376 lines
14 KiB
C++
376 lines
14 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
#include <assert.h>
|
|
#include <vcg/math/base.h>
|
|
#include <vcg/container/simple_temporary_data.h>
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <vcg/simplex/face/topology.h>
|
|
#include <vcg/complex/algorithms/update/quality.h>
|
|
#include <deque>
|
|
#include <vector>
|
|
#include <list>
|
|
#include <functional>
|
|
|
|
/*
|
|
class for computing approximated geodesic distances on a mesh.
|
|
|
|
basic example: farthest vertex from a specified one
|
|
MyMesh m;
|
|
MyMesh::VertexPointer seed,far;
|
|
MyMesh::ScalarType dist;
|
|
|
|
vcg::Geo<MyMesh> g;
|
|
g.FarthestVertex(m,seed,far,d);
|
|
|
|
*/
|
|
#ifndef __VCGLIB_GEODESIC
|
|
#define __VCGLIB_GEODESIC
|
|
|
|
namespace vcg{
|
|
namespace tri{
|
|
|
|
template <class MeshType>
|
|
struct EuclideanDistance{
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
|
|
EuclideanDistance(){}
|
|
ScalarType operator()(const VertexType * v0, const VertexType * v1) const
|
|
{return vcg::Distance(v0->cP(),v1->cP());}
|
|
};
|
|
|
|
template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
|
|
class Geo{
|
|
|
|
public:
|
|
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
|
|
|
|
|
|
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance */
|
|
struct VertDist{
|
|
VertDist(){}
|
|
VertDist(VertexPointer _v, ScalarType _d):v(_v),d(_d){}
|
|
|
|
VertexPointer v;
|
|
ScalarType d;
|
|
};
|
|
|
|
|
|
/* Temporary data to associate to all the vertices: estimated distance and boolean flag */
|
|
struct TempData{
|
|
TempData(){}
|
|
TempData(const ScalarType & _d):d(_d),source(0),parent(0){}
|
|
|
|
ScalarType d;
|
|
VertexPointer source;//closest source
|
|
VertexPointer parent;
|
|
};
|
|
|
|
typedef SimpleTempData<std::vector<VertexType>, TempData > TempDataType;
|
|
|
|
|
|
struct pred: public std::binary_function<VertDist,VertDist,bool>{
|
|
pred(){}
|
|
bool operator()(const VertDist& v0, const VertDist& v1) const
|
|
{return (v0.d > v1.d);}
|
|
};
|
|
|
|
struct pred_addr: public std::binary_function<VertDist,VertDist,bool>{
|
|
pred_addr(){}
|
|
bool operator()(const VertDist& v0, const VertDist& v1) const
|
|
{return (v0.v > v1.v);}
|
|
};
|
|
|
|
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
|
|
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
|
|
//************** (vedi figura in file distance.gif)
|
|
static ScalarType Distance(const VertexPointer &pw,
|
|
const VertexPointer &pw1,
|
|
const VertexPointer &curr,
|
|
const ScalarType &d_pw1,
|
|
const ScalarType &d_curr)
|
|
{
|
|
ScalarType curr_d=0;
|
|
|
|
ScalarType ew_c = DistanceFunctor()(pw,curr);
|
|
ScalarType ew_w1 = DistanceFunctor()(pw,pw1);
|
|
ScalarType ec_w1 = DistanceFunctor()(pw1,curr);
|
|
CoordType w_c = (pw->cP()-curr->cP()).Normalize() * ew_c;
|
|
CoordType w_w1 = (pw->cP() - pw1->cP()).Normalize() * ew_w1;
|
|
CoordType w1_c = (pw1->cP() - curr->cP()).Normalize() * ec_w1;
|
|
|
|
ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
|
|
|
|
alpha = acos((w_c.dot(w1_c))/(ew_c*ec_w1));
|
|
s = (d_curr + d_pw1+ec_w1)/2;
|
|
a = s/ec_w1;
|
|
b = a*s;
|
|
alpha_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
|
|
|
|
if ( alpha+alpha_ > M_PI){
|
|
curr_d = d_curr + ew_c;
|
|
}else
|
|
{
|
|
beta_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1)));
|
|
beta = acos((w_w1).dot(-w1_c)/(ew_w1*ec_w1));
|
|
|
|
if ( beta+beta_ > M_PI)
|
|
curr_d = d_pw1 + ew_w1;
|
|
else
|
|
{
|
|
theta = ScalarType(M_PI)-alpha-alpha_;
|
|
delta = cos(theta)* ew_c;
|
|
h = sin(theta)* ew_c;
|
|
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
|
|
}
|
|
}
|
|
return (curr_d);
|
|
}
|
|
|
|
/*
|
|
This is the low level version of the geodesic computation framework.
|
|
Starting from the seeds, it assign a distance value to each vertex. The distance of a vertex is its
|
|
approximated geodesic distance to the closest seeds.
|
|
This is function is not meant to be called (although is not prevented). Instead, it is invoked by
|
|
wrapping function.
|
|
*/
|
|
static VertexPointer Visit(
|
|
MeshType & m,
|
|
std::vector<VertDist> & seedVec, // the set of seed to start from
|
|
bool farthestOnBorder = false,
|
|
ScalarType distance_threshold = std::numeric_limits<ScalarType>::max(), // cut off distance (do no compute anything farther than this value)
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertSource = NULL, // if present we put in this attribute the closest source for each vertex
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertParent = NULL, // if present we put in this attribute the parent in the path that goes from the vertex to the closest source
|
|
std::vector<VertexPointer> *InInterval=NULL)
|
|
{
|
|
std::vector<VertDist> frontier;
|
|
VertexPointer farthest=0,pw,pw1;
|
|
|
|
//Requirements
|
|
assert(HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m));
|
|
assert(!seedVec.empty());
|
|
|
|
TempDataType TD(m.vert, std::numeric_limits<ScalarType>::max());
|
|
|
|
typename std::vector <VertDist >::iterator ifr;
|
|
for(ifr = seedVec.begin(); ifr != seedVec.end(); ++ifr){
|
|
(*ifr).d = 0.0;
|
|
TD[(*ifr).v].d = 0.0;
|
|
TD[(*ifr).v].source = (*ifr).v;
|
|
TD[(*ifr).v].parent = (*ifr).v;
|
|
frontier.push_back(VertDist((*ifr).v,0.0));
|
|
}
|
|
// initialize Heap
|
|
make_heap(frontier.begin(),frontier.end(),pred());
|
|
|
|
ScalarType curr_d,d_curr = 0.0,d_heap;
|
|
ScalarType max_distance=0.0;
|
|
|
|
while(!frontier.empty() && max_distance < distance_threshold)
|
|
{
|
|
pop_heap(frontier.begin(),frontier.end(),pred());
|
|
VertexPointer curr = (frontier.back()).v;
|
|
if (InInterval!=NULL) InInterval->push_back(curr);
|
|
|
|
if(vertSource!=NULL) (*vertSource)[curr] = TD[curr].source;
|
|
if(vertParent!=NULL) (*vertParent)[curr] = TD[curr].parent;
|
|
|
|
d_heap = (frontier.back()).d;
|
|
frontier.pop_back();
|
|
|
|
assert(TD[curr].d <= d_heap);
|
|
if(TD[curr].d < d_heap )// a vertex whose distance has been improved after it was inserted in the queue
|
|
continue;
|
|
assert(TD[curr].d == d_heap);
|
|
|
|
d_curr = TD[curr].d;
|
|
|
|
bool isLeaf = (!farthestOnBorder || curr->IsB());
|
|
|
|
face::VFIterator<FaceType> x;int k;
|
|
|
|
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
|
|
for(k=0;k<2;++k)
|
|
{
|
|
if(k==0) {
|
|
pw = x.f->V1(x.z);
|
|
pw1=x.f->V2(x.z);
|
|
}
|
|
else {
|
|
pw = x.f->V2(x.z);
|
|
pw1=x.f->V1(x.z);
|
|
}
|
|
|
|
const ScalarType & d_pw1 = TD[pw1].d;
|
|
{
|
|
const ScalarType inter = DistanceFunctor()(curr,pw1);//(curr->P() - pw1->P()).Norm();
|
|
const ScalarType tol = (inter + d_curr + d_pw1)*.0001f;
|
|
|
|
if ( (TD[pw1].source != TD[curr].source)||// not the same source
|
|
(inter + d_curr < d_pw1 +tol ) ||
|
|
(inter + d_pw1 < d_curr +tol ) ||
|
|
(d_curr + d_pw1 < inter +tol ) // triangular inequality
|
|
)
|
|
curr_d = d_curr + DistanceFunctor()(pw,curr);//(pw->P()-curr->P()).Norm();
|
|
else
|
|
curr_d = Distance(pw,pw1,curr,d_pw1,d_curr);
|
|
}
|
|
|
|
if(TD[pw].d > curr_d){
|
|
TD[pw].d = curr_d;
|
|
TD[pw].source = TD[curr].source;
|
|
TD[pw].parent = curr;
|
|
frontier.push_back(VertDist(pw,curr_d));
|
|
push_heap(frontier.begin(),frontier.end(),pred());
|
|
}
|
|
if(isLeaf){
|
|
if(d_curr > max_distance){
|
|
max_distance = d_curr;
|
|
farthest = curr;
|
|
}
|
|
}
|
|
}
|
|
}// end while
|
|
|
|
// Copy found distance onto the Quality (\todo parametric!)
|
|
if (InInterval==NULL)
|
|
{
|
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
|
|
(*vi).Q() = TD[&(*vi)].d;
|
|
}
|
|
else
|
|
{
|
|
assert(InInterval->size()>0);
|
|
for(size_t i=0;i<InInterval->size();i++)
|
|
(*InInterval)[i]->Q() = TD[(*InInterval)[i]].d;
|
|
}
|
|
|
|
return farthest;
|
|
}
|
|
|
|
|
|
public:
|
|
/*
|
|
Given a mesh and a vector of pointers to seed vertices, this function assigns the approximated geodesic
|
|
distance from the closest source to all the mesh vertices within the
|
|
specified interval and returns the found vertices writing on their Quality field the distance.
|
|
Optionally for each vertex it can store, in a passed attribute, its corresponding seed vertex.
|
|
To allocate such an attribute:
|
|
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> sources;
|
|
sources = tri::Allocator<CMeshO>::AddPerVertexAttribute<VertexPointer> (m,"sources");
|
|
|
|
*/
|
|
static bool FarthestVertex( MeshType & m,
|
|
std::vector<VertexPointer> & seedVec,
|
|
VertexPointer & farthest_vert,
|
|
ScalarType distance_thr = std::numeric_limits<ScalarType>::max(),
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sourceSeed = NULL,
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * parentSeed = NULL,
|
|
std::vector<VertexPointer> *InInterval=NULL)
|
|
{
|
|
typename std::vector<VertexPointer>::iterator fi;
|
|
std::vector<VertDist> vdSeedVec;
|
|
if(seedVec.empty()) return false;
|
|
for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
|
|
vdSeedVec.push_back(VertDist(*fi,0.0));
|
|
farthest_vert = Visit(m, vdSeedVec, false, distance_thr, sourceSeed, parentSeed, InInterval);
|
|
return true;
|
|
}
|
|
/*
|
|
Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
|
|
distance from the vertex-source to all the mesh vertices and returns the pointer to the farthest
|
|
Note: it updates the field Q() of the vertices
|
|
*/
|
|
static bool FarthestVertex( MeshType & m, VertexPointer seed, ScalarType distance_thr = std::numeric_limits<ScalarType>::max())
|
|
{
|
|
std::vector<VertexPointer> seedVec(1,seed);
|
|
VertexPointer v0;
|
|
return FarthestVertex(m,seedVec,v0,distance_thr);
|
|
}
|
|
|
|
|
|
/*
|
|
Same as FarthestPoint but the returned pointer is to a border vertex
|
|
Note: update the field Q() of the vertices
|
|
*/
|
|
static void FarthestBVertex(MeshType & m,
|
|
std::vector<VertexPointer> & seedVec,
|
|
VertexPointer & farthest,
|
|
ScalarType & distance,
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
|
)
|
|
{
|
|
std::vector<VertDist>fr;
|
|
for(typename std::vector<VertexPointer>::iterator fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
|
|
fr.push_back(VertDist(*fi,0));
|
|
farthest = Visit(m,fr,distance,true,sources);
|
|
}
|
|
/*
|
|
Same as FarthestPoint but the returned pointer is to a border vertex
|
|
Note: update the field Q() of the vertices
|
|
*/
|
|
static void FarthestBVertex( MeshType & m,
|
|
VertexPointer seed,
|
|
VertexPointer & farthest,
|
|
ScalarType & distance,
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL)
|
|
{
|
|
std::vector<VertexPointer> fro(1,seed);
|
|
VertexPointer v0;
|
|
FarthestBVertex(m,fro,v0,distance,sources);
|
|
farthest = v0;
|
|
}
|
|
|
|
/*
|
|
Assigns to each vertex of the mesh its distance to the closest vertex on the border
|
|
Note: update the field Q() of the vertices
|
|
Note: it needs the border bit set.
|
|
*/
|
|
static bool DistanceFromBorder( MeshType & m, typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
|
){
|
|
std::vector<VertexPointer> fro;
|
|
VertexIterator vi;
|
|
VertexPointer farthest;
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if( (*vi).IsB())
|
|
fro.push_back(&(*vi));
|
|
if(fro.empty()) return false;
|
|
|
|
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
|
|
|
|
return FarthestVertex(m,fro,farthest,std::numeric_limits<ScalarType>::max(),sources);
|
|
}
|
|
|
|
};// end class
|
|
}// end namespace tri
|
|
}// end namespace vcg
|
|
#endif
|