagSet.insert(std::make_pair(q[0],q[2]));
|
|
else res= diagSet.insert(std::make_pair(q[2],q[0]));
|
|
|
|
if(!res.second) // res.second is false if an element with the same value existed; in that case rotate again!
|
|
std::rotate(q.begin(), q.begin()+1, q.end());
|
|
}
|
|
};
|
|
}} // end namespace vcg::tri
|
|
|
|
#endif
|