263 lines
9.3 KiB
C++
263 lines
9.3 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_GRID_UTIL
|
|
#define __VCGLIB_GRID_UTIL
|
|
|
|
#include<vcg/space/index/base.h>
|
|
#include<vcg/space/box3.h>
|
|
#include <vcg/space/index/space_iterators.h>
|
|
|
|
|
|
#ifndef WIN32
|
|
#define __int64 long long
|
|
#define __cdecl
|
|
#endif
|
|
|
|
namespace vcg {
|
|
|
|
/** BasicGrid
|
|
|
|
Basic Class abstracting a gridded structure in a 3d space;
|
|
Usueful for having coherent float to integer conversion in a unique place:
|
|
Some Notes:
|
|
- bbox is the real occupation of the box in the space;
|
|
- siz is the number of cells for each side
|
|
|
|
OBJTYPE: Type of the indexed objects.
|
|
SCALARTYPE: Scalars type for structure's internal data (may differ from
|
|
object's scalar type).
|
|
|
|
*/
|
|
|
|
template <class SCALARTYPE>
|
|
class BasicGrid //:public SpatialIndex<SCALARTYPE>
|
|
{
|
|
public:
|
|
|
|
typedef SCALARTYPE ScalarType;
|
|
typedef Box3<ScalarType> Box3x;
|
|
typedef Point3<ScalarType> CoordType;
|
|
typedef BasicGrid<SCALARTYPE> GridType;
|
|
|
|
Box3x bbox;
|
|
|
|
CoordType dim; /// Spatial Dimention (edge legth) of the bounding box
|
|
Point3i siz; /// Number of cells forming the grid
|
|
CoordType voxel; /// Dimensions of a single cell
|
|
|
|
/*
|
|
Derives the right values of Dim and voxel starting
|
|
from the current values of siz and bbox
|
|
*/
|
|
void ComputeDimAndVoxel()
|
|
{
|
|
this->dim = this->bbox.max - this->bbox.min;
|
|
this->voxel[0] = this->dim[0]/this->siz[0];
|
|
this->voxel[1] = this->dim[1]/this->siz[1];
|
|
this->voxel[2] = this->dim[2]/this->siz[2];
|
|
}
|
|
/* Given a 3D point, returns the coordinates of the cell where the point is
|
|
* @param p is a 3D point
|
|
* @return integer coordinates of the cell
|
|
*/
|
|
inline Point3i GridP( const Point3<ScalarType> & p ) const
|
|
{
|
|
Point3i pi;
|
|
PToIP(p, pi);
|
|
return pi;
|
|
}
|
|
|
|
/* Given a 3D point p, returns the index of the corresponding cell
|
|
* @param p is a 3D point in the space
|
|
* @return integer coordinates pi of the cell
|
|
*/
|
|
inline void PToIP(const CoordType & p, Point3i &pi ) const
|
|
{
|
|
CoordType t = p - bbox.min;
|
|
pi[0] = int( t[0] / voxel[0] );
|
|
pi[1] = int( t[1] / voxel[1] );
|
|
pi[2] = int( t[2] / voxel[2] );
|
|
}
|
|
|
|
/* Given a cell index return the lower corner of the cell
|
|
* @param integer coordinates pi of the cell
|
|
* @return p is a 3D point representing the lower corner of the cell
|
|
*/
|
|
template <class OtherScalarType>
|
|
inline void IPiToPf(const Point3i & pi, Point3<OtherScalarType> &p ) const
|
|
{
|
|
p[0] = bbox.min[0] + ((OtherScalarType)pi[0])*voxel[0];
|
|
p[1] = bbox.min[1] + ((OtherScalarType)pi[1])*voxel[1];
|
|
p[2] = bbox.min[2] + ((OtherScalarType)pi[2])*voxel[2];
|
|
}
|
|
/* Returns the matrix that applied to a point in grid space
|
|
* transforms it in the original space.
|
|
*/
|
|
inline Matrix44<ScalarType> IPtoPfMatrix() const
|
|
{
|
|
Matrix44<ScalarType> m; m.SetScale(voxel);
|
|
Matrix44<ScalarType> t; t.SetTranslate(bbox.min);
|
|
return t*m;
|
|
}
|
|
/* Given a cell index return the corresponding box
|
|
* @param integer coordinates pi of the cell
|
|
* @return b is the corresponding box in <ScalarType> coordinates
|
|
*/
|
|
inline void IPiToBox(const Point3i & pi, Box3x & b ) const
|
|
{
|
|
CoordType p;
|
|
p[0] = ((ScalarType)pi[0])*voxel[0];
|
|
p[1] = ((ScalarType)pi[1])*voxel[1];
|
|
p[2] = ((ScalarType)pi[2])*voxel[2];
|
|
p += bbox.min;
|
|
b.min = p;
|
|
b.max = (p + voxel);
|
|
}
|
|
|
|
/* Given a cell index return the center of the cell itself
|
|
* @param integer coordinates pi of the cell
|
|
* @return b is the corresponding box in <ScalarType> coordinates
|
|
*/inline void IPiToBoxCenter(const Point3i & pi, CoordType & c ) const
|
|
{
|
|
CoordType p;
|
|
IPiToPf(pi,p);
|
|
c = p + voxel/ScalarType(2.0);
|
|
}
|
|
|
|
// Same of IPiToPf but for the case that you just want to transform
|
|
// from a space to the other.
|
|
template <class OtherScalarType>
|
|
void IPfToPf(const Point3<OtherScalarType> & pi, Point3<OtherScalarType> &p ) const
|
|
{
|
|
p[0] = ((OtherScalarType)pi[0])*voxel[0] + bbox.min[0];
|
|
p[1] = ((OtherScalarType)pi[1])*voxel[1] + bbox.min[1];
|
|
p[2] = ((OtherScalarType)pi[2])*voxel[2] + bbox.min[2];
|
|
}
|
|
|
|
/* Given a cell in <ScalarType> coordinates, compute the corresponding cell in integer coordinates
|
|
* @param b is the cell in <ScalarType> coordinates
|
|
* @return ib is the correspondent box in integer coordinates
|
|
*/
|
|
inline void BoxToIBox( const Box3x & b, Box3i & ib ) const
|
|
{
|
|
PToIP(b.min, ib.min);
|
|
PToIP(b.max, ib.max);
|
|
//assert(ib.max[0]>=0 && ib.max[1]>=0 && ib.max[2]>=0);
|
|
}
|
|
|
|
/* Given a cell in integer coordinates, compute the corresponding cell in <ScalarType> coordinates
|
|
* @param ib is the cell in integer coordinates
|
|
* @return b is the correspondent box in <ScalarType> coordinates
|
|
*/
|
|
/// Dato un box in voxel ritorna gli estremi del box reale
|
|
void IBoxToBox( const Box3i & ib, Box3x & b ) const
|
|
{
|
|
IPiToPf(ib.min,b.min);
|
|
IPiToPf(ib.max+Point3i(1,1,1),b.max);
|
|
}
|
|
};
|
|
|
|
template<class scalar_type>
|
|
void BestDim( const Box3<scalar_type> box, const scalar_type voxel_size, Point3i & dim )
|
|
{
|
|
Point3<scalar_type> box_size = box.max-box.min;
|
|
__int64 elem_num = (__int64)(box_size[0]/voxel_size +0.5) *( __int64)(box_size[1]/voxel_size +0.5) * (__int64)(box_size[2]/voxel_size +0.5);
|
|
BestDim(elem_num,box_size,dim);
|
|
}
|
|
/** Calcolo dimensioni griglia.
|
|
Calcola la dimensione della griglia in funzione
|
|
della ratio del bounding box e del numero di elementi
|
|
*/
|
|
template<class scalar_type>
|
|
void BestDim( const __int64 elems, const Point3<scalar_type> & size, Point3i & dim )
|
|
{
|
|
const __int64 mincells = 1; // Numero minimo di celle
|
|
const double GFactor = 1; // GridEntry = NumElem*GFactor
|
|
double diag = size.Norm(); // Diagonale del box
|
|
double eps = diag*1e-4; // Fattore di tolleranza
|
|
|
|
assert(elems>0);
|
|
assert(size[0]>=0.0);
|
|
assert(size[1]>=0.0);
|
|
assert(size[2]>=0.0);
|
|
|
|
|
|
__int64 ncell = (__int64)(elems*GFactor); // Calcolo numero di voxel
|
|
if(ncell<mincells)
|
|
ncell = mincells;
|
|
|
|
dim[0] = 1;
|
|
dim[1] = 1;
|
|
dim[2] = 1;
|
|
|
|
if(size[0]>eps)
|
|
{
|
|
if(size[1]>eps)
|
|
{
|
|
if(size[2]>eps)
|
|
{
|
|
double k = pow((double)(ncell/(size[0]*size[1]*size[2])),double(1.0/3.f));
|
|
dim[0] = int(size[0] * k);
|
|
dim[1] = int(size[1] * k);
|
|
dim[2] = int(size[2] * k);
|
|
}
|
|
else
|
|
{
|
|
dim[0] = int(::sqrt(ncell*size[0]/size[1]));
|
|
dim[1] = int(::sqrt(ncell*size[1]/size[0]));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(size[2]>eps)
|
|
{
|
|
dim[0] = int(::sqrt(ncell*size[0]/size[2]));
|
|
dim[2] = int(::sqrt(ncell*size[2]/size[0]));
|
|
}
|
|
else
|
|
dim[0] = int(ncell);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(size[1]>eps)
|
|
{
|
|
if(size[2]>eps)
|
|
{
|
|
dim[1] = int(::sqrt(ncell*size[1]/size[2]));
|
|
dim[2] = int(::sqrt(ncell*size[2]/size[1]));
|
|
}
|
|
else
|
|
dim[1] = int(ncell);
|
|
}
|
|
else if(size[2]>eps)
|
|
dim[2] = int(ncell);
|
|
}
|
|
dim[0] = std::max(dim[0],1);
|
|
dim[1] = std::max(dim[1],1);
|
|
dim[2] = std::max(dim[2],1);
|
|
}
|
|
}
|
|
#endif
|