242 lines
6.6 KiB
C++
242 lines
6.6 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_LEGENDRE_H
|
|
#define __VCGLIB_LEGENDRE_H
|
|
|
|
#include <vcg/math/base.h>
|
|
|
|
namespace vcg {
|
|
namespace math {
|
|
|
|
/*
|
|
* Contrary to their definition, the Associated Legendre Polynomials presented here are
|
|
* only computed for positive m values.
|
|
*
|
|
*/
|
|
template <typename ScalarType>
|
|
class Legendre {
|
|
|
|
protected :
|
|
|
|
/**
|
|
* Legendre Polynomial three term Recurrence Relation
|
|
*/
|
|
static inline ScalarType legendre_next(unsigned l, ScalarType P_lm1, ScalarType P_lm2, ScalarType x)
|
|
{
|
|
return ((2 * l + 1) * x * P_lm1 - l * P_lm2) / (l + 1);
|
|
}
|
|
|
|
/**
|
|
* Associated Legendre Polynomial three term Recurrence Relation.
|
|
* Raises the band index.
|
|
*/
|
|
static inline double legendre_next(unsigned l, unsigned m, ScalarType P_lm1, ScalarType P_lm2, ScalarType x)
|
|
{
|
|
return ((2 * l + 1) * x * P_lm1 - (l + m) * P_lm2) / (l + 1 - m);
|
|
}
|
|
|
|
/**
|
|
* Recurrence relation to compute P_m_(m+1) given P_m_m at the same x
|
|
*/
|
|
static inline double legendre_P_m_mplusone(unsigned m, ScalarType p_m_m, ScalarType x)
|
|
{
|
|
return x * (2.0 * m + 1.0) * p_m_m;
|
|
}
|
|
|
|
/**
|
|
* Starting relation to compute P_m_m according to the formula:
|
|
*
|
|
* pow(-1, m) * double_factorial(2 * m - 1) * pow(1 - x*x, abs(m)/2)
|
|
*
|
|
* which becomes, if x = cos(theta) :
|
|
*
|
|
* pow(-1, m) * double_factorial(2 * m - 1) * pow(sin(theta), abs(m)/2)
|
|
*/
|
|
static inline double legendre_P_m_m(unsigned m, ScalarType sin_theta)
|
|
{
|
|
ScalarType p_m_m = 1.0;
|
|
|
|
if (m > 0)
|
|
{
|
|
ScalarType fact = 1.0; //Double factorial here
|
|
for (unsigned i = 1; i <= m; ++i)
|
|
{
|
|
p_m_m *= fact * sin_theta; //raising sin_theta to the power of m/2
|
|
fact += 2.0;
|
|
}
|
|
|
|
if (m&1) //odd m
|
|
{
|
|
// Condon-Shortley Phase term
|
|
p_m_m *= -1;
|
|
}
|
|
}
|
|
|
|
return p_m_m;
|
|
}
|
|
|
|
static inline double legendre_P_l(unsigned l, ScalarType x)
|
|
{
|
|
ScalarType p0 = 1;
|
|
ScalarType p1 = x;
|
|
|
|
if (l == 0) return p0;
|
|
|
|
for (unsigned n = 1; n < l; ++n)
|
|
{
|
|
std::swap(p0, p1);
|
|
p1 = legendre_next(n, p0, p1, x);
|
|
}
|
|
|
|
return p1;
|
|
}
|
|
|
|
/**
|
|
* Computes the Associated Legendre Polynomial for any given
|
|
* positive m and l, with m <= l and -1 <= x <= 1.
|
|
*/
|
|
static inline double legendre_P_l_m(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta)
|
|
{
|
|
if(m > l) return 0;
|
|
if(m == 0) return legendre_P_l(l, cos_theta); //OK
|
|
else
|
|
{
|
|
ScalarType p_m_m = legendre_P_m_m(m, sin_theta); //OK
|
|
|
|
if (l == m) return p_m_m;
|
|
|
|
ScalarType p_m_mplusone = legendre_P_m_mplusone(m, p_m_m, cos_theta); //OK
|
|
|
|
if (l == m + 1) return p_m_mplusone;
|
|
|
|
unsigned n = m + 1;
|
|
|
|
while(n < l)
|
|
{
|
|
std::swap(p_m_m, p_m_mplusone);
|
|
p_m_mplusone = legendre_next(n, m, p_m_m, p_m_mplusone, cos_theta);
|
|
++n;
|
|
}
|
|
|
|
return p_m_mplusone;
|
|
}
|
|
}
|
|
|
|
public :
|
|
|
|
static double Polynomial(unsigned l, ScalarType x)
|
|
{
|
|
assert (x <= 1 && x >= -1);
|
|
return legendre_P_l(l, x);
|
|
}
|
|
|
|
static double AssociatedPolynomial(unsigned l, unsigned m, ScalarType x)
|
|
{
|
|
assert (m <= l && x <= 1 && x >= -1);
|
|
return legendre_P_l_m(l, m, x, Sqrt(1.0 - x * x) );
|
|
}
|
|
|
|
static double AssociatedPolynomial(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta)
|
|
{
|
|
assert (m <= l && cos_theta <= 1 && cos_theta >= -1 && sin_theta <= 1 && sin_theta >= -1);
|
|
return legendre_P_l_m(l, m, cos_theta, Abs(sin_theta));
|
|
}
|
|
};
|
|
|
|
|
|
template <typename ScalarType, int MAX_L>
|
|
class DynamicLegendre : public Legendre<ScalarType>
|
|
{
|
|
|
|
private:
|
|
ScalarType matrix[MAX_L][MAX_L]; //dynamic table
|
|
ScalarType _x; //table is conserved only across consistent x invocations
|
|
ScalarType _sin_theta;
|
|
|
|
void generate(ScalarType cos_theta, ScalarType sin_theta)
|
|
{
|
|
//generate all 'l's with m = 0
|
|
|
|
matrix[0][0] = 1;
|
|
matrix[0][1] = cos_theta;
|
|
|
|
for (unsigned l = 2; l < MAX_L; ++l)
|
|
{
|
|
matrix[0][l] = legendre_next(l-1, matrix[0][l-1], matrix[0][l-2], cos_theta);
|
|
}
|
|
|
|
for(unsigned l = 1; l < MAX_L; ++l)
|
|
{
|
|
for (unsigned m = 1; m <= l; ++m)
|
|
{
|
|
if (l == m) matrix[m][m] = legendre_P_m_m(m, sin_theta);
|
|
else if (l == m + 1) matrix[m][l] = legendre_P_m_mplusone(m, matrix[m][m], cos_theta);
|
|
else{
|
|
matrix[m][l] = legendre_next(l-1, m, matrix[m][l-1], matrix[m][l-2], cos_theta);
|
|
}
|
|
}
|
|
}
|
|
|
|
_x = cos_theta;
|
|
}
|
|
|
|
public :
|
|
|
|
DynamicLegendre() : _x(2), _sin_theta(2) {}
|
|
|
|
double AssociatedPolynomial(unsigned l, unsigned m, ScalarType x)
|
|
{
|
|
assert (m <= l && x <= 1 && x >= -1);
|
|
if (x != _x){
|
|
_sin_theta = Sqrt(1.0 - x * x);
|
|
generate(x, _sin_theta);
|
|
}
|
|
return matrix[m][l];
|
|
}
|
|
|
|
double AssociatedPolynomial(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta)
|
|
{
|
|
assert (m <= l && cos_theta <= 1 && cos_theta >= -1 && sin_theta <= 1 && sin_theta >= -1);
|
|
if (cos_theta != _x){
|
|
_sin_theta = sin_theta;
|
|
generate(cos_theta, _sin_theta);
|
|
}
|
|
return matrix[m][l];
|
|
}
|
|
|
|
double Polynomial(unsigned l, ScalarType x)
|
|
{
|
|
assert (x <= 1 && x >= -1);
|
|
if (x != _x){
|
|
_sin_theta = Sqrt(1.0 - x * x);
|
|
generate(x, _sin_theta);
|
|
}
|
|
return matrix[0][l];
|
|
}
|
|
};
|
|
|
|
}} //vcg::math namespace
|
|
|
|
#endif
|