237 lines
9.0 KiB
C++
237 lines
9.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
|
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
|
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
|
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SVD_H
|
|
#define EIGEN_SVD_H
|
|
|
|
namespace Eigen {
|
|
/** \ingroup SVD_Module
|
|
*
|
|
*
|
|
* \class SVDBase
|
|
*
|
|
* \brief Mother class of SVD classes algorithms
|
|
*
|
|
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
|
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
|
* \f[ A = U S V^* \f]
|
|
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
|
|
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
|
|
* and right \em singular \em vectors of \a A respectively.
|
|
*
|
|
* Singular values are always sorted in decreasing order.
|
|
*
|
|
*
|
|
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
|
|
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
|
|
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
|
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
|
*
|
|
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
|
|
* terminate in finite (and reasonable) time.
|
|
* \sa MatrixBase::genericSvd()
|
|
*/
|
|
template<typename _MatrixType>
|
|
class SVDBase
|
|
{
|
|
|
|
public:
|
|
typedef _MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
typedef typename MatrixType::Index Index;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
|
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
|
MatrixOptions = MatrixType::Options
|
|
};
|
|
|
|
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
|
|
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
|
|
MatrixUType;
|
|
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
|
|
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
|
|
MatrixVType;
|
|
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
|
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
|
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
|
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
|
|
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
|
WorkMatrixType;
|
|
|
|
|
|
|
|
|
|
/** \brief Method performing the decomposition of given matrix using custom options.
|
|
*
|
|
* \param matrix the matrix to decompose
|
|
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
|
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
|
* #ComputeFullV, #ComputeThinV.
|
|
*
|
|
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
|
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
|
*/
|
|
SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions);
|
|
|
|
/** \brief Method performing the decomposition of given matrix using current options.
|
|
*
|
|
* \param matrix the matrix to decompose
|
|
*
|
|
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
|
*/
|
|
//virtual SVDBase& compute(const MatrixType& matrix) = 0;
|
|
SVDBase& compute(const MatrixType& matrix);
|
|
|
|
/** \returns the \a U matrix.
|
|
*
|
|
* For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
|
* the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
|
|
*
|
|
* The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
|
|
*
|
|
* This method asserts that you asked for \a U to be computed.
|
|
*/
|
|
const MatrixUType& matrixU() const
|
|
{
|
|
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
|
eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
|
|
return m_matrixU;
|
|
}
|
|
|
|
/** \returns the \a V matrix.
|
|
*
|
|
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
|
* the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
|
|
*
|
|
* The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
|
|
*
|
|
* This method asserts that you asked for \a V to be computed.
|
|
*/
|
|
const MatrixVType& matrixV() const
|
|
{
|
|
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
|
eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
|
|
return m_matrixV;
|
|
}
|
|
|
|
/** \returns the vector of singular values.
|
|
*
|
|
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
|
|
* returned vector has size \a m. Singular values are always sorted in decreasing order.
|
|
*/
|
|
const SingularValuesType& singularValues() const
|
|
{
|
|
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
|
return m_singularValues;
|
|
}
|
|
|
|
|
|
|
|
/** \returns the number of singular values that are not exactly 0 */
|
|
Index nonzeroSingularValues() const
|
|
{
|
|
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
|
return m_nonzeroSingularValues;
|
|
}
|
|
|
|
|
|
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
|
|
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
|
|
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
|
|
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
|
|
|
|
|
|
inline Index rows() const { return m_rows; }
|
|
inline Index cols() const { return m_cols; }
|
|
|
|
|
|
protected:
|
|
// return true if already allocated
|
|
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
|
|
|
|
MatrixUType m_matrixU;
|
|
MatrixVType m_matrixV;
|
|
SingularValuesType m_singularValues;
|
|
bool m_isInitialized, m_isAllocated;
|
|
bool m_computeFullU, m_computeThinU;
|
|
bool m_computeFullV, m_computeThinV;
|
|
unsigned int m_computationOptions;
|
|
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
|
|
|
|
|
/** \brief Default Constructor.
|
|
*
|
|
* Default constructor of SVDBase
|
|
*/
|
|
SVDBase()
|
|
: m_isInitialized(false),
|
|
m_isAllocated(false),
|
|
m_computationOptions(0),
|
|
m_rows(-1), m_cols(-1)
|
|
{}
|
|
|
|
|
|
};
|
|
|
|
|
|
template<typename MatrixType>
|
|
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
|
{
|
|
eigen_assert(rows >= 0 && cols >= 0);
|
|
|
|
if (m_isAllocated &&
|
|
rows == m_rows &&
|
|
cols == m_cols &&
|
|
computationOptions == m_computationOptions)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
m_rows = rows;
|
|
m_cols = cols;
|
|
m_isInitialized = false;
|
|
m_isAllocated = true;
|
|
m_computationOptions = computationOptions;
|
|
m_computeFullU = (computationOptions & ComputeFullU) != 0;
|
|
m_computeThinU = (computationOptions & ComputeThinU) != 0;
|
|
m_computeFullV = (computationOptions & ComputeFullV) != 0;
|
|
m_computeThinV = (computationOptions & ComputeThinV) != 0;
|
|
eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
|
|
eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
|
|
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
|
"SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
|
|
|
|
m_diagSize = (std::min)(m_rows, m_cols);
|
|
m_singularValues.resize(m_diagSize);
|
|
if(RowsAtCompileTime==Dynamic)
|
|
m_matrixU.resize(m_rows, m_computeFullU ? m_rows
|
|
: m_computeThinU ? m_diagSize
|
|
: 0);
|
|
if(ColsAtCompileTime==Dynamic)
|
|
m_matrixV.resize(m_cols, m_computeFullV ? m_cols
|
|
: m_computeThinV ? m_diagSize
|
|
: 0);
|
|
|
|
return false;
|
|
}
|
|
|
|
}// end namespace
|
|
|
|
#endif // EIGEN_SVD_H
|