vcglib/vcg/complex/local_optimization/tri_edge_flip.h

410 lines
11 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#include <vcg/complex/local_optimization.h>
#include <vcg/simplex/face/topology.h>
//#include <vcg/space/point3.h>
#include <vcg/space/triangle3.h>
namespace vcg
{
namespace tri
{
/** \addtogroup trimesh */
/* @{ */
/*!
* This Class is specialization of LocalModification for the edge flip
* It wraps the atomic operation EdgeFlip to be used in a optimization routine.
* Note that it has knowledge of the heap of the class LocalOptimization because
* it is responsible of updating it after a flip has been performed
* This is the simplest edge flipping class.
* It flips an edge only if two adjacent faces are coplanar and the
* quality of the faces improves after the flip.
*/
template <class TRIMESH_TYPE, class MYTYPE,
typename TRIMESH_TYPE::ScalarType (*QualityFunc)(
Point3<typename TRIMESH_TYPE::ScalarType> const &p0,
Point3<typename TRIMESH_TYPE::ScalarType> const & p1,
Point3<typename TRIMESH_TYPE::ScalarType> const & p2) = Quality>
class PlanarEdgeFlip :
public LocalOptimization< TRIMESH_TYPE>::LocModType
{
protected:
typedef typename TRIMESH_TYPE::FaceType FaceType;
typedef typename TRIMESH_TYPE::FacePointer FacePointer;
typedef typename TRIMESH_TYPE::FaceIterator FaceIterator;
typedef typename TRIMESH_TYPE::VertexType VertexType;
typedef typename TRIMESH_TYPE::ScalarType ScalarType;
typedef typename TRIMESH_TYPE::VertexPointer VertexPointer;
typedef typename TRIMESH_TYPE::CoordType CoordType;
typedef vcg::face::Pos<FaceType> PosType;
typedef typename LocalOptimization<TRIMESH_TYPE>::HeapElem HeapElem;
typedef typename LocalOptimization<TRIMESH_TYPE>::HeapType HeapType;
/*!
* the pos of the flipping
*/
PosType _pos;
/*!
* priority in the heap
*/
ScalarType _priority;
/*!
* Mark for updating
*/
int _localMark;
/*!
* mark for up_dating
*/
static int& GlobalMark()
{
static int im = 0;
return im;
}
public:
/*!
* Default constructor
*/
inline PlanarEdgeFlip()
{
}
/*!
* Constructor with <I>pos</I> type
*/
inline PlanarEdgeFlip(PosType pos, int mark)
{
_pos = pos;
_localMark = mark;
_priority = ComputePriority();
}
/*!
* Copy Constructor
*/
inline PlanarEdgeFlip(const PlanarEdgeFlip &par)
{
_pos = par.GetPos();
_localMark = par.GetMark();
_priority = par.Priority();
}
/*!
*/
~PlanarEdgeFlip()
{
}
/*!
* Parameter
*/
static ScalarType &CoplanarAngleThresholdDeg()
{
static ScalarType _CoplanarAngleThresholdDeg = 0.01f;
return _CoplanarAngleThresholdDeg;
}
inline PosType GetPos()
{
return _pos;
}
inline int GetMark()
{
return _localMark;
}
/*!
* Return the LocalOptimization type
*/
ModifierType IsOfType()
{
return TriEdgeFlipOp;
}
/*!
* Check if the pos is updated
*/
bool IsUpToDate()
{
int MostRecentVertexMark = _pos.F()->V(0)->IMark();
MostRecentVertexMark = vcg::math::Max<int>(MostRecentVertexMark, _pos.F()->V(1)->IMark());
MostRecentVertexMark = vcg::math::Max<int>(MostRecentVertexMark, _pos.F()->V(2)->IMark());
return ( _localMark >= MostRecentVertexMark );
}
/*!
*
Check if this flipping operation can be performed.
It is a topological and geometrical check.
*/
virtual bool IsFeasible()
{
if( math::ToDeg( Angle(_pos.FFlip()->cN(), _pos.F()->cN()) ) > CoplanarAngleThresholdDeg() )
return false;
CoordType v0, v1, v2, v3;
int i = _pos.I();
v0 = _pos.F()->P0(i);
v1 = _pos.F()->P1(i);
v2 = _pos.F()->P2(i);
v3 = _pos.F()->FFp(i)->P2(_pos.F()->FFi(i));
// Take the parallelogram formed by the adjacent faces of edge
// If a corner of the parallelogram on extreme of edge to flip is >= 180
// the flip produce two identical faces - avoid this
if( (Angle(v2 - v0, v1 - v0) + Angle(v3 - v0, v1 - v0) >= M_PI) ||
(Angle(v2 - v1, v0 - v1) + Angle(v3 - v1, v0 - v1) >= M_PI))
return false;
return vcg::face::CheckFlipEdge(*_pos.f, _pos.z);
}
/*!
* Compute the priority of this optimization
*/
/*
1
/|\
/ | \
2 | 3
\ | /
\|/
0
*/
virtual ScalarType ComputePriority()
{
CoordType v0, v1, v2, v3;
int i = _pos.I();
v0 = _pos.F()->P0(i);
v1 = _pos.F()->P1(i);
v2 = _pos.F()->P2(i);
v3 = _pos.F()->FFp(i)->P2(_pos.F()->FFi(i));
ScalarType Qa = QualityFunc(v0, v1, v2);
ScalarType Qb = QualityFunc(v0, v3, v1);
ScalarType QaAfter = QualityFunc(v1, v2, v3);
ScalarType QbAfter = QualityFunc(v0, v3, v2);
/*_priority = vcg::math::Max<ScalarType>(QaAfter,QbAfter) - vcg::math::Min<ScalarType>(Qa,Qb) ;
_priority *= -1;*/
// < 0 if the average quality of faces improves after flip
//_priority = ((Qa + Qb) / 2.0) - ((QaAfter + QbAfter) / 2.0);
_priority = (Qa + Qb - QaAfter - QbAfter) / 2.0;
return _priority;
}
/*!
* Return the priority of this optimization
*/
virtual ScalarType Priority() const
{
return _priority;
}
/*!
* Execute the flipping of the edge
*/
void Execute(TRIMESH_TYPE &/*m*/)
{
int z = _pos.z;
vcg::face::FlipEdge(*_pos.f, z);
}
/*!
*/
const char* Info(TRIMESH_TYPE &m)
{
static char dump[60];
sprintf(dump,"%ld -> %ld %g\n", _pos.F()->V(0)-&m.vert[0], _pos.F()->V(1)-&m.vert[0],-_priority);
return dump;
}
/*!
*/
static void Init(TRIMESH_TYPE &mesh, HeapType &heap)
{
heap.clear();
FaceIterator fi;
for(fi = mesh.face.begin(); fi != mesh.face.end(); ++fi) {
if(!(*fi).IsD() && (*fi).V(0)->IsW() && (*fi).V(1)->IsW() && (*fi).V(2)->IsW()) {
for(unsigned int i = 0; i < 3; i++) {
if( !(*fi).IsB(i) && (*fi).FFp(i)->V2((*fi).FFi(i))->IsW() ) {
if((*fi).V1(i) - (*fi).V0(i) > 0)
heap.push_back( HeapElem( new MYTYPE(PosType(&*fi, i), mesh.IMark() )) );
} //endif
} //endfor
}
} //endfor
}
/*!
*/
virtual void UpdateHeap(HeapType &heap)
{
GlobalMark()++;
PosType pos(_pos.f, _pos.z);
pos.FlipF();
_pos.F()->V(0)->IMark() = GlobalMark();
_pos.F()->V(1)->IMark() = GlobalMark();
_pos.F()->V(2)->IMark() = GlobalMark();
pos.F()->V2(_pos.F()->FFi(_pos.z))->IMark() = GlobalMark();
PosType poss(_pos.f, _pos.z);
poss.FlipV(); poss.FlipE();
if(!poss.IsBorder()) {
heap.push_back(HeapElem(new MYTYPE(poss, GlobalMark())));
std::push_heap(heap.begin(), heap.end());
}
poss.FlipV(); poss.FlipE();
if(!poss.IsBorder()) {
heap.push_back(HeapElem(new MYTYPE(poss, GlobalMark())));
std::push_heap(heap.begin(), heap.end());
}
poss.FlipV(); poss.FlipE();
poss.FlipF(); poss.FlipE();
if(!poss.IsBorder()) {
heap.push_back(HeapElem(new MYTYPE(poss, GlobalMark())));
std::push_heap(heap.begin(), heap.end());
}
poss.FlipV(); poss.FlipE();
if(!poss.IsBorder()) {
heap.push_back(HeapElem(new MYTYPE(poss, GlobalMark())));
std::push_heap(heap.begin(), heap.end());
}
}
}; // end of PlanarEdgeFlip class
template <class TRIMESH_TYPE, class MYTYPE>
class TriEdgeFlip : public PlanarEdgeFlip<TRIMESH_TYPE, MYTYPE>
{
protected:
typedef typename TRIMESH_TYPE::FaceType FaceType;
typedef typename TRIMESH_TYPE::FacePointer FacePointer;
typedef typename TRIMESH_TYPE::FaceIterator FaceIterator;
typedef typename TRIMESH_TYPE::VertexType VertexType;
typedef typename TRIMESH_TYPE::VertexPointer VertexPointer;
typedef typename TRIMESH_TYPE::ScalarType ScalarType;
typedef typename TRIMESH_TYPE::CoordType CoordType;
typedef vcg::face::Pos<FaceType> PosType;
typedef typename LocalOptimization<TRIMESH_TYPE>::HeapElem HeapElem;
typedef typename LocalOptimization<TRIMESH_TYPE>::HeapType HeapType;
typedef typename vcg::Triangle3<ScalarType> TriangleType;
public:
/*!
* Default constructor
*/
inline TriEdgeFlip() {}
/*!
* Constructor with <I>pos</I> type
*/
inline TriEdgeFlip(const PosType pos, int mark)
{
this->_pos = pos;
this->_localMark = mark;
this->_priority = ComputePriority();
}
/*!
* Copy Constructor
*/
inline TriEdgeFlip(const TriEdgeFlip &par)
{
this->_pos = par.GetPos();
this->_localMark = par.GetMark();
this->_priority = par.Priority();
}
//only topology check
/*bool IsFeasible()
{
return vcg::face::CheckFlipEdge(*this->_pos.f, this->_pos.z);
}*/
ScalarType ComputePriority()
{
/*
1
/|\
/ | \
2 | 3
\ | /
\|/
0
*/
CoordType v0, v1, v2, v3;
int i = this->_pos.I();
v0 = this->_pos.F()->P0(i);
v1 = this->_pos.F()->P1(i);
v2 = this->_pos.F()->P2(i);
v3 = this->_pos.F()->FFp(i)->P2(this->_pos.F()->FFi(i));
//CoordType CircumCenter = vcg::Circumcenter(*(app.F()));
CoordType circumcenter = vcg::Circumcenter(*(this->_pos.F()));
ScalarType radius = Distance(v0, circumcenter);
ScalarType radius1 = Distance(v1, circumcenter);
ScalarType radius2 = Distance(v2, circumcenter);
assert( fabs(radius - radius1) < 0.1 );
assert( fabs(radius - radius2) < 0.1 );
///Return the difference of radius and the distance of v3 and the CircumCenter
/*this->_priority = (radius2 - Distance(v3, circumcenter));
this->_priority *= -1;*/
this->_priority = (Distance(v3, circumcenter) - radius2);
return this->_priority;
}
};
/*! @} */
}; // end of namespace tri
}; // end of namespace vcg