798 lines
23 KiB
C++
798 lines
23 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCG_TRI_UPDATE_TOPOLOGY
|
|
#define __VCG_TRI_UPDATE_TOPOLOGY
|
|
|
|
namespace vcg {
|
|
namespace tri {
|
|
/// \ingroup trimesh
|
|
|
|
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
|
|
|
|
/// \brief Generation of per-vertex and per-face topological information.
|
|
|
|
template <class UpdateMeshType>
|
|
class UpdateTopology
|
|
{
|
|
|
|
public:
|
|
typedef UpdateMeshType MeshType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::EdgeType EdgeType;
|
|
typedef typename MeshType::EdgePointer EdgePointer;
|
|
typedef typename MeshType::EdgeIterator EdgeIterator;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::TetraType TetraType;
|
|
typedef typename MeshType::TetraPointer TetraPointer;
|
|
typedef typename MeshType::TetraIterator TetraIterator;
|
|
|
|
|
|
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
|
|
|
|
/// \brief Auxiliary data structure for computing tetra tetra adjacency information.
|
|
/**
|
|
* It identifies a face, storing three vertex pointers and a tetra pointer where it belongs.
|
|
*/
|
|
|
|
class PFace
|
|
{
|
|
public:
|
|
VertexPointer v[3]; //three ordered vertex pointers, identify a face
|
|
TetraPointer t; //the pointer to the tetra where this face belongs
|
|
int z; //index in [0..3] of the face in the tetra
|
|
bool isBorder;
|
|
|
|
PFace () {}
|
|
PFace (TetraPointer tp, const int nz) { this->Set(tp, nz); }
|
|
|
|
void Set (TetraPointer tp /*the tetra pointer*/, const int nz /*the face index*/)
|
|
{
|
|
assert (tp != 0);
|
|
assert (nz >= 0 && nz < 4);
|
|
|
|
v[0] = tp->cV(Tetra::VofF(nz, 0));
|
|
v[1] = tp->cV(Tetra::VofF(nz, 1));
|
|
v[2] = tp->cV(Tetra::VofF(nz, 2));
|
|
|
|
assert(v[0] != v[1] && v[1] != v[2]); //no degenerate faces
|
|
|
|
if (v[0] > v[1])
|
|
std::swap(v[0], v[1]);
|
|
if (v[1] > v[2])
|
|
std::swap(v[1], v[2]);
|
|
if (v[0] > v[1])
|
|
std::swap(v[0], v[1]);
|
|
|
|
t = tp;
|
|
z = nz;
|
|
|
|
|
|
}
|
|
|
|
inline bool operator < (const PFace & pf) const
|
|
{
|
|
if (v[0] < pf.v[0])
|
|
return true;
|
|
else
|
|
{
|
|
if (v[0] > pf.v[0]) return false;
|
|
|
|
if (v[1] < pf.v[1])
|
|
return true;
|
|
else
|
|
{
|
|
if (v[1] > pf.v[1]) return false;
|
|
|
|
return (v[2] < pf.v[2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
inline bool operator == (const PFace & pf) const
|
|
{
|
|
return v[0] == pf.v[0] && v[1] == pf.v[1] && v[2] == pf.v[2];
|
|
}
|
|
};
|
|
|
|
static void FillFaceVector (MeshType & m, std::vector<PFace> & fvec)
|
|
{
|
|
ForEachTetra(m, [&fvec] (TetraType & t) {
|
|
for (int i = 0; i < 4; ++i)
|
|
fvec.push_back(PFace(&t, i));
|
|
});
|
|
}
|
|
|
|
static void FillUniqueFaceVector (MeshType & m, std::vector<PFace> & fvec)
|
|
{
|
|
FillFaceVector(m, fvec);
|
|
std::sort(fvec.begin(), fvec.end());
|
|
typename std::vector<PFace>::iterator newEnd = std::unique(fvec.begin(), fvec.end());
|
|
}
|
|
|
|
/// \brief Auxiliairy data structure for computing face face adjacency information.
|
|
/**
|
|
It identifies and edge storing two vertex pointer and a face pointer where it belong.
|
|
*/
|
|
class PEdge
|
|
{
|
|
public:
|
|
|
|
VertexPointer v[2]; // the two Vertex pointer are ordered!
|
|
FacePointer f; // the face where this edge belong
|
|
int z; // index in [0..2] of the edge of the face
|
|
bool isBorder;
|
|
|
|
PEdge() {}
|
|
PEdge(FacePointer pf, const int nz) { this->Set(pf,nz); }
|
|
void Set( FacePointer pf, const int nz )
|
|
{
|
|
assert(pf!=0);
|
|
assert(nz>=0);
|
|
assert(nz<pf->VN());
|
|
|
|
v[0] = pf->V(nz);
|
|
v[1] = pf->V(pf->Next(nz));
|
|
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
|
|
|
|
if( v[0] > v[1] ) std::swap(v[0],v[1]);
|
|
f = pf;
|
|
z = nz;
|
|
}
|
|
|
|
inline bool operator < ( const PEdge & pe ) const
|
|
{
|
|
if( v[0]<pe.v[0] ) return true;
|
|
else if( v[0]>pe.v[0] ) return false;
|
|
else return v[1] < pe.v[1];
|
|
}
|
|
|
|
inline bool operator == ( const PEdge & pe ) const
|
|
{
|
|
return v[0]==pe.v[0] && v[1]==pe.v[1];
|
|
}
|
|
/// Convert from edge barycentric coord to the face baricentric coord a point on the current edge.
|
|
/// Face barycentric coordinates are relative to the edge face.
|
|
inline Point3<ScalarType> EdgeBarycentricToFaceBarycentric(ScalarType u) const
|
|
{
|
|
Point3<ScalarType> interp(0,0,0);
|
|
interp[ this->z ] = u;
|
|
interp[(this->z+1)%3] = 1.0f-u;
|
|
return interp;
|
|
}
|
|
};
|
|
|
|
/// Fill a vector with all the edges of the mesh.
|
|
/// each edge is stored in the vector the number of times that it appears in the mesh, with the referring face.
|
|
/// optionally it can skip the faux edges (to retrieve only the real edges of a triangulated polygonal mesh)
|
|
|
|
static void FillEdgeVector(MeshType &m, std::vector<PEdge> &edgeVec, bool includeFauxEdge=true)
|
|
{
|
|
edgeVec.reserve(m.fn*3);
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
if( ! (*fi).IsD() )
|
|
for(int j=0;j<(*fi).VN();++j)
|
|
if(includeFauxEdge || !(*fi).IsF(j))
|
|
edgeVec.push_back(PEdge(&*fi,j));
|
|
}
|
|
|
|
static void FillUniqueEdgeVector(MeshType &m, std::vector<PEdge> &edgeVec, bool includeFauxEdge=true, bool computeBorderFlag=false)
|
|
{
|
|
FillEdgeVector(m,edgeVec,includeFauxEdge);
|
|
sort(edgeVec.begin(), edgeVec.end()); // oredering by vertex
|
|
|
|
if (computeBorderFlag) {
|
|
for (size_t i=0; i<edgeVec.size(); i++)
|
|
edgeVec[ i ].isBorder = true;
|
|
for (size_t i=1; i<edgeVec.size(); i++) {
|
|
if (edgeVec[i]==edgeVec[i-1])
|
|
edgeVec[i].isBorder = edgeVec[i-1].isBorder = false;
|
|
}
|
|
}
|
|
|
|
typename std::vector< PEdge>::iterator newEnd = std::unique(edgeVec.begin(), edgeVec.end());
|
|
|
|
edgeVec.resize(newEnd-edgeVec.begin()); // redundant! remove?
|
|
}
|
|
|
|
static void FillSelectedFaceEdgeVector(MeshType &m, std::vector<PEdge> &edgeVec)
|
|
{
|
|
edgeVec.reserve(m.fn*3);
|
|
ForEachFace(m, [&](FaceType &f){
|
|
for(int j=0;j<f.VN();++j)
|
|
if(f.IsFaceEdgeS(j))
|
|
edgeVec.push_back(PEdge(&f,j));
|
|
});
|
|
|
|
sort(edgeVec.begin(), edgeVec.end()); // oredering by vertex
|
|
edgeVec.erase(std::unique(edgeVec.begin(), edgeVec.end()),edgeVec.end());
|
|
}
|
|
|
|
|
|
|
|
/*! \brief Initialize the edge vector all the edges that can be inferred from current face vector, setting up all the current adjacency relations
|
|
*
|
|
*
|
|
*/
|
|
|
|
static void AllocateEdge(MeshType &m)
|
|
{
|
|
// Delete all the edges (if any)
|
|
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
|
|
tri::Allocator<MeshType>::DeleteEdge(m,*ei);
|
|
tri::Allocator<MeshType>::CompactEdgeVector(m);
|
|
|
|
// Compute and add edges
|
|
std::vector<PEdge> Edges;
|
|
FillUniqueEdgeVector(m,Edges,true,tri::HasPerEdgeFlags(m) );
|
|
assert(m.edge.empty());
|
|
tri::Allocator<MeshType>::AddEdges(m,Edges.size());
|
|
assert(m.edge.size()==Edges.size());
|
|
|
|
// Setup adjacency relations
|
|
if(tri::HasEVAdjacency(m))
|
|
{
|
|
for(size_t i=0; i< Edges.size(); ++i)
|
|
{
|
|
m.edge[i].V(0) = Edges[i].v[0];
|
|
m.edge[i].V(1) = Edges[i].v[1];
|
|
}
|
|
}
|
|
|
|
if (tri::HasPerEdgeFlags(m)){
|
|
for(size_t i=0; i< Edges.size(); ++i) {
|
|
if (Edges[i].isBorder) m.edge[i].SetB(); else m.edge[i].ClearB();
|
|
}
|
|
}
|
|
|
|
if(tri::HasEFAdjacency(m)) // Note it is an unordered relation.
|
|
{
|
|
for(size_t i=0; i< Edges.size(); ++i)
|
|
{
|
|
std::vector<FacePointer> fpVec;
|
|
std::vector<int> eiVec;
|
|
face::EFStarFF(Edges[i].f,Edges[i].z,fpVec,eiVec);
|
|
m.edge[i].EFp() = Edges[i].f;
|
|
m.edge[i].EFi() = Edges[i].z;
|
|
}
|
|
}
|
|
|
|
if(tri::HasFEAdjacency(m))
|
|
{
|
|
for(size_t i=0; i< Edges.size(); ++i)
|
|
{
|
|
std::vector<FacePointer> fpVec;
|
|
std::vector<int> eiVec;
|
|
face::EFStarFF(Edges[i].f,Edges[i].z,fpVec,eiVec);
|
|
for(size_t j=0;j<fpVec.size();++j)
|
|
fpVec[j]->FEp(eiVec[j])=&(m.edge[i]);
|
|
|
|
// Edges[i].f->FE(Edges[i].z) = &(m.edge[i]);
|
|
// Connect in loop the non manifold
|
|
// FaceType* fpit=fp;
|
|
// int eit=ei;
|
|
|
|
// do
|
|
// {
|
|
// faceVec.push_back(fpit);
|
|
// indVed.push_back(eit);
|
|
// FaceType *new_fpit = fpit->FFp(eit);
|
|
// int new_eit = fpit->FFi(eit);
|
|
// fpit=new_fpit;
|
|
// eit=new_eit;
|
|
// } while(fpit != fp);
|
|
|
|
|
|
// m.edge[i].EFp() = Edges[i].f;
|
|
// m.edge[i].EFi() = ;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/// \brief Clear the tetra-tetra topological relation, setting each involved pointer to null.
|
|
/// useful when you passed a mesh with tt adjacency to an algorithm that does not use it and chould have messed it
|
|
static void ClearTetraTetra (MeshType & m)
|
|
{
|
|
RequireTTAdjacency(m);
|
|
ForEachTetra(m, [] (TetraType & t) {
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
t.TTp(i) = NULL;
|
|
t.TTi(i) = -1;
|
|
}
|
|
});
|
|
}
|
|
|
|
/// \brief Updates the Tetra-Tetra topological relation by allowing to retrieve for each tetra what other tetras share their faces.
|
|
static void TetraTetra (MeshType & m)
|
|
{
|
|
RequireTTAdjacency(m);
|
|
if (m.tn == 0) return;
|
|
|
|
std::vector<PFace> fvec;
|
|
FillFaceVector(m, fvec);
|
|
std::sort(fvec.begin(), fvec.end());
|
|
|
|
int nf = 0;
|
|
typename std::vector<PFace>::iterator pback, pfront;
|
|
pback = fvec.begin();
|
|
pfront = fvec.begin();
|
|
|
|
do
|
|
{
|
|
if (pfront == fvec.end() || !(*pfront == *pback))
|
|
{
|
|
typename std::vector<PFace>::iterator q, q_next;
|
|
for (q = pback; q < pfront - 1; ++q)
|
|
{
|
|
assert((*q).z >= 0);
|
|
q_next = q;
|
|
++q_next;
|
|
assert((*q_next).z >= 0 && (*q_next).z < 4);
|
|
|
|
(*q).t->TTp(q->z) = (*q_next).t;
|
|
(*q).t->TTi(q->z) = (*q_next).z;
|
|
}
|
|
|
|
(*q).t->TTp(q->z) = pback->t;
|
|
(*q).t->TTi(q->z) = pback->z;
|
|
pback = pfront;
|
|
++nf;
|
|
}
|
|
if (pfront == fvec.end()) break;
|
|
++pfront;
|
|
} while (true);
|
|
}
|
|
/// \brief Clear the Face-Face topological relation setting each involved pointer to null.
|
|
/// useful when you passed a mesh with ff adjacency to an algorithm that does not use it and could have messed it.
|
|
static void ClearFaceFace(MeshType &m)
|
|
{
|
|
RequireFFAdjacency(m);
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
if( ! (*fi).IsD() )
|
|
{
|
|
for(int j=0;j<fi->VN();++j)
|
|
{
|
|
fi->FFp(j)=0;
|
|
fi->FFi(j)=-1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Update the Face-Face topological relation by allowing to retrieve for each face what other faces shares their edges.
|
|
static void FaceFace(MeshType &m)
|
|
{
|
|
RequireFFAdjacency(m);
|
|
if( m.fn == 0 ) return;
|
|
|
|
std::vector<PEdge> e;
|
|
FillEdgeVector(m,e);
|
|
sort(e.begin(), e.end()); // Lo ordino per vertici
|
|
|
|
int ne = 0; // Numero di edge reali
|
|
|
|
typename std::vector<PEdge>::iterator pe,ps;
|
|
ps = e.begin();pe=e.begin();
|
|
//for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario
|
|
do
|
|
{
|
|
if( pe==e.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali
|
|
{
|
|
typename std::vector<PEdge>::iterator q,q_next;
|
|
for (q=ps;q<pe-1;++q) // Scansione facce associate
|
|
{
|
|
assert((*q).z>=0);
|
|
//assert((*q).z< 3);
|
|
q_next = q;
|
|
++q_next;
|
|
assert((*q_next).z>=0);
|
|
assert((*q_next).z< (*q_next).f->VN());
|
|
(*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce
|
|
(*q).f->FFi(q->z) = (*q_next).z;
|
|
}
|
|
assert((*q).z>=0);
|
|
assert((*q).z< (*q).f->VN());
|
|
(*q).f->FFp((*q).z) = ps->f;
|
|
(*q).f->FFi((*q).z) = ps->z;
|
|
ps = pe;
|
|
++ne; // Aggiorno il numero di edge
|
|
}
|
|
if(pe==e.end()) break;
|
|
++pe;
|
|
} while(true);
|
|
}
|
|
|
|
|
|
/// \brief Update the vertex-tetra topological relation.
|
|
static void VertexTetra(MeshType & m)
|
|
{
|
|
RequireVTAdjacency(m);
|
|
|
|
|
|
ForEachVertex(m, [] (VertexType & v) {
|
|
v.VTp() = NULL;
|
|
v.VTi() = 0;
|
|
});
|
|
|
|
ForEachTetra(m, [] (TetraType & t) {
|
|
//this works like this: the first iteration defines the end of the chain
|
|
//then it backwards chains everything
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
t.VTp(i) = t.V(i)->VTp();
|
|
t.VTi(i) = t.V(i)->VTi();
|
|
t.V(i)->VTp() = &t;
|
|
t.V(i)->VTi() = i;
|
|
}
|
|
});
|
|
}
|
|
/// \brief Update the Vertex-Face topological relation.
|
|
/**
|
|
The function allows to retrieve for each vertex the list of faces sharing this vertex.
|
|
After this call all the VF component are initialized. Isolated vertices have a null list of faces.
|
|
\sa vcg::vertex::VFAdj
|
|
\sa vcg::face::VFAdj
|
|
*/
|
|
|
|
static void VertexFace(MeshType &m)
|
|
{
|
|
RequireVFAdjacency(m);
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
(*vi).VFp() = 0;
|
|
(*vi).VFi() = 0; // note that (0,-1) means uninitiazlied while 0,0 is the valid initialized values for isolated vertices.
|
|
}
|
|
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
if( ! (*fi).IsD() )
|
|
{
|
|
for(int j=0;j<(*fi).VN();++j)
|
|
{
|
|
(*fi).VFp(j) = (*fi).V(j)->VFp();
|
|
(*fi).VFi(j) = (*fi).V(j)->VFi();
|
|
(*fi).V(j)->VFp() = &(*fi);
|
|
(*fi).V(j)->VFi() = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
|
|
|
|
/// \brief Auxiliairy data structure for computing face face adjacency information.
|
|
/**
|
|
It identifies and edge storing two vertex pointer and a face pointer where it belong.
|
|
*/
|
|
|
|
class PEdgeTex
|
|
{
|
|
public:
|
|
|
|
typename FaceType::TexCoordType v[2]; // the two TexCoord are ordered!
|
|
FacePointer f; // the face where this edge belong
|
|
int z; // index in [0..2] of the edge of the face
|
|
|
|
PEdgeTex() {}
|
|
|
|
void Set( FacePointer pf, const int nz )
|
|
{
|
|
assert(pf!=0);
|
|
assert(nz>=0);
|
|
assert(nz<3);
|
|
|
|
v[0] = pf->WT(nz);
|
|
v[1] = pf->WT(pf->Next(nz));
|
|
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
|
|
|
|
if( v[1] < v[0] ) std::swap(v[0],v[1]);
|
|
f = pf;
|
|
z = nz;
|
|
}
|
|
|
|
inline bool operator < ( const PEdgeTex & pe ) const
|
|
{
|
|
if( v[0]<pe.v[0] ) return true;
|
|
else if( pe.v[0]<v[0] ) return false;
|
|
else return v[1] < pe.v[1];
|
|
}
|
|
inline bool operator == ( const PEdgeTex & pe ) const
|
|
{
|
|
return (v[0]==pe.v[0]) && (v[1]==pe.v[1]);
|
|
}
|
|
inline bool operator != ( const PEdgeTex & pe ) const
|
|
{
|
|
return (v[0]!=pe.v[0]) || (v[1]!=pe.v[1]);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
/// \brief Update the Face-Face topological relation so that it reflects the per-wedge texture connectivity
|
|
|
|
/**
|
|
Using this function two faces are adjacent along the FF relation IFF the two faces have matching texture coords along the involved edge.
|
|
In other words F1->FFp(i) == F2 iff F1 and F2 have the same tex coords along edge i
|
|
*/
|
|
|
|
static void FaceFaceFromTexCoord(MeshType &m)
|
|
{
|
|
RequireFFAdjacency(m);
|
|
RequirePerFaceWedgeTexCoord(m);
|
|
vcg::tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
{
|
|
if (!(*fi).IsD())
|
|
{
|
|
for (int i = 0; i < (*fi).VN(); i++)
|
|
{
|
|
if (!vcg::face::IsBorder((*fi), i))
|
|
{
|
|
typename MeshType::FacePointer nextFace = (*fi).FFp(i);
|
|
int nextEdgeIndex = (*fi).FFi(i);
|
|
bool border = false;
|
|
if ((*fi).cV(i) == nextFace->cV(nextEdgeIndex))
|
|
{
|
|
if ((*fi).WT(i) != nextFace->WT(nextEdgeIndex) || (*fi).WT((*fi).Next(i)) != nextFace->WT(nextFace->Next(nextEdgeIndex)))
|
|
border = true;
|
|
}
|
|
else
|
|
{
|
|
if ((*fi).WT(i) != nextFace->WT(nextFace->Next(nextEdgeIndex)) || (*fi).WT((*fi).Next(i)) != nextFace->WT(nextEdgeIndex))
|
|
border = true;
|
|
}
|
|
if (border)
|
|
vcg::face::FFDetach((*fi), i);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Test correctness of VEtopology
|
|
static void TestVertexEdge(MeshType &m)
|
|
{
|
|
std::vector<int> numVertex(m.vert.size(),0);
|
|
|
|
tri::RequireVEAdjacency(m);
|
|
|
|
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
|
|
{
|
|
if (!(*ei).IsD())
|
|
{
|
|
assert(tri::IsValidPointer(m,ei->V(0)));
|
|
assert(tri::IsValidPointer(m,ei->V(1)));
|
|
if(ei->VEp(0)) assert(tri::IsValidPointer(m,ei->VEp(0)));
|
|
if(ei->VEp(1)) assert(tri::IsValidPointer(m,ei->VEp(1)));
|
|
numVertex[tri::Index(m,(*ei).V(0))]++;
|
|
numVertex[tri::Index(m,(*ei).V(1))]++;
|
|
}
|
|
}
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
if (!vi->IsD())
|
|
{
|
|
int cnt =0;
|
|
for(edge::VEIterator<EdgeType> vei(&*vi);!vei.End();++vei)
|
|
cnt++;
|
|
assert((numVertex[tri::Index(m,*vi)] == 0) == (vi->VEp()==0) );
|
|
assert(cnt==numVertex[tri::Index(m,*vi)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// \brief Test correctness of VFtopology
|
|
static void TestVertexFace(MeshType &m)
|
|
{
|
|
SimpleTempData<typename MeshType::VertContainer, int > numVertex(m.vert,0);
|
|
|
|
assert(tri::HasPerVertexVFAdjacency(m));
|
|
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
if (!(*fi).IsD())
|
|
{
|
|
numVertex[(*fi).V0(0)]++;
|
|
numVertex[(*fi).V1(0)]++;
|
|
numVertex[(*fi).V2(0)]++;
|
|
}
|
|
}
|
|
|
|
vcg::face::VFIterator<FaceType> VFi;
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
if (!vi->IsD())
|
|
if(vi->VFp()!=0) // unreferenced vertices MUST have VF == 0;
|
|
{
|
|
int num=0;
|
|
assert(tri::IsValidPointer(m, vi->VFp()));
|
|
VFi.f=vi->VFp();
|
|
VFi.z=vi->VFi();
|
|
while (!VFi.End())
|
|
{
|
|
num++;
|
|
assert(!VFi.F()->IsD());
|
|
assert((VFi.F()->V(VFi.I()))==&(*vi));
|
|
++VFi;
|
|
}
|
|
assert(num==numVertex[&(*vi)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Test correctness of FFtopology (only for 2Manifold Meshes!)
|
|
static void TestFaceFace(MeshType &m)
|
|
{
|
|
assert(HasFFAdjacency(m));
|
|
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
if (!fi->IsD())
|
|
{
|
|
for (int i=0;i<(*fi).VN();i++)
|
|
{
|
|
FaceType *ffpi=fi->FFp(i);
|
|
int e=fi->FFi(i);
|
|
//invariant property of FF topology for two manifold meshes
|
|
assert(ffpi->FFp(e) == &(*fi));
|
|
assert(ffpi->FFi(e) == i);
|
|
|
|
// Test that the two faces shares the same edge
|
|
// Vertices of the i-th edges of the first face
|
|
VertexPointer v0i= fi->V0(i);
|
|
VertexPointer v1i= fi->V1(i);
|
|
// Vertices of the corresponding edge on the other face
|
|
VertexPointer ffv0i= ffpi->V0(e);
|
|
VertexPointer ffv1i= ffpi->V1(e);
|
|
|
|
assert( (ffv0i==v0i) || (ffv0i==v1i) );
|
|
assert( (ffv1i==v0i) || (ffv1i==v1i) );
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Auxiliairy data structure for computing edge edge adjacency information.
|
|
/// It identifies an edge storing a vertex pointer and a edge pointer where it belong.
|
|
class PVertexEdge
|
|
{
|
|
public:
|
|
|
|
VertexPointer v; // the two Vertex pointer are ordered!
|
|
EdgePointer e; // the edge where this vertex belong
|
|
int z; // index in [0..1] of the vertex of the edge
|
|
|
|
PVertexEdge( ) {}
|
|
PVertexEdge( EdgePointer pe, const int nz )
|
|
{
|
|
assert(pe!=0);
|
|
assert(nz>=0);
|
|
assert(nz<2);
|
|
|
|
v= pe->V(nz);
|
|
e = pe;
|
|
z = nz;
|
|
}
|
|
inline bool operator < ( const PVertexEdge & pe ) const { return ( v<pe.v ); }
|
|
inline bool operator == ( const PVertexEdge & pe ) const { return ( v==pe.v ); }
|
|
inline bool operator != ( const PVertexEdge & pe ) const { return ( v!=pe.v ); }
|
|
};
|
|
|
|
|
|
|
|
static void EdgeEdge(MeshType &m)
|
|
{
|
|
RequireEEAdjacency(m);
|
|
std::vector<PVertexEdge> v;
|
|
if( m.en == 0 ) return;
|
|
|
|
// printf("Inserting Edges\n");
|
|
for(EdgeIterator pf=m.edge.begin(); pf!=m.edge.end(); ++pf) // Lo riempio con i dati delle facce
|
|
if( ! (*pf).IsD() )
|
|
for(int j=0;j<2;++j)
|
|
{
|
|
// printf("egde %i ind %i (%i %i)\n",tri::Index(m,&*pf),j,tri::Index(m,pf->V(0)),tri::Index(m,pf->V(1)));
|
|
v.push_back(PVertexEdge(&*pf,j));
|
|
}
|
|
|
|
// printf("en = %i (%i)\n",m.en,m.edge.size());
|
|
sort(v.begin(), v.end()); // Lo ordino per vertici
|
|
|
|
int ne = 0; // Numero di edge reali
|
|
|
|
typename std::vector<PVertexEdge>::iterator pe,ps;
|
|
// for(ps = v.begin(),pe=v.begin();pe<=v.end();++pe) // Scansione vettore ausiliario
|
|
ps = v.begin();pe=v.begin();
|
|
do
|
|
{
|
|
// printf("v %i -> e %i\n",tri::Index(m,(*ps).v),tri::Index(m,(*ps).e));
|
|
if( pe==v.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali
|
|
{
|
|
typename std::vector<PVertexEdge>::iterator q,q_next;
|
|
for (q=ps;q<pe-1;++q) // Scansione edge associati
|
|
{
|
|
assert((*q).z>=0);
|
|
assert((*q).z< 2);
|
|
q_next = q;
|
|
++q_next;
|
|
assert((*q_next).z>=0);
|
|
assert((*q_next).z< 2);
|
|
(*q).e->EEp(q->z) = (*q_next).e; // Collegamento in lista delle facce
|
|
(*q).e->EEi(q->z) = (*q_next).z;
|
|
}
|
|
assert((*q).z>=0);
|
|
assert((*q).z< 2);
|
|
(*q).e->EEp((*q).z) = ps->e;
|
|
(*q).e->EEi((*q).z) = ps->z;
|
|
ps = pe;
|
|
++ne; // Aggiorno il numero di edge
|
|
}
|
|
if(pe==v.end()) break;
|
|
++pe;
|
|
} while(true);
|
|
}
|
|
|
|
static void VertexEdge(MeshType &m)
|
|
{
|
|
RequireVEAdjacency(m);
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
(*vi).VEp() = 0;
|
|
(*vi).VEi() = 0;
|
|
}
|
|
|
|
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
|
|
if( ! (*ei).IsD() )
|
|
{
|
|
for(int j=0;j<2;++j)
|
|
{ assert(tri::IsValidPointer(m,ei->V(j)));
|
|
(*ei).VEp(j) = (*ei).V(j)->VEp();
|
|
(*ei).VEi(j) = (*ei).V(j)->VEi();
|
|
(*ei).V(j)->VEp() = &(*ei);
|
|
(*ei).V(j)->VEi() = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
}; // end class
|
|
|
|
} // End namespace
|
|
} // End namespace
|
|
|
|
|
|
#endif
|