494 lines
16 KiB
C++
494 lines
16 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef VCG_USE_EIGEN
|
|
#include "deprecated_matrix44.h"
|
|
#else
|
|
|
|
#ifndef __VCGLIB_MATRIX44
|
|
#define __VCGLIB_MATRIX44
|
|
|
|
#include "eigen.h"
|
|
#include <vcg/space/point3.h>
|
|
#include <vcg/space/point4.h>
|
|
#include <memory.h>
|
|
#include <vector>
|
|
|
|
namespace vcg{
|
|
template<class Scalar> class Matrix44;
|
|
}
|
|
|
|
namespace Eigen{
|
|
template<typename Scalar>
|
|
struct ei_traits<vcg::Matrix44<Scalar> > : ei_traits<Eigen::Matrix<Scalar,4,4,RowMajor> > {};
|
|
template<typename XprType> struct ei_to_vcgtype<XprType,4,4,RowMajor,4,4>
|
|
{ typedef vcg::Matrix44<typename XprType::Scalar> type; };
|
|
}
|
|
|
|
namespace vcg {
|
|
|
|
/*
|
|
Annotations:
|
|
Opengl stores matrix in column-major order. That is, the matrix is stored as:
|
|
|
|
a0 a4 a8 a12
|
|
a1 a5 a9 a13
|
|
a2 a6 a10 a14
|
|
a3 a7 a11 a15
|
|
|
|
Usually in opengl (see opengl specs) vectors are 'column' vectors
|
|
so usually matrix are PRE-multiplied for a vector.
|
|
So the command glTranslate generate a matrix that
|
|
is ready to be premultipled for a vector:
|
|
|
|
1 0 0 tx
|
|
0 1 0 ty
|
|
0 0 1 tz
|
|
0 0 0 1
|
|
|
|
Matrix44 stores matrix in row-major order i.e.
|
|
|
|
a0 a1 a2 a3
|
|
a4 a5 a6 a7
|
|
a8 a9 a10 a11
|
|
a12 a13 a14 a15
|
|
|
|
So for the use of that matrix in opengl with their supposed meaning you have to transpose them before feeding to glMultMatrix.
|
|
This mechanism is hidden by the templated function defined in wrap/gl/math.h;
|
|
If your machine has the ARB_transpose_matrix extension it will use the appropriate;
|
|
The various gl-like command SetRotate, SetTranslate assume that you are making matrix
|
|
for 'column' vectors.
|
|
|
|
*/
|
|
|
|
// Note that we have to pass Dim and HDim because it is not allowed to use a template
|
|
// parameter to define a template specialization. To be more precise, in the following
|
|
// specializations, it is not allowed to use Dim+1 instead of HDim.
|
|
template< typename Other,
|
|
int OtherRows=Eigen::ei_traits<Other>::RowsAtCompileTime,
|
|
int OtherCols=Eigen::ei_traits<Other>::ColsAtCompileTime>
|
|
struct ei_matrix44_product_impl;
|
|
|
|
/** \deprecated use Eigen::Matrix<Scalar,4,4> (or the typedef) you want a real 4x4 matrix, or use Eigen::Transform<Scalar,3> if you want a transformation matrix for a 3D space (a Eigen::Transform<Scalar,3> is internally a 4x4 col-major matrix)
|
|
*
|
|
* This class represents a 4x4 matrix. T is the kind of element in the matrix.
|
|
*/
|
|
template<typename _Scalar>
|
|
class Matrix44 : public Eigen::Matrix<_Scalar,4,4,Eigen::RowMajor> // FIXME col or row major !
|
|
{
|
|
|
|
typedef Eigen::Matrix<_Scalar,4,4,Eigen::RowMajor> _Base;
|
|
public:
|
|
|
|
using _Base::coeff;
|
|
using _Base::coeffRef;
|
|
using _Base::ElementAt;
|
|
using _Base::setZero;
|
|
|
|
_EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix44,_Base);
|
|
typedef _Scalar ScalarType;
|
|
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Matrix44)
|
|
|
|
Matrix44() : Base() {}
|
|
~Matrix44() {}
|
|
Matrix44(const Matrix44 &m) : Base(m) {}
|
|
Matrix44(const Scalar * v ) : Base(Eigen::Map<Eigen::Matrix<Scalar,4,4,Eigen::RowMajor> >(v)) {}
|
|
template<typename OtherDerived>
|
|
Matrix44(const Eigen::MatrixBase<OtherDerived>& other) : Base(other) {}
|
|
|
|
const typename Base::RowXpr operator[](int i) const { return Base::row(i); }
|
|
typename Base::RowXpr operator[](int i) { return Base::row(i); }
|
|
|
|
typename Base::ColXpr GetColumn4(const int& i) const { return Base::col(i); }
|
|
const Eigen::Block<Base,3,1> GetColumn3(const int& i) const { return this->template block<3,1>(0,i); }
|
|
|
|
typename Base::RowXpr GetRow4(const int& i) const { return Base::row(i); }
|
|
Eigen::Block<Base,1,3> GetRow3(const int& i) const { return this->template block<1,3>(i,0); }
|
|
|
|
template <class Matrix44Type>
|
|
void ToMatrix(Matrix44Type & m) const { m = (*this).template cast<typename Matrix44Type::Scalar>(); }
|
|
|
|
void ToEulerAngles(Scalar &alpha, Scalar &beta, Scalar &gamma);
|
|
|
|
template <class Matrix44Type>
|
|
void FromMatrix(const Matrix44Type & m) { for(int i = 0; i < 16; i++) Base::data()[i] = m.data()[i]; }
|
|
|
|
void FromEulerAngles(Scalar alpha, Scalar beta, Scalar gamma);
|
|
void SetDiagonal(const Scalar k);
|
|
Matrix44 &SetScale(const Scalar sx, const Scalar sy, const Scalar sz);
|
|
Matrix44 &SetScale(const Point3<Scalar> &t);
|
|
Matrix44 &SetTranslate(const Point3<Scalar> &t);
|
|
Matrix44 &SetTranslate(const Scalar sx, const Scalar sy, const Scalar sz);
|
|
Matrix44 &SetShearXY(const Scalar sz);
|
|
Matrix44 &SetShearXZ(const Scalar sy);
|
|
Matrix44 &SetShearYZ(const Scalar sx);
|
|
|
|
///use radiants for angle.
|
|
Matrix44 &SetRotateDeg(Scalar AngleDeg, const Point3<Scalar> & axis);
|
|
Matrix44 &SetRotateRad(Scalar AngleRad, const Point3<Scalar> & axis);
|
|
|
|
/** taken from Eigen::Transform
|
|
* \returns the product between the transform \c *this and a matrix expression \a other
|
|
*
|
|
* The right hand side \a other might be either:
|
|
* \li a matrix expression with 4 rows
|
|
* \li a 3D vector/point
|
|
*/
|
|
template<typename OtherDerived>
|
|
inline const typename ei_matrix44_product_impl<OtherDerived>::ResultType
|
|
operator * (const Eigen::MatrixBase<OtherDerived> &other) const
|
|
{ return ei_matrix44_product_impl<OtherDerived>::run(*this,other.derived()); }
|
|
|
|
void print() {std::cout << *this << "\n\n";}
|
|
|
|
};
|
|
|
|
//return NULL matrix if not invertible
|
|
template <class T> Matrix44<T> &Invert(Matrix44<T> &m);
|
|
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m);
|
|
|
|
typedef Matrix44<short> Matrix44s;
|
|
typedef Matrix44<int> Matrix44i;
|
|
typedef Matrix44<float> Matrix44f;
|
|
typedef Matrix44<double> Matrix44d;
|
|
|
|
template < class PointType , class T > void operator*=( std::vector<PointType> &vert, const Matrix44<T> & m ) {
|
|
typename std::vector<PointType>::iterator ii;
|
|
for(ii=vert.begin();ii!=vert.end();++ii)
|
|
(*ii).P()=m * (*ii).P();
|
|
}
|
|
|
|
template <class T>
|
|
void Matrix44<T>::ToEulerAngles(Scalar &alpha, Scalar &beta, Scalar &gamma)
|
|
{
|
|
alpha = atan2(coeff(1,2), coeff(2,2));
|
|
beta = asin(-coeff(0,2));
|
|
gamma = atan2(coeff(0,1), coeff(1,1));
|
|
}
|
|
|
|
template <class T>
|
|
void Matrix44<T>::FromEulerAngles(Scalar alpha, Scalar beta, Scalar gamma)
|
|
{
|
|
this->SetZero();
|
|
|
|
T cosalpha = cos(alpha);
|
|
T cosbeta = cos(beta);
|
|
T cosgamma = cos(gamma);
|
|
T sinalpha = sin(alpha);
|
|
T sinbeta = sin(beta);
|
|
T singamma = sin(gamma);
|
|
|
|
ElementAt(0,0) = cosbeta * cosgamma;
|
|
ElementAt(1,0) = -cosalpha * singamma + sinalpha * sinbeta * cosgamma;
|
|
ElementAt(2,0) = sinalpha * singamma + cosalpha * sinbeta * cosgamma;
|
|
|
|
ElementAt(0,1) = cosbeta * singamma;
|
|
ElementAt(1,1) = cosalpha * cosgamma + sinalpha * sinbeta * singamma;
|
|
ElementAt(2,1) = -sinalpha * cosgamma + cosalpha * sinbeta * singamma;
|
|
|
|
ElementAt(0,2) = -sinbeta;
|
|
ElementAt(1,2) = sinalpha * cosbeta;
|
|
ElementAt(2,2) = cosalpha * cosbeta;
|
|
|
|
ElementAt(3,3) = 1;
|
|
}
|
|
|
|
template <class T> void Matrix44<T>::SetDiagonal(const Scalar k) {
|
|
setZero();
|
|
ElementAt(0, 0) = k;
|
|
ElementAt(1, 1) = k;
|
|
ElementAt(2, 2) = k;
|
|
ElementAt(3, 3) = 1;
|
|
}
|
|
|
|
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const Point3<Scalar> &t) {
|
|
SetScale(t[0], t[1], t[2]);
|
|
return *this;
|
|
}
|
|
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const Scalar sx, const Scalar sy, const Scalar sz) {
|
|
setZero();
|
|
ElementAt(0, 0) = sx;
|
|
ElementAt(1, 1) = sy;
|
|
ElementAt(2, 2) = sz;
|
|
ElementAt(3, 3) = 1;
|
|
return *this;
|
|
}
|
|
|
|
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const Point3<Scalar> &t) {
|
|
SetTranslate(t[0], t[1], t[2]);
|
|
return *this;
|
|
}
|
|
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const Scalar tx, const Scalar ty, const Scalar tz) {
|
|
Base::setIdentity();
|
|
ElementAt(0, 3) = tx;
|
|
ElementAt(1, 3) = ty;
|
|
ElementAt(2, 3) = tz;
|
|
return *this;
|
|
}
|
|
|
|
template <class T> Matrix44<T> &Matrix44<T>::SetRotateDeg(Scalar AngleDeg, const Point3<Scalar> & axis) {
|
|
return SetRotateRad(math::ToRad(AngleDeg),axis);
|
|
}
|
|
|
|
template <class T> Matrix44<T> &Matrix44<T>::SetRotateRad(Scalar AngleRad, const Point3<Scalar> & axis) {
|
|
//angle = angle*(T)3.14159265358979323846/180; e' in radianti!
|
|
T c = math::Cos(AngleRad);
|
|
T s = math::Sin(AngleRad);
|
|
T q = 1-c;
|
|
Point3<T> t = axis;
|
|
t.Normalize();
|
|
ElementAt(0,0) = t[0]*t[0]*q + c;
|
|
ElementAt(0,1) = t[0]*t[1]*q - t[2]*s;
|
|
ElementAt(0,2) = t[0]*t[2]*q + t[1]*s;
|
|
ElementAt(0,3) = 0;
|
|
ElementAt(1,0) = t[1]*t[0]*q + t[2]*s;
|
|
ElementAt(1,1) = t[1]*t[1]*q + c;
|
|
ElementAt(1,2) = t[1]*t[2]*q - t[0]*s;
|
|
ElementAt(1,3) = 0;
|
|
ElementAt(2,0) = t[2]*t[0]*q -t[1]*s;
|
|
ElementAt(2,1) = t[2]*t[1]*q +t[0]*s;
|
|
ElementAt(2,2) = t[2]*t[2]*q +c;
|
|
ElementAt(2,3) = 0;
|
|
ElementAt(3,0) = 0;
|
|
ElementAt(3,1) = 0;
|
|
ElementAt(3,2) = 0;
|
|
ElementAt(3,3) = 1;
|
|
return *this;
|
|
}
|
|
|
|
/* Shear Matrixes
|
|
XY
|
|
1 k 0 0 x x+ky
|
|
0 1 0 0 y y
|
|
0 0 1 0 z z
|
|
0 0 0 1 1 1
|
|
|
|
1 0 k 0 x x+kz
|
|
0 1 0 0 y y
|
|
0 0 1 0 z z
|
|
0 0 0 1 1 1
|
|
|
|
1 1 0 0 x x
|
|
0 1 k 0 y y+kz
|
|
0 0 1 0 z z
|
|
0 0 0 1 1 1
|
|
|
|
*/
|
|
|
|
template <class T> Matrix44<T> & Matrix44<T>::SetShearXY( const Scalar sh) {// shear the X coordinate as the Y coordinate change
|
|
Base::setIdentity();
|
|
ElementAt(0,1) = sh;
|
|
return *this;
|
|
}
|
|
|
|
template <class T> Matrix44<T> & Matrix44<T>::SetShearXZ( const Scalar sh) {// shear the X coordinate as the Z coordinate change
|
|
Base::setIdentity();
|
|
ElementAt(0,2) = sh;
|
|
return *this;
|
|
}
|
|
|
|
template <class T> Matrix44<T> &Matrix44<T>::SetShearYZ( const Scalar sh) {// shear the Y coordinate as the Z coordinate change
|
|
Base::setIdentity();
|
|
ElementAt(1,2) = sh;
|
|
return *this;
|
|
}
|
|
|
|
|
|
/*
|
|
Given a non singular, non projective matrix (e.g. with the last row equal to [0,0,0,1] )
|
|
This procedure decompose it in a sequence of
|
|
Scale,Shear,Rotation e Translation
|
|
|
|
- ScaleV and Tranv are obiviously scaling and translation.
|
|
- ShearV contains three scalars with, respectively
|
|
ShearXY, ShearXZ e ShearYZ
|
|
- RotateV contains the rotations (in degree!) around the x,y,z axis
|
|
The input matrix is modified leaving inside it a simple roto translation.
|
|
|
|
To obtain the original matrix the above transformation have to be applied in the strict following way:
|
|
|
|
OriginalMatrix = Trn * Rtx*Rty*Rtz * ShearYZ*ShearXZ*ShearXY * Scl
|
|
|
|
Example Code:
|
|
double srv() { return (double(rand()%40)-20)/2.0; } // small random value
|
|
|
|
srand(time(0));
|
|
Point3d ScV(10+srv(),10+srv(),10+srv()),ScVOut(-1,-1,-1);
|
|
Point3d ShV(srv(),srv(),srv()),ShVOut(-1,-1,-1);
|
|
Point3d RtV(10+srv(),srv(),srv()),RtVOut(-1,-1,-1);
|
|
Point3d TrV(srv(),srv(),srv()),TrVOut(-1,-1,-1);
|
|
|
|
Matrix44d Scl; Scl.SetScale(ScV);
|
|
Matrix44d Sxy; Sxy.SetShearXY(ShV[0]);
|
|
Matrix44d Sxz; Sxz.SetShearXZ(ShV[1]);
|
|
Matrix44d Syz; Syz.SetShearYZ(ShV[2]);
|
|
Matrix44d Rtx; Rtx.SetRotate(math::ToRad(RtV[0]),Point3d(1,0,0));
|
|
Matrix44d Rty; Rty.SetRotate(math::ToRad(RtV[1]),Point3d(0,1,0));
|
|
Matrix44d Rtz; Rtz.SetRotate(math::ToRad(RtV[2]),Point3d(0,0,1));
|
|
Matrix44d Trn; Trn.SetTranslate(TrV);
|
|
|
|
Matrix44d StartM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy *Scl;
|
|
Matrix44d ResultM=StartM;
|
|
Decompose(ResultM,ScVOut,ShVOut,RtVOut,TrVOut);
|
|
|
|
Scl.SetScale(ScVOut);
|
|
Sxy.SetShearXY(ShVOut[0]);
|
|
Sxz.SetShearXZ(ShVOut[1]);
|
|
Syz.SetShearYZ(ShVOut[2]);
|
|
Rtx.SetRotate(math::ToRad(RtVOut[0]),Point3d(1,0,0));
|
|
Rty.SetRotate(math::ToRad(RtVOut[1]),Point3d(0,1,0));
|
|
Rtz.SetRotate(math::ToRad(RtVOut[2]),Point3d(0,0,1));
|
|
Trn.SetTranslate(TrVOut);
|
|
|
|
// Now Rebuild is equal to StartM
|
|
Matrix44d RebuildM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy * Scl ;
|
|
*/
|
|
template <class T>
|
|
bool Decompose(Matrix44<T> &M, Point3<T> &ScaleV, Point3<T> &ShearV, Point3<T> &RotV,Point3<T> &TranV)
|
|
{
|
|
if(!(M(3,0)==0 && M(3,1)==0 && M(3,2)==0 && M(3,3)==1) ) // the matrix is projective
|
|
return false;
|
|
if(math::Abs(M.Determinant())<1e-10) return false; // matrix should be at least invertible...
|
|
|
|
// First Step recover the traslation
|
|
TranV=M.GetColumn3(3);
|
|
|
|
// Second Step Recover Scale and Shearing interleaved
|
|
ScaleV[0]=Norm(M.GetColumn3(0));
|
|
Point3<T> R[3];
|
|
R[0]=M.GetColumn3(0);
|
|
R[0].Normalize();
|
|
|
|
ShearV[0]=R[0].dot(M.GetColumn3(1)); // xy shearing
|
|
R[1]= M.GetColumn3(1)-R[0]*ShearV[0];
|
|
assert(math::Abs(R[1].dot(R[0]))<1e-10);
|
|
ScaleV[1]=Norm(R[1]); // y scaling
|
|
R[1]=R[1]/ScaleV[1];
|
|
ShearV[0]=ShearV[0]/ScaleV[1];
|
|
|
|
ShearV[1]=R[0].dot(M.GetColumn3(2)); // xz shearing
|
|
R[2]= M.GetColumn3(2)-R[0]*ShearV[1];
|
|
assert(math::Abs(R[2].dot(R[0]))<1e-10);
|
|
|
|
R[2] = R[2]-R[1]*(R[2].dot(R[1]));
|
|
assert(math::Abs(R[2].dot(R[1]))<1e-10);
|
|
assert(math::Abs(R[2].dot(R[0]))<1e-10);
|
|
|
|
ScaleV[2]=Norm(R[2]);
|
|
ShearV[1]=ShearV[1]/ScaleV[2];
|
|
R[2]=R[2]/ScaleV[2];
|
|
assert(math::Abs(R[2].dot(R[1]))<1e-10);
|
|
assert(math::Abs(R[2].dot(R[0]))<1e-10);
|
|
|
|
ShearV[2]=R[1].dot(M.GetColumn3(2)); // yz shearing
|
|
ShearV[2]=ShearV[2]/ScaleV[2];
|
|
int i,j;
|
|
for(i=0;i<3;++i)
|
|
for(j=0;j<3;++j)
|
|
M(i,j)=R[j][i];
|
|
|
|
// Third and last step: Recover the rotation
|
|
//now the matrix should be a pure rotation matrix so its determinant is +-1
|
|
double det=M.Determinant();
|
|
if(math::Abs(det)<1e-10) return false; // matrix should be at least invertible...
|
|
assert(math::Abs(math::Abs(det)-1.0)<1e-10); // it should be +-1...
|
|
if(det<0) {
|
|
ScaleV *= -1;
|
|
M *= -1;
|
|
}
|
|
|
|
double alpha,beta,gamma; // rotations around the x,y and z axis
|
|
beta=asin( M(0,2));
|
|
double cosbeta=cos(beta);
|
|
if(math::Abs(cosbeta) > 1e-5)
|
|
{
|
|
alpha=asin(-M(1,2)/cosbeta);
|
|
if((M(2,2)/cosbeta) < 0 ) alpha=M_PI-alpha;
|
|
gamma=asin(-M(0,1)/cosbeta);
|
|
if((M(0,0)/cosbeta)<0) gamma = M_PI-gamma;
|
|
}
|
|
else
|
|
{
|
|
alpha=asin(-M(1,0));
|
|
if(M(1,1)<0) alpha=M_PI-alpha;
|
|
gamma=0;
|
|
}
|
|
|
|
RotV[0]=math::ToDeg(alpha);
|
|
RotV[1]=math::ToDeg(beta);
|
|
RotV[2]=math::ToDeg(gamma);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
To invert a matrix you can
|
|
either invert the matrix inplace calling
|
|
|
|
vcg::Invert(yourMatrix);
|
|
|
|
or get the inverse matrix of a given matrix without touching it:
|
|
|
|
invertedMatrix = vcg::Inverse(untouchedMatrix);
|
|
|
|
*/
|
|
template <class T> Matrix44<T> & Invert(Matrix44<T> &m) {
|
|
return m = m.lu().inverse();
|
|
}
|
|
|
|
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m) {
|
|
return m.lu().inverse();
|
|
}
|
|
|
|
template<typename Other,int OtherCols>
|
|
struct ei_matrix44_product_impl<Other, 4,OtherCols>
|
|
{
|
|
typedef typename Other::Scalar Scalar;
|
|
typedef typename Eigen::ProductReturnType<typename Matrix44<Scalar>::Base,Other>::Type ResultType;
|
|
static ResultType run(const Matrix44<Scalar>& tr, const Other& other)
|
|
{ return (static_cast<const typename Matrix44<Scalar>::Base&>(tr)) * other; }
|
|
};
|
|
|
|
template<typename Other>
|
|
struct ei_matrix44_product_impl<Other, 3,1>
|
|
{
|
|
typedef typename Other::Scalar Scalar;
|
|
typedef Eigen::Matrix<Scalar,3,1> ResultType;
|
|
static ResultType run(const Matrix44<Scalar>& tr, const Other& p)
|
|
{
|
|
Scalar w;
|
|
Eigen::Matrix<Scalar,3,1> s;
|
|
s[0] = tr.ElementAt(0, 0)*p[0] + tr.ElementAt(0, 1)*p[1] + tr.ElementAt(0, 2)*p[2] + tr.ElementAt(0, 3);
|
|
s[1] = tr.ElementAt(1, 0)*p[0] + tr.ElementAt(1, 1)*p[1] + tr.ElementAt(1, 2)*p[2] + tr.ElementAt(1, 3);
|
|
s[2] = tr.ElementAt(2, 0)*p[0] + tr.ElementAt(2, 1)*p[1] + tr.ElementAt(2, 2)*p[2] + tr.ElementAt(2, 3);
|
|
w = tr.ElementAt(3, 0)*p[0] + tr.ElementAt(3, 1)*p[1] + tr.ElementAt(3, 2)*p[2] + tr.ElementAt(3, 3);
|
|
if(w!= 0) s /= w;
|
|
return s;
|
|
}
|
|
};
|
|
|
|
} //namespace
|
|
#endif
|
|
|
|
#endif
|