vcglib/wrap/nanoply/include/nanoplyWrapper.hpp

741 lines
38 KiB
C++

/****************************************************************************
* NanoPLY *
* NanoPLY is a C++11 header-only library to read and write PLY file *
* *
* Copyright(C) 2014-2015 *
* Visual Computing Lab *
* ISTI - Italian National Research Council *
* *
* This Source Code Form is subject to the terms of the Mozilla Public *
* License, v. 2.0. If a copy of the MPL was not distributed with this *
* file, You can obtain one at http://mozilla.org/MPL/2.0/. *
* *
****************************************************************************/
#ifndef NANOPLY_WRAPPER_VCG_H
#define NANOPLY_WRAPPER_VCG_H
#include <wrap/nanoply/include/nanoply.hpp>
#include <vcg/space/point.h>
#include <map>
namespace nanoply
{
template <class MeshType>
class NanoPlyWrapper{
private:
typedef typename MeshType::PointerToAttribute PointerToAttribute;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexType::ScalarType VertexCoordScalar;
typedef typename MeshType::VertexType::NormalType::ScalarType VertexNormScalar;
typedef typename MeshType::VertexType::ColorType::ScalarType VertexColorScalar;
typedef typename MeshType::VertexType::QualityType VertexQuality;
typedef typename MeshType::VertexType::RadiusType VertexRadius;
typedef typename MeshType::VertexType::FlagType VertexFlag;
typedef typename MeshType::VertexType::TexCoordType::ScalarType VertexTexScalar;
typedef typename MeshType::VertexType::CurvatureType::ScalarType VertexCurScalar;
typedef typename MeshType::VertexType::CurScalarType VertexDirCurScalar;
typedef typename MeshType::VertexType::CurVecType::ScalarType VertexDirCurVecScalar;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgeType::ColorType::ScalarType EdgeColorScalar;
typedef typename MeshType::EdgeType::QualityType EdgeQuality;
typedef typename MeshType::EdgeType::FlagType EdgeFlag;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FaceType::NormalType::ScalarType FaceNormScalar;
typedef typename MeshType::FaceType::ColorType::ScalarType FaceColorScalar;
typedef typename MeshType::FaceType::QualityType FaceQuality;
typedef typename MeshType::FaceType::FlagType FaceFlag;
typedef typename MeshType::FaceType::TexCoordType::ScalarType FaceTexScalar;
typedef typename MeshType::FaceType::CurScalarType FaceDirCurScalar;
typedef typename MeshType::FaceType::CurVecType::ScalarType FaceDirCurVecScalar;
typedef typename MeshType::FaceType::WedgeColorType::ScalarType WedgeColorScalar;
typedef typename MeshType::FaceType::WedgeNormalType::ScalarType WedgeNormalScalar;
template<class T> static PlyType getEntity() { return NNP_UNKNOWN_TYPE };
template<> static PlyType getEntity<unsigned char>(){ return NNP_UINT8; };
template<> static PlyType getEntity<char>(){ return NNP_INT8; };
template<> static PlyType getEntity<unsigned short>(){ return NNP_UINT16; };
template<> static PlyType getEntity<short>(){ return NNP_INT16; };
template<> static PlyType getEntity<unsigned int>(){ return NNP_UINT32; };
template<> static PlyType getEntity<int>(){ return NNP_INT32; };
template<> static PlyType getEntity<float>(){ return NNP_FLOAT32; };
template<> static PlyType getEntity<double>(){ return NNP_FLOAT64; };
template<class T> static PlyType getEntityList() { return NNP_UNKNOWN_TYPE; };
template<> static PlyType getEntityList<unsigned char>(){ return NNP_LIST_UINT8_UINT8; };
template<> static PlyType getEntityList<char>(){ return NNP_LIST_UINT8_INT8; };
template<> static PlyType getEntityList<unsigned short>(){ return NNP_LIST_UINT8_UINT16; };
template<> static PlyType getEntityList<short>(){ return NNP_LIST_UINT8_INT16; };
template<> static PlyType getEntityList<unsigned int>(){ return NNP_LIST_UINT8_UINT32; };
template<> static PlyType getEntityList<int>(){ return NNP_LIST_UINT8_INT32; };
template<> static PlyType getEntityList<float>(){ return NNP_LIST_UINT8_FLOAT32; };
template<> static PlyType getEntityList<double>(){ return NNP_LIST_UINT8_FLOAT64; };
template<class Container, class Type, int n>
inline static void PushDescriport(std::vector<PlyProperty>& prop, ElementDescriptor& elem, PlyEntity entity, void* ptr)
{
prop.push_back(PlyProperty(getEntity<Type>(), entity));
DescriptorInterface* di = new DataDescriptor<Container, n, Type>(entity, ptr);
elem.dataDescriptor.push_back(di);
}
template<class Container, class Type, int n>
inline static void PushDescriportList(std::vector<PlyProperty>& prop, ElementDescriptor& elem, PlyEntity entity, void* ptr)
{
prop.push_back(PlyProperty(getEntityList<Type>(), entity));
DescriptorInterface* di = new DataDescriptor<Container, n, Type>(entity, ptr);
elem.dataDescriptor.push_back(di);
}
template<class Container, class Type, int n>
inline static void PushDescriport(std::vector<PlyProperty>& prop, ElementDescriptor& elem, std::string& name, void* ptr)
{
prop.push_back(PlyProperty(getEntity<Type>(), name));
DescriptorInterface* di = new DataDescriptor<Container, n, Type>(name, ptr);
elem.dataDescriptor.push_back(di);
}
template<class Container, class Type, int n>
inline static void PushDescriportList(std::vector<PlyProperty>& prop, ElementDescriptor& elem, std::string& name, void* ptr)
{
prop.push_back(PlyProperty(getEntityList<Type>(), name));
DescriptorInterface* di = new DataDescriptor<Container, n, Type>(name, ptr);
elem.dataDescriptor.push_back(di);
}
public:
typedef enum {
IO_NONE = 0x00000000,
IO_VERTCOORD = 0x00000001,
IO_VERTFLAGS = 0x00000002,
IO_VERTCOLOR = 0x00000004,
IO_VERTQUALITY = 0x00000008,
IO_VERTNORMAL = 0x00000010,
IO_VERTTEXCOORD = 0x00000020,
IO_VERTRADIUS = 0x00000040,
IO_VERTCURV = 0x00000080,
IO_VERTCURVDIR = 0x00000100,
IO_VERTATTRIB = 0x00000200,
IO_FACEINDEX = 0x00000400,
IO_FACEFLAGS = 0x00000800,
IO_FACECOLOR = 0x00001000,
IO_FACEQUALITY = 0x00002000,
IO_FACENORMAL = 0x00004000,
IO_FACECURVDIR = 0x00008000,
IO_FACEATTRIB = 0x00010000,
IO_EDGEINDEX = 0x00020000,
IO_EDGEQUALITY = 0x00040000,
IO_EDGECOLOR = 0x00080000,
IO_EDGEFLAGS = 0x00100000,
IO_EDGEATTRIB = 0x00200000,
IO_WEDGCOLOR = 0x00400000,
IO_WEDGTEXCOORD = 0x00800000,
IO_WEDGTEXMULTI = 0x01000000, // when textrue index is explicit
IO_WEDGNORMAL = 0x02000000,
IO_BITPOLYGONAL = 0x04000000, // loads explicit polygonal mesh
IO_CAMERA = 0x08000000,
IO_MESHATTRIB = 0x10000000,
IO_FLAGS = IO_VERTFLAGS | IO_FACEFLAGS,
IO_ALL = 0xFFFFFFFF
}BitMask;
class CustomAttributeDescriptor
{
public:
typedef std::map<std::string, ElementDescriptor::PropertyDescriptor> MapMeshAttrib;
typedef std::map<std::string, ElementDescriptor::PropertyDescriptor>::iterator MapMeshAttribIter;
typedef std::map<std::string, std::vector<PlyProperty>> MapMeshAttribProp;
typedef std::map<std::string, std::vector<PlyProperty>>::iterator MapMeshAttribPropIter;
ElementDescriptor::PropertyDescriptor vertexAttrib;
ElementDescriptor::PropertyDescriptor faceAttrib;
ElementDescriptor::PropertyDescriptor edgeAttrib;
std::vector<PlyProperty> vertexAttribProp;
std::vector<PlyProperty> faceAttribProp;
std::vector<PlyProperty> edgeAttribProp;
MapMeshAttrib meshAttrib;
MapMeshAttribProp meshAttribProp;
std::map<std::string, int> meshAttribCnt;
CustomAttributeDescriptor::~CustomAttributeDescriptor()
{
for (int i = 0; i < vertexAttrib.size(); i++)
delete vertexAttrib[i];
for (int i = 0; i < edgeAttrib.size(); i++)
delete edgeAttrib[i];
for (int i = 0; i < faceAttrib.size(); i++)
delete faceAttrib[i];
CustomAttributeDescriptor::MapMeshAttribIter iter = meshAttrib.begin();
for (; iter != meshAttrib.end(); iter++)
for (int i = 0; i < (*iter).second.size(); i++)
delete (*iter).second[i];
}
template<class Container, class Type, int n>
void AddVertexAttribDescriptor(std::string& name, PlyType type, void* ptr)
{
vertexAttrib.push_back(new DataDescriptor<Container, n, Type>(name, ptr));
vertexAttribProp.push_back(PlyProperty(type, name));
}
template<class Container, class Type, int n>
void AddEdgeAttribDescriptor(std::string& name, PlyType type, void* ptr)
{
edgeAttrib.push_back(new DataDescriptor<Container, n, Type>(name, ptr));
edgeAttribProp.push_back(PlyProperty(type, name));
}
template<class Container, class Type, int n>
void AddFaceAttribDescriptor(std::string& name, PlyType type, void* ptr)
{
faceAttrib.push_back(new DataDescriptor<Container, n, Type>(name, ptr));
faceAttribProp.push_back(PlyProperty(type, name));
}
template<class Container, class Type, int n>
void AddMeshAttribDescriptor(std::string& nameAttrib, std::string& nameProp, PlyType type, void* ptr)
{
meshAttrib[nameAttrib].push_back(new DataDescriptor<Container, n, Type>(nameProp, ptr));
meshAttribProp[nameAttrib].push_back(PlyProperty(type, nameProp));
}
void AddMeshAttrib(std::string& name, int cnt)
{
meshAttribCnt[name] = cnt;
}
void GetMeshAttrib(std::string filename)
{
nanoply::Info info(filename);
if (info.errInfo == nanoply::NNP_OK)
{
for (int i = 0; i < info.elemVec.size(); i++)
{
if (info.elemVec[i].plyElem == NNP_UNKNOWN_ELEM && info.elemVec[i].name != "camera")
meshAttribCnt[info.elemVec[i].name] = info.elemVec[i].cnt;
}
}
}
};
static int LoadModel(const char* filename, MeshType& mesh, unsigned int bitMask, CustomAttributeDescriptor& custom)
{
nanoply::Info info(filename);
if (info.errInfo != nanoply::NNP_OK)
return info.errInfo;
//Camera
ElementDescriptor cameraDescr(std::string("camera"));
vcg::Point3<ScalarType> tra;
vcg::Matrix44<ScalarType> rot;
size_t count = info.GetElementCount(std::string("camera"));
if (count > 0 && (bitMask & BitMask::IO_CAMERA))
{
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("view_px"), &tra[0]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("view_py"), &tra[1]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("view_pz"), &tra[2]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("x_axisx"), &rot[0][0]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("x_axisy"), &rot[0][1]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("x_axisz"), &rot[0][2]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("y_axisx"), &rot[1][0]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("y_axisy"), &rot[1][1]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("y_axisz"), &rot[1][2]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("z_axisx"), &rot[2][0]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("z_axisy"), &rot[2][1]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("z_axisz"), &rot[2][2]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("focal"), &mesh.shot.Intrinsics.FocalMm));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("scalex"), &mesh.shot.Intrinsics.PixelSizeMm[0]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("scaley"), &mesh.shot.Intrinsics.PixelSizeMm[1]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("centerx"), &mesh.shot.Intrinsics.CenterPx[0]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("centery"), &mesh.shot.Intrinsics.CenterPx[1]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<int, 1, int>(std::string("viewportx"), &mesh.shot.Intrinsics.ViewportPx[0]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<int, 1, int>(std::string("viewporty"), &mesh.shot.Intrinsics.ViewportPx[1]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("k1"), &mesh.shot.Intrinsics.k[0]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("k2"), &mesh.shot.Intrinsics.k[1]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("k3"), &mesh.shot.Intrinsics.k[2]));
cameraDescr.dataDescriptor.push_back(new DataDescriptor<ScalarType, 1, ScalarType>(std::string("k4"), &mesh.shot.Intrinsics.k[3]));
}
//Vertex
std::vector<std::string> nameList;
VertexType::Name(nameList);
ElementDescriptor vertexDescr(NNP_VERTEX_ELEM);
count = info.GetVertexCount();
if (nameList.size() > 0 && count > 0)
{
vcg::tri::Allocator<MeshType>::AddVertices(mesh, count);
if ((bitMask & BitMask::IO_VERTCOORD) && VertexType::HasCoord())
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 3, VertexCoordScalar>(NNP_PXYZ, (*mesh.vert.begin()).P().V()));
if ((bitMask & BitMask::IO_VERTNORMAL) && vcg::tri::HasPerVertexNormal(mesh))
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 3, VertexNormScalar>(NNP_NXYZ, (*mesh.vert.begin()).N().V()));
if ((bitMask & BitMask::IO_VERTCOLOR) && vcg::tri::HasPerVertexColor(mesh))
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 4, VertexColorScalar>(NNP_CRGBA, (*mesh.vert.begin()).C().V()));
if ((bitMask & BitMask::IO_VERTQUALITY) && vcg::tri::HasPerVertexQuality(mesh))
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 1, VertexQuality>(NNP_QUALITY, &(*mesh.vert.begin()).Q()));
if ((bitMask & BitMask::IO_VERTFLAGS) && vcg::tri::HasPerVertexFlags(mesh))
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 1, VertexFlag>(NNP_BITFLAG, &(*mesh.vert.begin()).Flags()));
if ((bitMask & BitMask::IO_VERTRADIUS) && vcg::tri::HasPerVertexRadius(mesh))
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 1, VertexRadius>(NNP_DENSITY, &(*mesh.vert.begin()).R()));
if ((bitMask & BitMask::IO_VERTTEXCOORD) && vcg::tri::HasPerVertexTexCoord(mesh))
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 2, VertexTexScalar>(NNP_TEXTURE2D, (*mesh.vert.begin()).T().P().V()));
if ((bitMask & BitMask::IO_VERTCURV) && vcg::tri::HasPerVertexCurvature(mesh))
{
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 1, VertexCurScalar>(NNP_KG, &(*mesh.vert.begin()).Kg()));
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 1, VertexCurScalar>(NNP_KH, &(*mesh.vert.begin()).Kh()));
}
if ((bitMask & BitMask::IO_VERTCURVDIR) && vcg::tri::HasPerVertexCurvatureDir(mesh))
{
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 1, VertexDirCurScalar>(NNP_K1, &(*mesh.vert.begin()).K1()));
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 1, VertexDirCurScalar>(NNP_K2, &(*mesh.vert.begin()).K2()));
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 3, VertexDirCurVecScalar>(NNP_K1DIR, (*mesh.vert.begin()).PD1().V()));
vertexDescr.dataDescriptor.push_back(new DataDescriptor<VertexType, 3, VertexDirCurVecScalar>(NNP_K2DIR, (*mesh.vert.begin()).PD2().V()));
}
if ((bitMask & BitMask::IO_VERTATTRIB) && custom.vertexAttrib.size() > 0)
{
for (int i = 0; i < custom.vertexAttrib.size(); i++)
{
std::set<PointerToAttribute>::iterator ai;
for (ai = mesh.vert_attr.begin(); ai != mesh.vert_attr.end(); ++ai)
{
if ((*custom.vertexAttrib[i]).name == (*ai)._name)
{
custom.vertexAttrib[i]->base = ai->_handle->DataBegin();
break;
}
}
vertexDescr.dataDescriptor.push_back(custom.vertexAttrib[i]);
}
}
}
//Edge
nameList.clear();
EdgeType::Name(nameList);
ElementDescriptor edgeDescr(NNP_EDGE_ELEM);
count = info.GetEdgeCount();
std::vector<vcg::Point2i> edgeIndex;
if (nameList.size() > 0 && count > 0)
{
vcg::tri::Allocator<MeshType>::AddEdges(mesh, count);
if ((bitMask & BitMask::IO_EDGEINDEX) && MeshType::EdgeType::HasVertexRef())
{
edgeIndex.resize(count);
edgeDescr.dataDescriptor.push_back(new DataDescriptor<vcg::Point2i, 1, int>(NNP_EDGE_V1, &(*edgeIndex.begin()).V()[0]));
edgeDescr.dataDescriptor.push_back(new DataDescriptor<vcg::Point2i, 1, int>(NNP_EDGE_V2, &(*edgeIndex.begin()).V()[1]));
}
if ((bitMask & BitMask::IO_EDGEQUALITY) && vcg::tri::HasPerEdgeQuality(mesh))
edgeDescr.dataDescriptor.push_back(new DataDescriptor<EdgeType, 1, EdgeQuality>(NNP_QUALITY, &(*mesh.edge.begin()).Q()));
if ((bitMask & BitMask::IO_EDGECOLOR) && vcg::tri::HasPerEdgeColor(mesh))
edgeDescr.dataDescriptor.push_back(new DataDescriptor<EdgeType, 4, EdgeColorScalar>(NNP_CRGBA, (*mesh.edge.begin()).C().V()));
if ((bitMask & BitMask::IO_EDGEFLAGS) && vcg::tri::HasPerEdgeFlags(mesh))
edgeDescr.dataDescriptor.push_back(new DataDescriptor<EdgeType, 1, EdgeFlag>(NNP_BITFLAG, &(*mesh.edge.begin()).Flags()));
if ((bitMask & BitMask::IO_EDGEATTRIB) && custom.edgeAttrib.size() > 0)
{
for (int i = 0; i < custom.edgeAttrib.size(); i++)
{
std::set<PointerToAttribute>::iterator ai;
for (ai = mesh.edge_attr.begin(); ai != mesh.edge_attr.end(); ++ai)
{
if ((*custom.edgeAttrib[i]).name == (*ai)._name)
{
custom.edgeAttrib[i]->base = ai->_handle->DataBegin();
break;
}
}
edgeDescr.dataDescriptor.push_back(custom.edgeAttrib[i]);
}
}
}
//Face
nameList.clear();
FaceType::Name(nameList);
ElementDescriptor faceDescr(NNP_FACE_ELEM);
count = info.GetFaceCount();
std::vector<vcg::Point3i> faceIndex;
std::vector<vcg::ndim::Point<6, FaceTexScalar>> wedgeTexCoord;
if (nameList.size() > 0 && count > 0)
{
vcg::tri::Allocator<MeshType>::AddFaces(mesh, count);
if ((bitMask & BitMask::IO_FACEINDEX) && FaceType::HasVertexRef())
{
faceIndex.resize(count);
faceDescr.dataDescriptor.push_back(new DataDescriptor<vcg::Point3i, 3, int>(NNP_FACE_VERTEX_LIST, (*faceIndex.begin()).V()));
}
if ((bitMask & BitMask::IO_FACEFLAGS) && vcg::tri::HasPerFaceFlags(mesh))
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 1, FaceFlag>(NNP_BITFLAG, &(*mesh.face.begin()).Flags()));
if ((bitMask & BitMask::IO_FACECOLOR) && vcg::tri::HasPerFaceColor(mesh))
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 4, FaceColorScalar>(NNP_CRGBA, (*mesh.face.begin()).C().V()));
if ((bitMask & BitMask::IO_FACEQUALITY) && vcg::tri::HasPerFaceQuality(mesh))
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 1, FaceQuality>(NNP_QUALITY, &(*mesh.face.begin()).Q()));
if ((bitMask & BitMask::IO_FACENORMAL) && vcg::tri::HasPerFaceNormal(mesh))
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 3, FaceNormScalar>(NNP_NXYZ, (*mesh.face.begin()).N().V()));
if ((bitMask & BitMask::IO_VERTCURVDIR) && vcg::tri::HasPerFaceCurvatureDir(mesh))
{
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 1, FaceDirCurScalar>(NNP_K1, &(*mesh.face.begin()).K1()));
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 1, FaceDirCurScalar>(NNP_K2, &(*mesh.face.begin()).K2()));
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 3, FaceDirCurVecScalar>(NNP_K1DIR, (*mesh.face.begin()).PD1().V()));
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 3, FaceDirCurVecScalar>(NNP_K2DIR, (*mesh.face.begin()).PD2().V()));
}
if (((bitMask & BitMask::IO_WEDGTEXCOORD) || (bitMask & BitMask::IO_WEDGTEXMULTI)) && vcg::tri::HasPerWedgeTexCoord(mesh))
{
wedgeTexCoord.resize(count);
faceDescr.dataDescriptor.push_back(new DataDescriptor<vcg::ndim::Point<6, FaceTexScalar>, 6, FaceTexScalar>(NNP_FACE_WEDGE_TEX, (*wedgeTexCoord.begin()).V()));
}
if ((bitMask & BitMask::IO_WEDGTEXMULTI) && vcg::tri::HasPerWedgeTexCoord(mesh))
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 1, short>(NNP_TEXTUREINDEX, &(*mesh.face.begin()).WT(0).N()));
if ((bitMask & BitMask::IO_WEDGCOLOR) && vcg::tri::HasPerWedgeColor(mesh))
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 12, WedgeColorScalar>(NNP_FACE_WEDGE_COLOR, (*mesh.face.begin()).WC(0).V()));
if ((bitMask & BitMask::IO_WEDGNORMAL) && vcg::tri::HasPerWedgeNormal(mesh))
faceDescr.dataDescriptor.push_back(new DataDescriptor<FaceType, 9, WedgeNormalScalar>(NNP_FACE_WEDGE_NORMAL, (*mesh.face.begin()).WN(0).V()));
if ((bitMask & BitMask::IO_FACEATTRIB) && custom.faceAttrib.size() > 0)
{
for (int i = 0; i < custom.faceAttrib.size(); i++)
{
std::set<PointerToAttribute>::iterator ai;
for (ai = mesh.face_attr.begin(); ai != mesh.face_attr.end(); ++ai)
{
if ((*custom.faceAttrib[i]).name == (*ai)._name)
{
custom.faceAttrib[i]->base = ai->_handle->DataBegin();
break;
}
}
faceDescr.dataDescriptor.push_back(custom.faceAttrib[i]);
}
}
}
std::vector<ElementDescriptor*> meshDescr;
meshDescr.push_back(&cameraDescr);
meshDescr.push_back(&vertexDescr);
meshDescr.push_back(&edgeDescr);
meshDescr.push_back(&faceDescr);
//Mesh attribute
if ((bitMask & BitMask::IO_MESHATTRIB))
{
CustomAttributeDescriptor::MapMeshAttribIter iter = custom.meshAttrib.begin();
for (; iter != custom.meshAttrib.end(); iter++)
{
std::string name((*iter).first);
meshDescr.push_back(new ElementDescriptor(name));
count = info.GetElementCount(name);
if (count > 1)
{
meshDescr.back()->dataDescriptor = (*iter).second;
}
}
}
if (!OpenModel(info, meshDescr))
return info.errInfo;
mesh.shot.SetViewPoint(tra);
mesh.shot.Extrinsics.SetRot(rot);
for (int i = 0; i < faceIndex.size(); i++)
for (int j = 0; j < 3; j++)
mesh.face[i].V(j) = &mesh.vert[faceIndex[i][j]];
for (int i = 0; i < wedgeTexCoord.size(); i++)
{
for (int j = 0; j < 3; j++)
{
mesh.face[i].WT(j).U() = wedgeTexCoord[i][j * 2];
mesh.face[i].WT(j).V() = wedgeTexCoord[i][j * 2 + 1];
}
}
for (int i = 0; i < edgeIndex.size(); i++)
{
mesh.edge[i].V(0) = &mesh.vert[edgeIndex[i].X()];
mesh.edge[i].V(1) = &mesh.vert[edgeIndex[i].Y()];
}
for (int i = 0; i < cameraDescr.dataDescriptor.size(); i++)
delete cameraDescr.dataDescriptor[i];
for (int i = 0; i < vertexDescr.dataDescriptor.size(); i++)
if (vertexDescr.dataDescriptor[i]->elem != NNP_UNKNOWN_ENTITY)
delete vertexDescr.dataDescriptor[i];
for (int i = 0; i < edgeDescr.dataDescriptor.size(); i++)
if (edgeDescr.dataDescriptor[i]->elem != NNP_UNKNOWN_ENTITY)
delete edgeDescr.dataDescriptor[i];
for (int i = 0; i < faceDescr.dataDescriptor.size(); i++)
if (faceDescr.dataDescriptor[i]->elem != NNP_UNKNOWN_ENTITY)
delete faceDescr.dataDescriptor[i];
mesh.textures = info.textureFile;
return info.errInfo;
}
static int LoadModel(const char* filename, MeshType& mesh, unsigned int bitMask)
{
CustomAttributeDescriptor custom;
return LoadModel(filename, mesh, bitMask, custom);
}
static bool SaveModel(const char* filename, MeshType& mesh, unsigned int bitMask, CustomAttributeDescriptor& custom, bool binary)
{
//Camera
std::vector<PlyProperty> cameraProp;
ElementDescriptor cameraDescr(std::string("camera"));
vcg::Point3<ScalarType> tra = mesh.shot.Extrinsics.Tra();
vcg::Matrix44<ScalarType> rot = mesh.shot.Extrinsics.Rot();
if (bitMask & BitMask::IO_CAMERA)
{
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("view_px"), &tra[0]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("view_py"), &tra[1]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("view_pz"), &tra[2]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("x_axisx"), &rot[0][0]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("x_axisy"), &rot[0][1]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("x_axisz"), &rot[0][2]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("y_axisx"), &rot[1][0]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("y_axisy"), &rot[1][1]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("y_axisz"), &rot[1][2]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("z_axisx"), &rot[2][0]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("z_axisy"), &rot[2][1]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("z_axisz"), &rot[2][2]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("focal"), &mesh.shot.Intrinsics.FocalMm);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("scalex"), &mesh.shot.Intrinsics.PixelSizeMm[0]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("scaley"), &mesh.shot.Intrinsics.PixelSizeMm[1]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("centerx"), &mesh.shot.Intrinsics.CenterPx[0]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("centery"), &mesh.shot.Intrinsics.CenterPx[1]);
PushDescriport<int, int, 1>(cameraProp, cameraDescr, std::string("viewportx"), &mesh.shot.Intrinsics.ViewportPx[0]);
PushDescriport<int, int, 1>(cameraProp, cameraDescr, std::string("viewporty"), &mesh.shot.Intrinsics.ViewportPx[1]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("k1"), &mesh.shot.Intrinsics.k[0]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("k2"), &mesh.shot.Intrinsics.k[1]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("k3"), &mesh.shot.Intrinsics.k[2]);
PushDescriport<ScalarType, ScalarType, 1>(cameraProp, cameraDescr, std::string("k4"), &mesh.shot.Intrinsics.k[3]);
}
//Vertex
std::vector<std::string> nameList;
VertexType::Name(nameList);
std::vector<PlyProperty> vertexProp;
ElementDescriptor vertexDescr(NNP_VERTEX_ELEM);
if (nameList.size() > 0 && mesh.vert.size() > 0)
{
if ((bitMask & BitMask::IO_VERTCOORD) && VertexType::HasCoord())
PushDescriport<VertexType, VertexCoordScalar, 3>(vertexProp, vertexDescr, NNP_PXYZ, (*mesh.vert.begin()).P().V());
if ((bitMask & BitMask::IO_VERTNORMAL) && vcg::tri::HasPerVertexNormal(mesh))
PushDescriport<VertexType, VertexNormScalar, 3>(vertexProp, vertexDescr, NNP_NXYZ, (*mesh.vert.begin()).N().V());
if ((bitMask & BitMask::IO_VERTCOLOR) && vcg::tri::HasPerVertexColor(mesh))
PushDescriport<VertexType, VertexColorScalar, 4>(vertexProp, vertexDescr, NNP_CRGBA, (*mesh.vert.begin()).C().V());
if ((bitMask & BitMask::IO_VERTQUALITY) && vcg::tri::HasPerVertexQuality(mesh))
PushDescriport<VertexType, VertexQuality, 1>(vertexProp, vertexDescr, NNP_QUALITY, &(*mesh.vert.begin()).Q());
if ((bitMask & BitMask::IO_VERTFLAGS) && vcg::tri::HasPerVertexFlags(mesh))
PushDescriport<VertexType, VertexFlag, 1>(vertexProp, vertexDescr, NNP_BITFLAG, &(*mesh.vert.begin()).Flags());
if ((bitMask & BitMask::IO_VERTRADIUS) && vcg::tri::HasPerVertexRadius(mesh))
PushDescriport<VertexType, VertexRadius, 1>(vertexProp, vertexDescr, NNP_DENSITY, &(*mesh.vert.begin()).R());
if ((bitMask & BitMask::IO_VERTTEXCOORD) && vcg::tri::HasPerVertexTexCoord(mesh))
PushDescriport<VertexType, VertexTexScalar, 2>(vertexProp, vertexDescr, NNP_TEXTURE2D, (*mesh.vert.begin()).T().P().V());
if ((bitMask & BitMask::IO_VERTCURV) && vcg::tri::HasPerVertexCurvature(mesh))
{
PushDescriport<VertexType, VertexCurScalar, 1>(vertexProp, vertexDescr, NNP_KG, &(*mesh.vert.begin()).Kg());
PushDescriport<VertexType, VertexCurScalar, 1>(vertexProp, vertexDescr, NNP_KH, &(*mesh.vert.begin()).Kh());
}
if ((bitMask & BitMask::IO_VERTCURVDIR) && vcg::tri::HasPerVertexCurvatureDir(mesh))
{
PushDescriport<VertexType, VertexDirCurScalar, 1>(vertexProp, vertexDescr, NNP_K1, &(*mesh.vert.begin()).K1());
PushDescriport<VertexType, VertexDirCurScalar, 1>(vertexProp, vertexDescr, NNP_K2, &(*mesh.vert.begin()).K2());
PushDescriportList<VertexType, VertexDirCurVecScalar, 3>(vertexProp, vertexDescr, NNP_K1DIR, (*mesh.vert.begin()).PD1().V());
PushDescriportList<VertexType, VertexDirCurVecScalar, 3>(vertexProp, vertexDescr, NNP_K2DIR, (*mesh.vert.begin()).PD2().V());
}
if ((bitMask & BitMask::IO_VERTATTRIB) && custom.vertexAttrib.size() > 0)
{
for (int i = 0; i < custom.vertexAttrib.size(); i++)
{
vertexProp.push_back(custom.vertexAttribProp[i]);
vertexDescr.dataDescriptor.push_back(custom.vertexAttrib[i]);
}
}
}
//Edge
nameList.clear();
EdgeType::Name(nameList);
std::vector<PlyProperty> edgeProp;
ElementDescriptor edgeDescr(NNP_VERTEX_ELEM);
std::vector<vcg::Point2i> edgeIndex;
for (int i = 0; i < mesh.edge.size(); i++)
edgeIndex.push_back(vcg::Point2i(vcg::tri::Index(mesh, mesh.edge[i].V(0)), vcg::tri::Index(mesh, mesh.edge[i].V(1))));
if (nameList.size() > 0 && mesh.edge.size() > 0)
{
if ((bitMask & BitMask::IO_EDGEINDEX) && EdgeType::HasVertexRef())
{
PushDescriport<vcg::Point2i, int, 1>(edgeProp, edgeDescr, NNP_EDGE_V1, &(*edgeIndex.begin()).V()[0]);
PushDescriport<vcg::Point2i, int, 1>(edgeProp, edgeDescr, NNP_EDGE_V2, &(*edgeIndex.begin()).V()[1]);
}
if ((bitMask & BitMask::IO_EDGEQUALITY) && vcg::tri::HasPerEdgeQuality(mesh))
PushDescriport<EdgeType, EdgeQuality, 1>(edgeProp, edgeDescr, NNP_QUALITY, &(*mesh.edge.begin()).Q());
if ((bitMask & BitMask::IO_EDGECOLOR) && vcg::tri::HasPerEdgeColor(mesh))
PushDescriport<EdgeType, EdgeColorScalar, 4>(edgeProp, edgeDescr, NNP_CRGBA, (*mesh.edge.begin()).C().V());
if ((bitMask & BitMask::IO_EDGEFLAGS) && vcg::tri::HasPerEdgeFlags(mesh))
PushDescriport<EdgeType, EdgeFlag, 1>(edgeProp, edgeDescr, NNP_BITFLAG, &(*mesh.edge.begin()).Flags());
if ((bitMask & BitMask::IO_EDGEATTRIB) && custom.edgeAttrib.size() > 0)
{
for (int i = 0; i < custom.edgeAttrib.size(); i++)
{
edgeProp.push_back(custom.edgeAttribProp[i]);
edgeDescr.dataDescriptor.push_back(custom.edgeAttrib[i]);
}
}
}
//Face
nameList.clear();
FaceType::Name(nameList);
std::vector<PlyProperty> faceProp;
ElementDescriptor faceDescr(NNP_FACE_ELEM);
std::vector<vcg::Point3i> faceIndex;
std::vector<vcg::ndim::Point<6, FaceTexScalar>> wedgeTexCoord;
for (int i = 0; i < mesh.face.size(); i++)
faceIndex.push_back(vcg::Point3i(vcg::tri::Index(mesh, mesh.face[i].V(0)), vcg::tri::Index(mesh, mesh.face[i].V(1)), vcg::tri::Index(mesh, mesh.face[i].V(2))));
if (((bitMask & BitMask::IO_WEDGTEXCOORD) || (bitMask & BitMask::IO_WEDGTEXMULTI)) && vcg::tri::HasPerWedgeTexCoord(mesh))
{
for (int i = 0; i < mesh.face.size(); i++)
{
wedgeTexCoord.push_back(vcg::ndim::Point<6, FaceTexScalar>());
for (int j = 0; j < 3; j++)
{
wedgeTexCoord.back()[j * 2] = mesh.face[i].WT(j).U();
wedgeTexCoord.back()[j * 2 + 1] = mesh.face[i].WT(j).V();
}
}
}
if (nameList.size() > 0 && mesh.face.size() > 0)
{
if ((bitMask & BitMask::IO_FACEINDEX) && FaceType::HasVertexRef())
PushDescriportList<vcg::Point3i, int, 3>(faceProp, faceDescr, NNP_FACE_VERTEX_LIST, (*faceIndex.begin()).V());
if ((bitMask & BitMask::IO_FACEFLAGS) && vcg::tri::HasPerFaceFlags(mesh))
PushDescriport<FaceType, FaceFlag, 1>(faceProp, faceDescr, NNP_BITFLAG, &(*mesh.face.begin()).Flags());
if ((bitMask & BitMask::IO_FACECOLOR) && vcg::tri::HasPerFaceColor(mesh))
PushDescriport<FaceType, FaceColorScalar, 4>(faceProp, faceDescr, NNP_CRGBA, (*mesh.face.begin()).C().V());
if ((bitMask & BitMask::IO_FACEQUALITY) && vcg::tri::HasPerFaceQuality(mesh))
PushDescriport<FaceType, FaceQuality, 1>(faceProp, faceDescr, NNP_QUALITY, &(*mesh.face.begin()).Q());
if ((bitMask & BitMask::IO_FACENORMAL) && vcg::tri::HasPerFaceNormal(mesh))
PushDescriport<FaceType, FaceNormScalar, 3>(faceProp, faceDescr, NNP_NXYZ, (*mesh.face.begin()).N().V());
if ((bitMask & BitMask::IO_VERTCURVDIR) && vcg::tri::HasPerFaceCurvatureDir(mesh))
{
PushDescriport<FaceType, FaceDirCurScalar, 1>(faceProp, faceDescr, NNP_K1, &(*mesh.face.begin()).K1());
PushDescriport<FaceType, FaceDirCurScalar, 1>(faceProp, faceDescr, NNP_K2, &(*mesh.face.begin()).K2());
PushDescriportList<FaceType, FaceDirCurVecScalar, 3>(faceProp, faceDescr, NNP_K1DIR, (*mesh.face.begin()).PD1().V());
PushDescriportList<FaceType, FaceDirCurVecScalar, 3>(faceProp, faceDescr, NNP_K2DIR, (*mesh.face.begin()).PD2().V());
}
if (((bitMask & BitMask::IO_WEDGTEXCOORD) || (bitMask & BitMask::IO_WEDGTEXMULTI)) && vcg::tri::HasPerWedgeTexCoord(mesh))
PushDescriportList<vcg::ndim::Point<6, FaceTexScalar>, FaceTexScalar, 6>(faceProp, faceDescr, NNP_FACE_WEDGE_TEX, (*wedgeTexCoord.begin()).V());
if ((bitMask & BitMask::IO_WEDGTEXMULTI) && vcg::tri::HasPerWedgeTexCoord(mesh))
PushDescriport<FaceType, short, 1>(faceProp, faceDescr, NNP_TEXTUREINDEX, &(*mesh.face.begin()).WT(0).N());
if ((bitMask & BitMask::IO_WEDGCOLOR) && vcg::tri::HasPerWedgeColor(mesh))
PushDescriportList<FaceType, WedgeColorScalar, 12>(faceProp, faceDescr, NNP_FACE_WEDGE_COLOR, (*mesh.face.begin()).WC(0).V());
if ((bitMask & BitMask::IO_WEDGNORMAL) && vcg::tri::HasPerWedgeNormal(mesh))
PushDescriportList<FaceType, WedgeNormalScalar, 9>(faceProp, faceDescr, NNP_FACE_WEDGE_NORMAL, (*mesh.face.begin()).WN(0).V());
if ((bitMask & BitMask::IO_FACEATTRIB) && custom.faceAttrib.size() > 0)
{
for (int i = 0; i < custom.faceAttrib.size(); i++)
{
faceProp.push_back(custom.faceAttribProp[i]);
faceDescr.dataDescriptor.push_back(custom.faceAttrib[i]);
}
}
}
Info infoSave;
infoSave.filename = filename;
infoSave.binary = binary;
PlyElement cameraElem(std::string("camera"), cameraProp, 1);
PlyElement vertexElem(NNP_VERTEX_ELEM, vertexProp, mesh.vert.size());
PlyElement edgeElem(NNP_EDGE_ELEM, edgeProp, mesh.edge.size());
PlyElement faceElem(NNP_FACE_ELEM, faceProp, mesh.face.size());
infoSave.AddPlyElement(cameraElem);
infoSave.AddPlyElement(vertexElem);
infoSave.AddPlyElement(edgeElem);
infoSave.AddPlyElement(faceElem);
infoSave.textureFile = mesh.textures;
std::vector<ElementDescriptor*> meshDescr;
meshDescr.push_back(&cameraDescr);
meshDescr.push_back(&vertexDescr);
meshDescr.push_back(&edgeDescr);
meshDescr.push_back(&faceDescr);
//Mesh attribute
if ((bitMask & BitMask::IO_MESHATTRIB))
{
CustomAttributeDescriptor::MapMeshAttribIter iter = custom.meshAttrib.begin();
CustomAttributeDescriptor::MapMeshAttribPropIter iterProp = custom.meshAttribProp.begin();
for (; iter != custom.meshAttrib.end(); iter++, iterProp++)
{
std::string name((*iter).first);
PlyElement customElem(name, (*iterProp).second, custom.meshAttribCnt[(*iter).first]);
infoSave.AddPlyElement(customElem);
meshDescr.push_back(new ElementDescriptor(name));
meshDescr.back()->dataDescriptor = (*iter).second;
}
}
bool flag = nanoply::SaveModel(infoSave.filename, meshDescr, infoSave);
for (int i = 0; i < cameraDescr.dataDescriptor.size(); i++)
delete cameraDescr.dataDescriptor[i];
for (int i = 0; i < vertexDescr.dataDescriptor.size(); i++)
if (vertexDescr.dataDescriptor[i]->elem != NNP_UNKNOWN_ENTITY)
delete vertexDescr.dataDescriptor[i];
for (int i = 0; i < edgeDescr.dataDescriptor.size(); i++)
if (edgeDescr.dataDescriptor[i]->elem != NNP_UNKNOWN_ENTITY)
delete edgeDescr.dataDescriptor[i];
for (int i = 0; i < faceDescr.dataDescriptor.size(); i++)
if (faceDescr.dataDescriptor[i]->elem != NNP_UNKNOWN_ENTITY)
delete faceDescr.dataDescriptor[i];
return flag;
}
static bool SaveModel(const char* filename, MeshType& mesh, unsigned int bitMask, bool binary)
{
CustomAttributeDescriptor custom;
return SaveModel(filename, mesh, bitMask, custom, binary);
}
};
}
#endif