908 lines
28 KiB
C++
908 lines
28 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
#ifndef VCG_ALIGN_PAIR_H
|
|
#define VCG_ALIGN_PAIR_H
|
|
|
|
#include <ctime>
|
|
#include <vcg/math/histogram.h>
|
|
#include <vcg/math/matrix44.h>
|
|
#include <vcg/math/random_generator.h>
|
|
#include <vcg/math/gen_normal.h>
|
|
|
|
#include <vcg/space/point_matching.h>
|
|
#include <vcg/space/index/grid_static_ptr.h>
|
|
|
|
#include <vcg/simplex/face/component_ep.h>
|
|
|
|
#include <vcg/complex/complex.h>
|
|
#include <vcg/complex/algorithms/clean.h>
|
|
#include <vcg/complex/algorithms/closest.h>
|
|
#include <vcg/complex/algorithms/update/normal.h>
|
|
#include <vcg/complex/algorithms/update/bounding.h>
|
|
#include <vcg/complex/algorithms/update/component_ep.h>
|
|
#include <vcg/complex/algorithms/update/position.h>
|
|
#include <vcg/complex/algorithms/update/flag.h>
|
|
#include <vcg/complex/algorithms/update/normal.h>
|
|
#include <vcg/complex/algorithms/update/bounding.h>
|
|
#include <vcg/complex/algorithms/point_matching_scale.h>
|
|
|
|
|
|
namespace vcg {
|
|
/*************************************************************************
|
|
AlignPair
|
|
|
|
Classe per gestire un allineamento tra DUE sole mesh.
|
|
|
|
**************************************************************************/
|
|
|
|
class AlignPair {
|
|
public:
|
|
|
|
AlignPair()
|
|
{
|
|
clear();
|
|
myrnd.initialize(time(NULL));
|
|
}
|
|
|
|
enum ErrorCode {
|
|
SUCCESS,
|
|
NO_COMMON_BBOX,
|
|
TOO_FEW_POINTS,
|
|
LSQ_DIVERGE,
|
|
TOO_MUCH_SHEAR,
|
|
TOO_MUCH_SCALE,
|
|
FORBIDDEN,
|
|
INVALID,
|
|
UNKNOWN_MODE };
|
|
|
|
|
|
/*********************** Classi Accessorie ****************************/
|
|
|
|
class A2Vertex;
|
|
|
|
class A2Face;
|
|
|
|
class A2UsedTypes:
|
|
public vcg::UsedTypes < vcg::Use<A2Vertex>::AsVertexType,
|
|
vcg::Use<A2Face >::AsFaceType >{};
|
|
|
|
class A2Vertex : public vcg::Vertex<A2UsedTypes,vcg::vertex::Coord3d,vcg::vertex::Normal3d,vcg::vertex::BitFlags> {};
|
|
class A2Face : public vcg::Face< A2UsedTypes,vcg::face::VertexRef, vcg::face::Normal3d,vcg::face::Mark,vcg::face::BitFlags> {};
|
|
|
|
class A2Mesh : public vcg::tri::TriMesh< std::vector<A2Vertex>, std::vector<A2Face> >
|
|
{
|
|
public:
|
|
//bool Import(const char *filename) { Matrix44d Tr; Tr.SetIdentity(); return Import(filename,Tr);}
|
|
//bool Import(const char *filename, Matrix44d &Tr);
|
|
|
|
inline bool initVert(const Matrix44d &Tr) {
|
|
Matrix44d Idn; Idn.SetIdentity();
|
|
if (Tr != Idn)
|
|
tri::UpdatePosition<A2Mesh>::Matrix(*this, Tr);
|
|
tri::UpdateNormal<A2Mesh>::NormalizePerVertex(*this);
|
|
tri::UpdateBounding<A2Mesh>::Box(*this);
|
|
return true;
|
|
}
|
|
inline bool init(const Matrix44d &Tr) {
|
|
Matrix44d Idn; Idn.SetIdentity();
|
|
tri::Clean<A2Mesh>::RemoveUnreferencedVertex(*this);
|
|
if (Tr != Idn)
|
|
tri::UpdatePosition<A2Mesh>::Matrix(*this, Tr);
|
|
tri::UpdateNormal<A2Mesh>::PerVertexNormalizedPerFaceNormalized(*this);
|
|
tri::UpdateFlags<A2Mesh>::FaceBorderFromNone(*this);
|
|
tri::UpdateBounding<A2Mesh>::Box(*this);
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
typedef A2Mesh::FaceContainer FaceContainer;
|
|
typedef A2Mesh::FaceType FaceType;
|
|
typedef GridStaticPtr<FaceType, double > A2Grid;
|
|
typedef GridStaticPtr<A2Mesh::VertexType, double > A2GridVert;
|
|
|
|
class Stat
|
|
{
|
|
public:
|
|
|
|
class IterInfo
|
|
{
|
|
public:
|
|
IterInfo()
|
|
{
|
|
memset ( (void *) this, 0, sizeof(IterInfo));
|
|
}
|
|
|
|
double MinDistAbs;
|
|
int DistanceDiscarded;
|
|
int AngleDiscarded;
|
|
int BorderDiscarded;
|
|
int SampleTested; // quanti punti ho testato con la mindist
|
|
int SampleUsed; // quanti punti ho scelto per la computematrix
|
|
double pcl50;
|
|
double pclhi;
|
|
double AVG;
|
|
double RMS;
|
|
double StdDev;
|
|
int Time; // quando e' finita questa iterazione
|
|
|
|
};
|
|
|
|
std::vector<IterInfo> I;
|
|
|
|
double lastPcl50() const
|
|
{
|
|
return I.back().pcl50;
|
|
}
|
|
|
|
int lastSampleUsed() const {
|
|
return I.back().SampleUsed;
|
|
}
|
|
|
|
int MovVertNum;
|
|
int FixVertNum;
|
|
int FixFaceNum;
|
|
|
|
int totTime() {
|
|
return I.back().Time-StartTime;
|
|
}
|
|
|
|
int iterTime(unsigned int i) const
|
|
{
|
|
const int clock_per_ms = std::max<int>(CLOCKS_PER_SEC / 1000,1);
|
|
assert(i<I.size());
|
|
if(i==0) return (I[i].Time-StartTime )/clock_per_ms;
|
|
else return (I[i].Time - I[i-1].Time)/clock_per_ms ;
|
|
}
|
|
int StartTime;
|
|
|
|
inline void clear()
|
|
{
|
|
I.clear();
|
|
StartTime = 0;
|
|
MovVertNum = 0;
|
|
FixVertNum = 0;
|
|
FixFaceNum = 0;
|
|
}
|
|
|
|
inline void dump(FILE *fp)
|
|
{
|
|
if (I.size() == 0) {
|
|
fprintf(fp, "Empty AlignPair::Stat\n");
|
|
return;
|
|
}
|
|
fprintf(fp, "Final Err %8.5f In %i iterations Total Time %ims\n", lastPcl50(), (int)I.size(), totTime());
|
|
fprintf(fp, "Mindist Med Hi Avg RMS StdDev Time Tested Used Dist Bord Angl \n");
|
|
for (unsigned int qi = 0; qi < I.size(); ++qi)
|
|
fprintf(
|
|
fp,
|
|
"%5.2f (%6.3f:%6.3f) (%6.3f %6.3f %6.3f) %4ims %5i %5i %4i+%4i+%4i\n",
|
|
I[qi].MinDistAbs,
|
|
I[qi].pcl50, I[qi].pclhi,
|
|
I[qi].AVG, I[qi].RMS, I[qi].StdDev,
|
|
iterTime(qi),
|
|
I[qi].SampleTested, I[qi].SampleUsed, I[qi].DistanceDiscarded, I[qi].BorderDiscarded, I[qi].AngleDiscarded);
|
|
}
|
|
|
|
// Scrive una tabella con tutti i valori
|
|
inline void htmlDump(FILE *fp)
|
|
{
|
|
fprintf(fp, "Final Err %8.5f In %i iterations Total Time %ims\n", lastPcl50(), (int)I.size(), totTime());
|
|
fprintf(fp, "<table border>\n");
|
|
fprintf(fp, "<tr> <th>Mindist</th><th> 50ile </th><th> Hi </th><th> Avg </th><th> RMS </th><th> StdDev </th><th> Time </th><th> Tested </th><th> Used </th><th> Dist </th><th> Bord </th><th> Angl \n");
|
|
for (unsigned int qi = 0; qi < I.size(); ++qi)
|
|
fprintf(
|
|
fp, "<tr> <td> %8.5f </td><td align=\"right\"> %9.6f </td><td align=\"right\"> %8.5f </td><td align=\"right\"> %5.3f </td><td align=\"right\"> %8.5f </td><td align=\"right\"> %9.6f </td><td align=\"right\"> %4ims </td><td align=\"right\"> %5i </td><td align=\"right\"> %5i </td><td align=\"right\"> %4i </td><td align=\"right\"> %4i </td><td align=\"right\">%4i </td><td align=\"right\"></tr>\n",
|
|
I[qi].MinDistAbs,
|
|
I[qi].pcl50, I[qi].pclhi,
|
|
I[qi].AVG, I[qi].RMS, I[qi].StdDev,
|
|
iterTime(qi),
|
|
I[qi].SampleTested, I[qi].SampleUsed, I[qi].DistanceDiscarded, I[qi].BorderDiscarded, I[qi].AngleDiscarded);
|
|
fprintf(fp, "</table>\n");
|
|
}
|
|
|
|
// Restituisce true se nelle ultime <lastiter> iterazioni non e' diminuito
|
|
// l'errore
|
|
inline bool stable(int lastiter)
|
|
{
|
|
if (I.empty())
|
|
return false;
|
|
int parag = int(I.size()) - lastiter;
|
|
|
|
if (parag < 0)
|
|
parag = 0;
|
|
if (I.back().pcl50 < I[parag].pcl50)
|
|
return false; // se siamo diminuiti non e' stabile
|
|
|
|
return true;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
class Param
|
|
{
|
|
public:
|
|
enum MatchModeEnum {MMSimilarity, MMRigid};
|
|
enum SampleModeEnum {SMRandom, SMNormalEqualized};
|
|
|
|
Param()
|
|
{
|
|
SampleNum = 2000;
|
|
MaxPointNum = 100000;
|
|
MinPointNum = 30;
|
|
|
|
MaxIterNum = 75;
|
|
TrgDistAbs = 0.005f;
|
|
|
|
MinDistAbs = 10;
|
|
MaxAngleRad = math::ToRad(45.0);
|
|
MaxShear = 0.5;
|
|
MaxScale = 0.5; // significa che lo scale deve essere compreso tra 1-MaxScale e 1+MaxScale
|
|
PassHiFilter = 0.75;
|
|
ReduceFactorPerc = 0.80;
|
|
MinMinDistPerc = 0.01;
|
|
EndStepNum = 5;
|
|
MatchMode = MMRigid;
|
|
SampleMode = SMNormalEqualized;
|
|
UGExpansionFactor=10;
|
|
MinFixVertNum=20000;
|
|
MinFixVertNumPerc=.25;
|
|
UseVertexOnly = false;
|
|
}
|
|
|
|
int SampleNum; // numero di sample da prendere sulla mesh fix, utilizzando
|
|
// il SampleMode scelto tra cui poi sceglierne al piu' <MaxPointNum>
|
|
// e almeno <MinPointNum> da usare per l'allineamento.
|
|
int MaxPointNum; // numero di coppie di punti da usare quando si calcola la matrice
|
|
// di allienamento e che poi si mettono da parte per il globale;
|
|
// di solito non usato
|
|
int MinPointNum; // minimo numero di coppie di punti ammissibile perche' sia considerato
|
|
// valido l'allineamento
|
|
double MinDistAbs; // distanza minima iniziale perche due punti vengano presi in
|
|
// considerazione. NON e' piu espressa in percentuale sul bbox della mesh nella ug.
|
|
// Ad ogni passo puo essere ridotta per
|
|
// accellerare usando ReduceFactor
|
|
double MaxAngleRad; // massimo angolo in radianti tra due normali perche' i due
|
|
// punti vengano presi in considerazione.
|
|
|
|
int MaxIterNum; // massimo numero di iterazioni da fare in align
|
|
double TrgDistAbs; // distanza obiettivo entro la quale devono stare almeno la meta'
|
|
// dei campioni scelti; di solito non entra in gioco perche' ha un default molto basso
|
|
|
|
int EndStepNum; // numero di iterazioni da considerare per decidere se icp ha converso.
|
|
|
|
//double PassLoFilter; // Filtraggio utilizzato per decidere quali punti scegliere tra quello trovati abbastanza
|
|
double PassHiFilter; // vicini. Espresso in percentili. Di solito si scarta il quelli sopra il 75 e quelli sotto il 5
|
|
double ReduceFactorPerc; // At each step we discard the points farther than a given threshold. The threshold is iterativeley reduced;
|
|
// StartMinDist= min(StartMinDist, 5.0*H.Percentile(ap.ReduceFactorPerc))
|
|
|
|
|
|
double MinMinDistPerc; // Ratio between initial starting distance (MinDistAbs) and what can reach by the application of the ReduceFactor.
|
|
|
|
int UGExpansionFactor; // Grandezza della UG per la mesh fix come rapporto del numero di facce della mesh fix
|
|
|
|
// Nel caso si usi qualche struttura multiresolution
|
|
int MinFixVertNum; // Gli allineamenti si fanno mettendo nella ug come mesh fix una semplificata;
|
|
float MinFixVertNumPerc; // si usa il max tra MinFixVertNum e OrigMeshSize*MinFixVertNumPerc
|
|
bool UseVertexOnly; // if true all the Alignment pipeline ignores faces and works over point clouds.
|
|
|
|
double MaxShear;
|
|
double MaxScale;
|
|
MatchModeEnum MatchMode;
|
|
SampleModeEnum SampleMode;
|
|
//void Dump(FILE *fp,double BoxDiag);
|
|
|
|
};
|
|
|
|
// Classe per memorizzare il risultato di un allineamento tra due mesh
|
|
// i punti si intendono nel sistema di riferimento iniziale delle due mesh.
|
|
//
|
|
// se le mesh hanno una trasformazione di base in ingresso,
|
|
// questa appare solo durante la A2Mesh::Import e poi e' per sempre dimenticata.
|
|
// Questi punti sono quindi nei sistemi di riferimento costruiti durante la Import
|
|
// la matrice Tr quella che
|
|
//
|
|
// Tr*Pmov[i]== Pfix
|
|
|
|
|
|
class Result
|
|
{
|
|
public:
|
|
int MovName;
|
|
int FixName;
|
|
|
|
Matrix44d Tr;
|
|
std::vector<Point3d> Pfix; // vertici corrispondenti su fix (rossi)
|
|
std::vector<Point3d> Nfix; // normali corrispondenti su fix (rossi)
|
|
std::vector<Point3d> Pmov; // vertici scelti su mov (verdi) prima della trasformazione in ingresso (Original Point Target)
|
|
std::vector<Point3d> Nmov; // normali scelti su mov (verdi)
|
|
Histogramf H;
|
|
Stat as;
|
|
Param ap;
|
|
ErrorCode status;
|
|
bool isValid()
|
|
{
|
|
return status==SUCCESS;
|
|
}
|
|
double err;
|
|
float area; // the overlapping area, a percentage as computed in Occupancy Grid.
|
|
|
|
bool operator < (const Result & rr) const {return (err< rr.err);}
|
|
bool operator <= (const Result & rr) const {return (err<=rr.err);}
|
|
bool operator > (const Result & rr) const {return (err> rr.err);}
|
|
bool operator >= (const Result & rr) const {return (err>=rr.err);}
|
|
bool operator == (const Result & rr) const {return (err==rr.err);}
|
|
bool operator != (const Result & rr) const {return (err!=rr.err);}
|
|
|
|
std::pair<double,double> computeAvgErr() const
|
|
{
|
|
double sum_before=0;
|
|
double sum_after=0;
|
|
for(unsigned int ii=0;ii<Pfix.size();++ii) {
|
|
sum_before+=Distance(Pfix[ii], Pmov[ii]);
|
|
sum_after+=Distance(Pfix[ii], Tr*Pmov[ii]);
|
|
}
|
|
return std::make_pair(sum_before/double(Pfix.size()),sum_after/double(Pfix.size()) ) ;
|
|
}
|
|
|
|
};
|
|
|
|
/******************* Fine Classi Accessorie ************************/
|
|
|
|
static inline const char* errorMsg(ErrorCode code)
|
|
{
|
|
switch (code){
|
|
case SUCCESS:
|
|
return "Success";
|
|
case NO_COMMON_BBOX:
|
|
return "No Common BBox";
|
|
case TOO_FEW_POINTS:
|
|
return "Too few points";
|
|
case LSQ_DIVERGE:
|
|
return "LSQ not converge";
|
|
case TOO_MUCH_SHEAR:
|
|
return "Too much shear";
|
|
case TOO_MUCH_SCALE:
|
|
return "Too much scale";
|
|
case UNKNOWN_MODE:
|
|
return "Unknown mode ";
|
|
default:
|
|
assert(0);
|
|
return "Catastrophic Error";
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
status=SUCCESS;
|
|
}
|
|
|
|
/******* Data Members *********/
|
|
|
|
std::vector<A2Vertex> *mov;
|
|
A2Mesh *fix;
|
|
|
|
ErrorCode status;
|
|
AlignPair::Param ap;
|
|
|
|
math::SubtractiveRingRNG myrnd;
|
|
|
|
/**** End Data Members *********/
|
|
|
|
template < class MESH >
|
|
void convertMesh(MESH &M1, A2Mesh &M2)
|
|
{
|
|
tri::Append<A2Mesh,MESH>::MeshCopy(M2,M1);
|
|
}
|
|
|
|
template < class VERTEX >
|
|
void convertVertex(const std::vector<VERTEX> &vert1, std::vector<A2Vertex> &vert2, Box3d *Clip=0)
|
|
{
|
|
vert2.clear();
|
|
typename std::vector<VERTEX>::const_iterator vi;
|
|
A2Vertex tv;
|
|
Box3<typename VERTEX::ScalarType> bb;
|
|
if(Clip){
|
|
bb.Import(*Clip);
|
|
for(vi=vert1.begin();vi<vert1.end();++vi)
|
|
if(!(*vi).IsD() && bb.IsIn((*vi).cP())){
|
|
tv.P().Import((*vi).cP());
|
|
tv.N().Import((*vi).cN());
|
|
vert2.push_back(tv);
|
|
}
|
|
}
|
|
else {
|
|
for(vi=vert1.begin();vi<vert1.end();++vi) {
|
|
if(!(*vi).IsD()){
|
|
tv.P().Import((*vi).cP());
|
|
tv.N().Import((*vi).cN());
|
|
vert2.push_back(tv);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline bool sampleMovVert(
|
|
std::vector<A2Vertex> &vert,
|
|
int sampleNum,
|
|
AlignPair::Param::SampleModeEnum sampleMode)
|
|
{
|
|
switch (sampleMode)
|
|
{
|
|
case AlignPair::Param::SMRandom:
|
|
return SampleMovVertRandom(vert, sampleNum);
|
|
case AlignPair::Param::SMNormalEqualized:
|
|
return SampleMovVertNormalEqualized(vert, sampleNum);
|
|
default:
|
|
assert(0);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline bool SampleMovVertRandom(std::vector<A2Vertex> &vert, int sampleNum)
|
|
{
|
|
if (int(vert.size()) <= sampleNum)
|
|
return true;
|
|
for (int i = 0; i < sampleNum; ++i) {
|
|
int pos = myrnd.generate(vert.size());
|
|
assert(pos >= 0 && pos < int(vert.size()));
|
|
std::swap(vert[i], vert[pos]);
|
|
}
|
|
vert.resize(sampleNum);
|
|
return true;
|
|
}
|
|
|
|
bool SampleMovVertNormalEqualized(std::vector<A2Vertex> &vert, int sampleNum)
|
|
{
|
|
std::vector<Point3d> NV;
|
|
if (NV.size() == 0) {
|
|
GenNormal<double>::Fibonacci(30, NV);
|
|
printf("Generated %i normals\n", int(NV.size()));
|
|
}
|
|
// Bucket vector dove, per ogni normale metto gli indici
|
|
// dei vertici ad essa corrispondenti
|
|
std::vector<std::vector <int> > BKT(NV.size());
|
|
for (size_t i = 0; i < vert.size(); ++i) {
|
|
int ind = GenNormal<double>::BestMatchingNormal(vert[i].N(), NV);
|
|
BKT[ind].push_back(int(i));
|
|
}
|
|
|
|
// vettore di contatori per sapere quanti punti ho gia' preso per ogni bucket
|
|
std::vector <int> BKTpos(BKT.size(), 0);
|
|
|
|
if (sampleNum >= int(vert.size()))
|
|
sampleNum = vert.size() - 1;
|
|
|
|
for (int i = 0; i < sampleNum;) {
|
|
int ind = myrnd.generate(BKT.size()); // Scelgo un Bucket
|
|
int &CURpos = BKTpos[ind];
|
|
std::vector<int> &CUR = BKT[ind];
|
|
|
|
if (CURpos<int(CUR.size())) {
|
|
std::swap(CUR[CURpos], CUR[CURpos + myrnd.generate(BKT[ind].size() - CURpos)]);
|
|
std::swap(vert[i], vert[CUR[CURpos]]);
|
|
++BKTpos[ind];
|
|
++i;
|
|
}
|
|
}
|
|
vert.resize(sampleNum);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
This function is used to choose remove outliers after each ICP iteration.
|
|
All the points with a distance over the given Percentile are discarded.
|
|
It uses two parameters
|
|
MaxPointNum an (unused) hard limit on the number of points that are chosen
|
|
MinPointNum the minimum number of points that have to be chosen to be usable
|
|
*/
|
|
inline bool choosePoints(
|
|
std::vector<Point3d> &ps, // vertici corrispondenti su fix (rossi)
|
|
std::vector<Point3d> &ns, // normali corrispondenti su fix (rossi)
|
|
std::vector<Point3d> &pt, // vertici scelti su mov (verdi)
|
|
std::vector<Point3d> &opt, // vertici scelti su mov (verdi)
|
|
//vector<Point3d> &Nt, // normali scelti su mov (verdi)
|
|
double passHi,
|
|
Histogramf &h)
|
|
{
|
|
const int N = ap.MaxPointNum;
|
|
double newmaxd = h.Percentile(float(passHi));
|
|
int sz = int(ps.size());
|
|
int fnd = 0;
|
|
int lastgood = sz - 1;
|
|
math::SubtractiveRingRNG myrnd;
|
|
while (fnd < N && fnd < lastgood) {
|
|
int index = fnd + myrnd.generate(lastgood - fnd);
|
|
double dd = Distance(ps[index], pt[index]);
|
|
if (dd <= newmaxd){
|
|
std::swap(ps[index], ps[fnd]);
|
|
std::swap(ns[index], ns[fnd]);
|
|
std::swap(pt[index], pt[fnd]);
|
|
std::swap(opt[index], opt[fnd]);
|
|
++fnd;
|
|
}
|
|
else {
|
|
std::swap(ps[index], ps[lastgood]);
|
|
std::swap(ns[index], ns[lastgood]);
|
|
std::swap(pt[index], pt[lastgood]);
|
|
std::swap(opt[index], opt[lastgood]);
|
|
lastgood--;
|
|
}
|
|
}
|
|
ps.resize(fnd);
|
|
ns.resize(fnd);
|
|
pt.resize(fnd);
|
|
opt.resize(fnd);
|
|
|
|
if ((int)ps.size() < ap.MinPointNum){
|
|
printf("Troppi pochi punti!\n");
|
|
ps.clear();
|
|
ns.clear();
|
|
pt.clear();
|
|
opt.clear();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
Minimo esempio di codice per l'uso della funzione di allineamento.
|
|
|
|
AlignPair::A2Mesh Mov,Fix; // le due mesh da allineare
|
|
vector<AlignPair::A2Vertex> MovVert; // i punti sulla mov da usare per l'allineamento
|
|
Matrix44d In; In.SetIdentity(); // la trasformazione iniziale che applicata a mov la porterebbe su fix.
|
|
|
|
AlignPair aa; // l'oggetto principale.
|
|
AlignPair::Param ap;
|
|
UGrid< AlignPair::A2Mesh::face_container > UG;
|
|
|
|
Fix.LoadPly("FixMesh.ply"); // Standard ply loading
|
|
Mov.LoadPly("MovMesh.ply");
|
|
Fix.Init( Ident, false); // Inizializzazione necessaria (normali per vert,
|
|
Mov.Init( Ident, false); // info per distanza punto faccia ecc)
|
|
|
|
AlignPair::InitFix(&Fix, ap, UG); // la mesh fix viene messa nella ug.
|
|
|
|
aa.ConvertVertex(Mov.vert,MovVert); // si campiona la mesh Mov per trovare un po' di vertici.
|
|
aa.SampleMovVert(MovVert, ap.SampleNum, ap.SampleMode);
|
|
|
|
aa.mov=&MovVert; // si assegnano i membri principali dell'oggetto align pair
|
|
aa.fix=&Fix;
|
|
aa.ap = ap;
|
|
|
|
aa.Align(In,UG,res); // si spera :)
|
|
// il risultato sta nella matrice res.Tr;
|
|
|
|
res.as.Dump(stdout);
|
|
*/
|
|
|
|
bool align(const Matrix44d &in, A2Grid &UG, A2GridVert &UGV, Result &res)
|
|
{
|
|
res.ap=ap;
|
|
|
|
bool ret=align(UG, UGV, in, res.Tr, res.Pfix, res.Nfix, res.Pmov, res.Nmov, res.H, res.as);
|
|
|
|
res.err=res.as.lastPcl50();
|
|
res.status=status;
|
|
return ret;
|
|
}
|
|
|
|
double abs2Perc(double val, Box3d bb) const
|
|
{
|
|
return val/bb.Diag();
|
|
}
|
|
|
|
double perc2Abs(double val, Box3d bb) const
|
|
{
|
|
return val*bb.Diag();
|
|
}
|
|
|
|
/************************************************************************************
|
|
Versione Vera della Align a basso livello.
|
|
|
|
Si assume che la mesh fix sia gia' stata messa nella ug u con le debite trasformazioni.
|
|
in
|
|
|
|
************************************************************************************/
|
|
|
|
/*
|
|
The Main ICP alignment Function:
|
|
It assumes that:
|
|
we have two meshes:
|
|
- Fix the mesh that does not move and stays in the spatial indexing structure.
|
|
- Mov the mesh we 'move' e.g. the one for which we search the transforamtion.
|
|
|
|
requires normalize normals for vertices AND faces
|
|
Allinea due mesh;
|
|
Assume che:
|
|
la uniform grid sia gia' inizializzata con la mesh fix
|
|
*/
|
|
inline bool align(
|
|
A2Grid &u,
|
|
A2GridVert &uv,
|
|
const Matrix44d &in, // trasformazione Iniziale che porta i punti di mov su fix
|
|
Matrix44d &out, // trasformazione calcolata
|
|
std::vector<Point3d> &pfix, // vertici corrispondenti su src (rossi)
|
|
std::vector<Point3d> &nfix, // normali corrispondenti su src (rossi)
|
|
std::vector<Point3d> &opmov, // vertici scelti su trg (verdi) prima della trasformazione in ingresso (Original Point Target)
|
|
std::vector<Point3d> &onmov, // normali scelti su trg (verdi)
|
|
Histogramf &h,
|
|
Stat &as)
|
|
{
|
|
std::vector<char> beyondCntVec; // vettore per marcare i movvert che sicuramente non si devono usare
|
|
// ogni volta che un vertice si trova a distanza oltre max dist viene incrementato il suo contatore;
|
|
// i movvert che sono stati scartati piu' di MaxCntDist volte non si guardano piu';
|
|
const int maxBeyondCnt = 3;
|
|
std::vector< Point3d > movvert;
|
|
std::vector< Point3d > movnorm;
|
|
std::vector<Point3d> pmov; // vertici scelti dopo la trasf iniziale
|
|
status = SUCCESS;
|
|
int tt0 = clock();
|
|
|
|
out = in;
|
|
|
|
int i;
|
|
|
|
double cosAngleThr = cos(ap.MaxAngleRad);
|
|
double startMinDist = ap.MinDistAbs;
|
|
int tt1 = clock();
|
|
int ttsearch = 0;
|
|
int ttleast = 0;
|
|
int nc = 0;
|
|
as.clear();
|
|
as.StartTime = clock();
|
|
|
|
beyondCntVec.resize(mov->size(), 0);
|
|
|
|
/**************** BEGIN ICP LOOP ****************/
|
|
do {
|
|
Stat::IterInfo ii;
|
|
Box3d movbox;
|
|
initMov(movvert, movnorm, movbox, out);
|
|
h.SetRange(0.0f, float(startMinDist), 512, 2.5f);
|
|
pfix.clear();
|
|
nfix.clear();
|
|
pmov.clear();
|
|
opmov.clear();
|
|
onmov.clear();
|
|
int tts0 = clock();
|
|
ii.MinDistAbs = startMinDist;
|
|
int LocSampleNum = std::min(ap.SampleNum, int(movvert.size()));
|
|
Box3d fixbox;
|
|
if (u.Empty())
|
|
fixbox = uv.bbox;
|
|
else
|
|
fixbox = u.bbox;
|
|
for (i = 0; i < LocSampleNum; ++i) {
|
|
if (beyondCntVec[i] < maxBeyondCnt) {
|
|
if (fixbox.IsIn(movvert[i])) {
|
|
double error = startMinDist;
|
|
Point3d closestPoint, closestNormal;
|
|
double maxd = startMinDist;
|
|
ii.SampleTested++;
|
|
if (u.Empty()) {// using the point cloud grid{
|
|
A2Mesh::VertexPointer vp = tri::GetClosestVertex(*fix, uv, movvert[i], maxd, error);
|
|
if (error >= startMinDist) {
|
|
ii.DistanceDiscarded++; ++beyondCntVec[i]; continue;
|
|
}
|
|
if (movnorm[i].dot(vp->N()) < cosAngleThr) {
|
|
ii.AngleDiscarded++; continue;
|
|
}
|
|
closestPoint = vp->P();
|
|
closestNormal = vp->N();
|
|
}
|
|
else {// using the standard faces and grid
|
|
A2Mesh::FacePointer f = vcg::tri::GetClosestFaceBase<vcg::AlignPair::A2Mesh, vcg::AlignPair::A2Grid >(*fix, u, movvert[i], maxd, error, closestPoint);
|
|
if (error >= startMinDist) {
|
|
ii.DistanceDiscarded++; ++beyondCntVec[i]; continue;
|
|
}
|
|
if (movnorm[i].dot(f->N()) < cosAngleThr) {
|
|
ii.AngleDiscarded++; continue;
|
|
}
|
|
Point3d ip;
|
|
InterpolationParameters<A2Face, double>(*f, f->N(), closestPoint, ip);
|
|
const double IP_EPS = 0.00001;
|
|
// If ip[i] == 0 it means that we are on the edge opposite to i
|
|
if ((fabs(ip[0]) <= IP_EPS && f->IsB(1)) || (fabs(ip[1]) <= IP_EPS && f->IsB(2)) || (fabs(ip[2]) <= IP_EPS && f->IsB(0))){
|
|
ii.BorderDiscarded++; continue;
|
|
}
|
|
closestNormal = f->N();
|
|
}
|
|
// The sample was accepted. Store it.
|
|
pmov.push_back(movvert[i]);
|
|
opmov.push_back((*mov)[i].P());
|
|
onmov.push_back((*mov)[i].N());
|
|
nfix.push_back(closestNormal);
|
|
pfix.push_back(closestPoint);
|
|
h.Add(float(error));
|
|
ii.SampleUsed++;
|
|
}
|
|
else {
|
|
beyondCntVec[i] = maxBeyondCnt + 1;
|
|
}
|
|
}
|
|
} // End for each pmov
|
|
int tts1 = clock();
|
|
//printf("Found %d pairs\n",(int)pfix.size());
|
|
if (!choosePoints(pfix, nfix, pmov, opmov, ap.PassHiFilter, h)) {
|
|
if (int(pfix.size()) < ap.MinPointNum){
|
|
status = TOO_FEW_POINTS;
|
|
ii.Time = clock();
|
|
as.I.push_back(ii);
|
|
return false;
|
|
}
|
|
}
|
|
Matrix44d newout;
|
|
switch (ap.MatchMode){
|
|
case AlignPair::Param::MMSimilarity:
|
|
vcg::PointMatchingScale::computeRotoTranslationScalingMatchMatrix(newout, pfix, pmov);
|
|
break;
|
|
case AlignPair::Param::MMRigid:
|
|
ComputeRigidMatchMatrix(pfix, pmov, newout);
|
|
break;
|
|
default:
|
|
status = UNKNOWN_MODE;
|
|
ii.Time = clock();
|
|
as.I.push_back(ii);
|
|
return false;
|
|
}
|
|
|
|
//double sum_before=0;
|
|
//double sum_after=0;
|
|
//for(unsigned int iii=0;iii<pfix.size();++iii){
|
|
// sum_before+=Distance(pfix[iii], out*OPmov[iii]);
|
|
// sum_after+=Distance(pfix[iii], newout*OPmov[iii]);
|
|
//}
|
|
//printf("Distance %f -> %f\n",sum_before/double(pfix.size()),sum_after/double(pfix.size()) ) ;
|
|
|
|
// le passate successive utilizzano quindi come trasformazione iniziale questa appena trovata.
|
|
// Nei prossimi cicli si parte da questa matrice come iniziale.
|
|
out = newout * out;
|
|
|
|
assert(pfix.size() == pmov.size());
|
|
int tts2 = clock();
|
|
ttsearch += tts1 - tts0;
|
|
ttleast += tts2 - tts1;
|
|
ii.pcl50 = h.Percentile(.5);
|
|
ii.pclhi = h.Percentile(float(ap.PassHiFilter));
|
|
ii.AVG = h.Avg();
|
|
ii.RMS = h.RMS();
|
|
ii.StdDev = h.StandardDeviation();
|
|
ii.Time = clock();
|
|
as.I.push_back(ii);
|
|
nc++;
|
|
// The distance of the next points to be considered is lowered according to the <ReduceFactor> parameter.
|
|
// We use 5 times the <ReduceFactor> percentile of the found points.
|
|
if (ap.ReduceFactorPerc<1)
|
|
startMinDist = std::max(ap.MinDistAbs*ap.MinMinDistPerc, std::min(startMinDist, 5.0*h.Percentile(float(ap.ReduceFactorPerc))));
|
|
} while (
|
|
nc <= ap.MaxIterNum &&
|
|
h.Percentile(.5) > ap.TrgDistAbs &&
|
|
(nc<ap.EndStepNum + 1 || !as.stable(ap.EndStepNum)) );
|
|
|
|
/**************** END ICP LOOP ****************/
|
|
int tt2 = clock();
|
|
out[3][0] = 0; out[3][1] = 0; out[3][2] = 0; out[3][3] = 1;
|
|
Matrix44d ResCopy = out;
|
|
Point3d scv, shv, rtv, trv;
|
|
Decompose(ResCopy, scv, shv, rtv, trv);
|
|
if ((ap.MatchMode == vcg::AlignPair::Param::MMRigid) && (math::Abs(1 - scv[0])>ap.MaxScale || math::Abs(1 - scv[1]) > ap.MaxScale || math::Abs(1 - scv[2]) > ap.MaxScale)) {
|
|
status = TOO_MUCH_SCALE;
|
|
return false;
|
|
}
|
|
if (shv[0] > ap.MaxShear || shv[1] > ap.MaxShear || shv[2] > ap.MaxShear) {
|
|
status = TOO_MUCH_SHEAR;
|
|
return false;
|
|
}
|
|
printf("Grid %i %i %i - fn %i\n", u.siz[0], u.siz[1], u.siz[2], fix->fn);
|
|
printf("Init %8.3f Loop %8.3f Search %8.3f least sqrt %8.3f\n",
|
|
float(tt1 - tt0) / CLOCKS_PER_SEC, float(tt2 - tt1) / CLOCKS_PER_SEC,
|
|
float(ttsearch) / CLOCKS_PER_SEC, float(ttleast) / CLOCKS_PER_SEC);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
Funzione chiamata dalla Align ad ogni ciclo
|
|
Riempie i vettori <MovVert> e <MovNorm> con i coordinate e normali presi dal vettore di vertici mov
|
|
della mesh da muovere trasformata secondo la matrice <In>
|
|
Calcola anche il nuovo bounding box di tali vertici trasformati.
|
|
*/
|
|
inline bool initMov(
|
|
std::vector< Point3d > &movvert,
|
|
std::vector< Point3d > &movnorm,
|
|
Box3d &movbox,
|
|
const Matrix44d &in )
|
|
{
|
|
Point3d pp, nn;
|
|
|
|
movvert.clear();
|
|
movnorm.clear();
|
|
movbox.SetNull();
|
|
|
|
A2Mesh::VertexIterator vi;
|
|
for (vi = mov->begin(); vi != mov->end(); vi++) {
|
|
pp = in*(*vi).P();
|
|
nn = in*Point3d((*vi).P() + (*vi).N()) - pp;
|
|
nn.Normalize();
|
|
movvert.push_back(pp);
|
|
movnorm.push_back(nn);
|
|
movbox.Add(pp);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline bool InitFixVert(
|
|
A2Mesh *fm,
|
|
AlignPair::Param &pp,
|
|
A2GridVert &u,
|
|
int preferredGridSize=0)
|
|
{
|
|
Box3d bb2 = fm->bbox;
|
|
double minDist = pp.MinDistAbs*1.1;
|
|
//the bbox of the grid should be enflated of the mindist used in the ICP search
|
|
bb2.Offset(Point3d(minDist, minDist, minDist));
|
|
|
|
u.SetBBox(bb2);
|
|
|
|
//Inserisco la src nella griglia
|
|
if (preferredGridSize == 0)
|
|
preferredGridSize = int(fm->vert.size())*pp.UGExpansionFactor;
|
|
u.Set(fm->vert.begin(), fm->vert.end());//, PreferredGridSize);
|
|
printf("UG %i %i %i\n", u.siz[0], u.siz[1], u.siz[2]);
|
|
return true;
|
|
}
|
|
|
|
static inline bool initFix(
|
|
A2Mesh *fm,
|
|
AlignPair::Param &pp,
|
|
A2Grid &u,
|
|
int preferredGridSize=0)
|
|
{
|
|
tri::InitFaceIMark(*fm);
|
|
|
|
Box3d bb2 = fm->bbox;
|
|
// double MinDist= fm->bbox.Diag()*pp.MinDistPerc;
|
|
double minDist = pp.MinDistAbs*1.1;
|
|
//gonfio della distanza utente il BBox della seconda mesh
|
|
bb2.Offset(Point3d(minDist, minDist, minDist));
|
|
|
|
u.SetBBox(bb2);
|
|
|
|
//Inserisco la src nella griglia
|
|
if (preferredGridSize == 0)
|
|
preferredGridSize = int(fm->face.size())*pp.UGExpansionFactor;
|
|
u.Set(fm->face.begin(), fm->face.end(), preferredGridSize);
|
|
printf("UG %i %i %i\n", u.siz[0], u.siz[1], u.siz[2]);
|
|
return true;
|
|
}
|
|
|
|
}; // end class
|
|
|
|
} // end namespace vcg
|
|
|
|
#endif
|