623 lines
21 KiB
C++
623 lines
21 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
#ifndef __VCG_MESH_RESAMPLER
|
|
#define __VCG_MESH_RESAMPLER
|
|
|
|
#include <vcg/complex/algorithms/update/normal.h>
|
|
#include <vcg/complex/algorithms/update/flag.h>
|
|
#include <vcg/complex/algorithms/update/bounding.h>
|
|
#include <vcg/complex/algorithms/update/component_ep.h>
|
|
#include <vcg/complex/algorithms/create/marching_cubes.h>
|
|
#include <vcg/space/index/grid_static_ptr.h>
|
|
#include <vcg/complex/algorithms/closest.h>
|
|
#include <vcg/space/box3.h>
|
|
|
|
namespace vcg {
|
|
namespace tri {
|
|
|
|
|
|
/** \addtogroup trimesh */
|
|
/*@{*/
|
|
/*@{*/
|
|
/** Class Resampler.
|
|
This is class resampling a mesh using marching cubes methods
|
|
@param OldMeshType (Template Parameter) Specifies the type of mesh to be resampled
|
|
@param NewMeshType (Template Parameter) Specifies the type of output mesh.
|
|
All the computations are done in the output mesh scalar type. (e.g. if you have a double mesh and you want to resample int to a float mesh the volume is kept in float)
|
|
*/
|
|
|
|
template <class OldMeshType,
|
|
class NewMeshType,
|
|
class DISTFUNCTOR = vcg::face::PointDistanceBaseFunctor<typename OldMeshType::ScalarType > >
|
|
class Resampler : public BasicGrid<typename NewMeshType::ScalarType>
|
|
{
|
|
typedef typename NewMeshType::ScalarType NewScalarType;
|
|
typedef typename NewMeshType::BoxType NewBoxType;
|
|
typedef typename NewMeshType::CoordType NewCoordType;
|
|
typedef typename NewMeshType::VertexType* NewVertexPointer;
|
|
typedef typename NewMeshType::VertexIterator NewVertexIterator;
|
|
typedef typename OldMeshType::CoordType OldCoordType;
|
|
typedef typename OldMeshType::FaceContainer OldFaceCont;
|
|
typedef typename OldMeshType::FaceType OldFaceType;
|
|
typedef typename OldMeshType::ScalarType OldScalarType;
|
|
|
|
class Walker : BasicGrid<typename NewMeshType::ScalarType>
|
|
{
|
|
private:
|
|
typedef int VertexIndex;
|
|
typedef typename vcg::GridStaticPtr<OldFaceType, OldScalarType> GridType;
|
|
|
|
protected:
|
|
|
|
int SliceSize;
|
|
int CurrentSlice;
|
|
typedef tri::FaceTmark<OldMeshType> MarkerFace;
|
|
MarkerFace markerFunctor;
|
|
|
|
VertexIndex *_x_cs; // indici dell'intersezioni della superficie lungo gli Xedge della fetta corrente
|
|
VertexIndex *_y_cs; // indici dell'intersezioni della superficie lungo gli Yedge della fetta corrente
|
|
VertexIndex *_z_cs; // indici dell'intersezioni della superficie lungo gli Zedge della fetta corrente
|
|
VertexIndex *_x_ns; // indici dell'intersezioni della superficie lungo gli Xedge della prossima fetta
|
|
VertexIndex *_z_ns; // indici dell'intersezioni della superficie lungo gli Zedge della prossima fetta
|
|
|
|
//float *_v_cs;///values of distance fields for each direction in current slice
|
|
//float *_v_ns;///values of distance fields for each direction in next slice
|
|
|
|
typedef typename std::pair<bool,float> field_value;
|
|
field_value* _v_cs;
|
|
field_value* _v_ns;
|
|
|
|
NewMeshType *_newM;
|
|
OldMeshType *_oldM;
|
|
GridType _g;
|
|
|
|
public:
|
|
NewScalarType max_dim; // the limit value of the search (that takes into account of the offset)
|
|
NewScalarType offset; // an offset value that is always added to the returned value. Useful for extrarting isosurface at a different threshold
|
|
bool DiscretizeFlag; // if the extracted surface should be discretized or not.
|
|
bool MultiSampleFlag;
|
|
bool AbsDistFlag; // if true the Distance Field computed is no more a signed one.
|
|
Walker(const Box3<NewScalarType> &_bbox, Point3i _siz )
|
|
{
|
|
this->bbox= _bbox;
|
|
this->siz=_siz;
|
|
this->ComputeDimAndVoxel();
|
|
|
|
SliceSize = (this->siz.X()+1)*(this->siz.Z()+1);
|
|
CurrentSlice = 0;
|
|
offset=0;
|
|
DiscretizeFlag=false;
|
|
MultiSampleFlag=false;
|
|
AbsDistFlag=false;
|
|
|
|
_x_cs = new VertexIndex[ SliceSize ];
|
|
_y_cs = new VertexIndex[ SliceSize ];
|
|
_z_cs = new VertexIndex[ SliceSize ];
|
|
_x_ns = new VertexIndex[ SliceSize ];
|
|
_z_ns = new VertexIndex[ SliceSize ];
|
|
|
|
_v_cs= new field_value[(this->siz.X()+1)*(this->siz.Z()+1)];
|
|
_v_ns= new field_value[(this->siz.X()+1)*(this->siz.Z()+1)];
|
|
|
|
};
|
|
|
|
~Walker()
|
|
{}
|
|
|
|
|
|
NewScalarType V(const Point3i &p)
|
|
{
|
|
return V(p.V(0),p.V(1),p.V(2));
|
|
}
|
|
|
|
|
|
std::pair<bool,NewScalarType> VV(int x,int y,int z)
|
|
{
|
|
assert ((y==CurrentSlice)||(y==(CurrentSlice+1)));
|
|
|
|
//test if it is outside the bb of the mesh
|
|
//vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z);
|
|
/*if (!_oldM->bbox.IsIn(test))
|
|
return (1.f);*/
|
|
int index=GetSliceIndex(x,z);
|
|
|
|
if (y==CurrentSlice) return _v_cs[index];
|
|
else return _v_ns[index];
|
|
}
|
|
|
|
NewScalarType V(int x,int y,int z)
|
|
{
|
|
if(DiscretizeFlag) return VV(x,y,z).second+offset<0?-1:1;
|
|
return VV(x,y,z).second+offset;
|
|
}
|
|
///return true if the distance form the mesh is less than maxdim and return distance
|
|
field_value DistanceFromMesh(OldCoordType &pp)
|
|
{
|
|
OldScalarType dist;
|
|
const NewScalarType max_dist = max_dim;
|
|
OldCoordType testPt;
|
|
this->IPfToPf(pp,testPt);
|
|
|
|
OldCoordType closestPt;
|
|
DISTFUNCTOR PDistFunct;
|
|
OldFaceType *f = _g.GetClosest(PDistFunct,markerFunctor,testPt,max_dist,dist,closestPt);
|
|
if (f==NULL) return field_value(false,0);
|
|
if(AbsDistFlag) return field_value(true,dist);
|
|
assert(!f->IsD());
|
|
bool retIP;
|
|
|
|
// To compute the interpolated normal we use the more robust function that require to know what is the most orhogonal direction of the face.
|
|
OldCoordType pip(-1,-1,-1);
|
|
retIP=InterpolationParameters(*f,(*f).cN(),closestPt, pip);
|
|
assert(retIP); // this should happen only if the starting mesh has degenerate faces.
|
|
|
|
const NewScalarType InterpolationEpsilon = 0.00001f;
|
|
int zeroCnt=0;
|
|
if(pip[0]<InterpolationEpsilon) ++zeroCnt;
|
|
if(pip[1]<InterpolationEpsilon) ++zeroCnt;
|
|
if(pip[2]<InterpolationEpsilon) ++zeroCnt;
|
|
assert(zeroCnt<3);
|
|
|
|
OldCoordType dir=(testPt-closestPt).Normalize();
|
|
|
|
// Note that the two signs could be discordant.
|
|
// Always choose the best one according to where the nearest point falls.
|
|
NewScalarType signBest;
|
|
|
|
// Compute test if the point see the surface normal from inside or outside
|
|
// Surface normal for improved robustness is computed both by face and interpolated from vertices.
|
|
OldCoordType closestNormV, closestNormF;
|
|
if(zeroCnt>0) // we Not are in the middle of the face so the face normal is NOT reliable.
|
|
{
|
|
closestNormV = (f->V(0)->cN())*pip[0] + (f->V(1)->cN())*pip[1] + (f->V(2)->cN())*pip[2] ;
|
|
signBest = dir.dot(closestNormV) ;
|
|
}
|
|
else
|
|
{
|
|
closestNormF = f->cN() ;
|
|
signBest = dir.dot(closestNormF) ;
|
|
}
|
|
|
|
if(signBest<0) dist=-dist;
|
|
|
|
return field_value(true,dist);
|
|
}
|
|
|
|
field_value MultiDistanceFromMesh(OldCoordType &pp)
|
|
{
|
|
float distSum=0;
|
|
int positiveCnt=0; // positive results counter
|
|
const int MultiSample=7;
|
|
const OldCoordType delta[7]={OldCoordType(0,0,0),
|
|
OldCoordType( 0.2, -0.01, -0.02),
|
|
OldCoordType(-0.2, 0.01, 0.02),
|
|
OldCoordType( 0.01, 0.2, 0.01),
|
|
OldCoordType( 0.03, -0.2, -0.03),
|
|
OldCoordType(-0.02, -0.03, 0.2 ),
|
|
OldCoordType(-0.01, 0.01, -0.2 )};
|
|
|
|
for(int qq=0;qq<MultiSample;++qq)
|
|
{
|
|
OldCoordType pp2=pp+delta[qq];
|
|
field_value ff= DistanceFromMesh(pp2);
|
|
if(ff.first==false) return field_value(false,0);
|
|
distSum += fabs(ff.second);
|
|
if(ff.second>0) positiveCnt ++;
|
|
}
|
|
if(positiveCnt<=MultiSample/2) distSum = -distSum;
|
|
return field_value(true, distSum/MultiSample);
|
|
}
|
|
|
|
/// compute the values if an entire slice (per y) distances>dig of a cell are signed with double of
|
|
/// the distance of the bb
|
|
void ComputeSliceValues(int slice,field_value *slice_values)
|
|
{
|
|
for (int i=0; i<=this->siz.X(); i++)
|
|
{
|
|
for (int k=0; k<=this->siz.Z(); k++)
|
|
{
|
|
int index=GetSliceIndex(i,k);
|
|
OldCoordType pp(i,slice,k);
|
|
if(this->MultiSampleFlag) slice_values[index] = MultiDistanceFromMesh(pp);
|
|
else slice_values[index] = DistanceFromMesh(pp);
|
|
}
|
|
}
|
|
//ComputeConsensus(slice,slice_values);
|
|
}
|
|
|
|
/*
|
|
For some reasons it can happens that the sign of the computed distance could not correct.
|
|
this function tries to correct these issues by flipping the isolated voxels with discordant sign
|
|
*/
|
|
void ComputeConsensus(int /*slice*/, field_value *slice_values)
|
|
{
|
|
float max_dist = min(min(this->voxel[0],this->voxel[1]),this->voxel[2]);
|
|
int flippedCnt=0;
|
|
int flippedTot=0;
|
|
int flippedTimes=0;
|
|
do
|
|
{
|
|
flippedCnt=0;
|
|
for (int i=0; i<=this->siz.X(); i++)
|
|
{
|
|
for (int k=0; k<=this->siz.Z(); k++)
|
|
{
|
|
int goodCnt=0;
|
|
int badCnt=0;
|
|
int index=GetSliceIndex(i,k);
|
|
int index_l,index_r,index_u,index_d;
|
|
if(slice_values[index].first)
|
|
{
|
|
float curVal= slice_values[index].second;
|
|
if(i > 0 ) index_l=GetSliceIndex(i-1,k); else index_l = index;
|
|
if(i < this->siz.X() ) index_r=GetSliceIndex(i+1,k); else index_r = index;
|
|
if(k > 0 ) index_d=GetSliceIndex(i,k-1); else index_d = index;
|
|
if(k < this->siz.Z() ) index_u=GetSliceIndex(i,k+1); else index_u = index;
|
|
|
|
if(slice_values[index_l].first) { goodCnt++; if(fabs(slice_values[index_l].second - curVal) > max_dist) badCnt++; }
|
|
if(slice_values[index_r].first) { goodCnt++; if(fabs(slice_values[index_r].second - curVal) > max_dist) badCnt++; }
|
|
if(slice_values[index_u].first) { goodCnt++; if(fabs(slice_values[index_u].second - curVal) > max_dist) badCnt++; }
|
|
if(slice_values[index_d].first) { goodCnt++; if(fabs(slice_values[index_d].second - curVal) > max_dist) badCnt++; }
|
|
|
|
if(badCnt >= goodCnt) {
|
|
slice_values[index].second *=-1.0f;
|
|
//slice_values[index].first = false;
|
|
flippedCnt++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
flippedTot+=flippedCnt;
|
|
flippedTimes++;
|
|
} while(flippedCnt>0);
|
|
|
|
|
|
#ifdef QT_VERSION
|
|
if(flippedTot>0)
|
|
qDebug("Flipped %i values in %i times",flippedTot,flippedTimes);
|
|
#endif
|
|
}
|
|
template<class EXTRACTOR_TYPE>
|
|
void ProcessSlice(EXTRACTOR_TYPE &extractor)
|
|
{
|
|
for (int i=0; i<this->siz.X(); i++)
|
|
{
|
|
for (int k=0; k<this->siz.Z(); k++)
|
|
{
|
|
bool goodCell=true;
|
|
Point3i p1(i,CurrentSlice,k);
|
|
Point3i p2=p1+Point3i(1,1,1);
|
|
for(int ii=0;ii<2;++ii)
|
|
for(int jj=0;jj<2;++jj)
|
|
for(int kk=0;kk<2;++kk)
|
|
goodCell &= VV(p1[0]+ii,p1[1]+jj,p1[2]+kk).first;
|
|
|
|
if(goodCell) extractor.ProcessCell(p1, p2);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<class EXTRACTOR_TYPE>
|
|
void BuildMesh(OldMeshType &old_mesh,NewMeshType &new_mesh,EXTRACTOR_TYPE &extractor,vcg::CallBackPos *cb)
|
|
{
|
|
_newM=&new_mesh;
|
|
_oldM=&old_mesh;
|
|
|
|
// the following two steps are required to be sure that the point-face distance without precomputed data works well.
|
|
tri::UpdateNormal<OldMeshType>::PerFaceNormalized(old_mesh);
|
|
tri::UpdateNormal<OldMeshType>::PerVertexAngleWeighted(old_mesh);
|
|
int _size=(int)old_mesh.fn*100;
|
|
|
|
_g.Set(_oldM->face.begin(),_oldM->face.end(),_size);
|
|
markerFunctor.SetMesh(&old_mesh);
|
|
|
|
_newM->Clear();
|
|
|
|
Begin();
|
|
extractor.Initialize();
|
|
for (int j=0; j<=this->siz.Y(); j++)
|
|
{
|
|
if (cb) cb((100*j)/this->siz.Y(),"Marching ");
|
|
ProcessSlice<EXTRACTOR_TYPE>(extractor);//find cells where there is the isosurface and examine it
|
|
NextSlice();
|
|
}
|
|
extractor.Finalize();
|
|
for(NewVertexIterator vi=new_mesh.vert.begin();vi!=new_mesh.vert.end();++vi)
|
|
if(!(*vi).IsD())
|
|
{
|
|
this->IPfToPf((*vi).cP(),(*vi).P());
|
|
}
|
|
}
|
|
|
|
//return the index of a vertex in slide as it was stored
|
|
int GetSliceIndex(int x,int z)
|
|
{
|
|
VertexIndex index = x+z*(this->siz.X()+1);
|
|
return (index);
|
|
}
|
|
|
|
//swap slices , the initial value of distance fields ids set as double of bbox of space
|
|
void NextSlice()
|
|
{
|
|
|
|
memset(_x_cs, -1, SliceSize*sizeof(VertexIndex));
|
|
memset(_y_cs, -1, SliceSize*sizeof(VertexIndex));
|
|
memset(_z_cs, -1, SliceSize*sizeof(VertexIndex));
|
|
|
|
|
|
std::swap(_x_cs, _x_ns);
|
|
std::swap(_z_cs, _z_ns);
|
|
|
|
std::swap(_v_cs, _v_ns);
|
|
|
|
CurrentSlice ++;
|
|
|
|
ComputeSliceValues(CurrentSlice + 1,_v_ns);
|
|
}
|
|
|
|
//initialize data strucures , the initial value of distance fields ids set as double of bbox of space
|
|
void Begin()
|
|
{
|
|
|
|
CurrentSlice = 0;
|
|
|
|
memset(_x_cs, -1, SliceSize*sizeof(VertexIndex));
|
|
memset(_y_cs, -1, SliceSize*sizeof(VertexIndex));
|
|
memset(_z_cs, -1, SliceSize*sizeof(VertexIndex));
|
|
memset(_x_ns, -1, SliceSize*sizeof(VertexIndex));
|
|
memset(_z_ns, -1, SliceSize*sizeof(VertexIndex));
|
|
|
|
ComputeSliceValues(CurrentSlice,_v_cs);
|
|
ComputeSliceValues(CurrentSlice+1,_v_ns);
|
|
}
|
|
|
|
|
|
|
|
|
|
bool Exist(const vcg::Point3i &p1, const vcg::Point3i &p2, NewVertexPointer &v)
|
|
{
|
|
int i = p1.X();// - _bbox.min.X())/_cell_size.X();
|
|
int z = p1.Z();// - _bbox.min.Z())/_cell_size.Z();
|
|
VertexIndex index = i+z*this->siz.X();
|
|
|
|
//VertexIndex index =GetSliceIndex(//
|
|
int v_ind = 0;
|
|
if (p1.X()!=p2.X()) //intersezione della superficie con un Xedge
|
|
{
|
|
if (p1.Y()==CurrentSlice)
|
|
{
|
|
if (_x_cs[index]!=-1)
|
|
{
|
|
v_ind = _x_cs[index];
|
|
v = &_newM->vert[v_ind];
|
|
assert(!v->IsD());
|
|
return true;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
if (_x_ns[index]!=-1)
|
|
{
|
|
v_ind = _x_ns[index];
|
|
v = &_newM->vert[v_ind];
|
|
assert(!v->IsD());
|
|
return true;
|
|
}
|
|
}
|
|
v = NULL;
|
|
return false;
|
|
}
|
|
else if (p1.Y()!=p2.Y()) //intersezione della superficie con un Yedge
|
|
{
|
|
if (_y_cs[index]!=-1)
|
|
{
|
|
v_ind =_y_cs[index];
|
|
v = &_newM->vert[v_ind];
|
|
assert(!v->IsD());
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
v = NULL;
|
|
return false;
|
|
}
|
|
|
|
}
|
|
else if (p1.Z()!=p2.Z())
|
|
//intersezione della superficie con un Zedge
|
|
{
|
|
if (p1.Y()==CurrentSlice)
|
|
{
|
|
if ( _z_cs[index]!=-1)
|
|
{
|
|
v_ind = _z_cs[index];
|
|
v = &_newM->vert[v_ind];
|
|
assert(!v->IsD());
|
|
return true;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
if (_z_ns[index]!=-1)
|
|
{
|
|
v_ind = _z_ns[index];
|
|
v = &_newM->vert[v_ind];
|
|
assert(!v->IsD());
|
|
return true;
|
|
}
|
|
}
|
|
v = NULL;
|
|
return false;
|
|
}
|
|
assert (0);
|
|
return false;
|
|
}
|
|
|
|
///interpolate
|
|
NewCoordType Interpolate(const vcg::Point3i &p1, const vcg::Point3i &p2,int dir)
|
|
{
|
|
NewScalarType f1 = V(p1);
|
|
NewScalarType f2 = V(p2);
|
|
NewScalarType u = f1/(f1-f2);
|
|
NewCoordType ret(p1.V(0),p1.V(1),p1.V(2));
|
|
ret.V(dir) = p1.V(dir)*(1.f-u) + u*p2.V(dir);
|
|
return (ret);
|
|
}
|
|
|
|
///if there is a vertex in z axis of a cell return the vertex or create it
|
|
void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, NewVertexPointer &v)
|
|
{
|
|
assert(p1.X()+1 == p2.X());
|
|
assert(p1.Y() == p2.Y());
|
|
assert(p1.Z() == p2.Z());
|
|
|
|
int i = p1.X();// (p1.X() - _bbox.min.X())/_cell_size.X();
|
|
int z = p1.Z();//(p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
|
VertexIndex index = i+z*this->siz.X();
|
|
VertexIndex pos=-1;
|
|
if (p1.Y()==CurrentSlice)
|
|
{
|
|
if ((pos=_x_cs[index])==-1)
|
|
{
|
|
_x_cs[index] = (VertexIndex) _newM->vert.size();
|
|
pos = _x_cs[index];
|
|
Allocator<NewMeshType>::AddVertices( *_newM, 1 );
|
|
v = &_newM->vert[pos];
|
|
v->P()=Interpolate(p1,p2,0);
|
|
return;
|
|
}
|
|
}
|
|
if (p1.Y()==CurrentSlice+1)
|
|
{
|
|
if ((pos=_x_ns[index])==-1)
|
|
{
|
|
_x_ns[index] = (VertexIndex) _newM->vert.size();
|
|
pos = _x_ns[index];
|
|
Allocator<NewMeshType>::AddVertices( *_newM, 1 );
|
|
v = &_newM->vert[pos];
|
|
v->P()=Interpolate(p1,p2,0);
|
|
return;
|
|
}
|
|
}
|
|
assert(pos>=0);
|
|
v = &_newM->vert[pos];
|
|
}
|
|
|
|
///if there is a vertex in y axis of a cell return the vertex or create it
|
|
void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, NewVertexPointer &v)
|
|
{
|
|
assert(p1.X() == p2.X());
|
|
assert(p1.Y()+1 == p2.Y());
|
|
assert(p1.Z() == p2.Z());
|
|
|
|
int i = p1.X(); // (p1.X() - _bbox.min.X())/_cell_size.X();
|
|
int z = p1.Z(); // (p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
|
VertexIndex index = i+z*this->siz.X();
|
|
VertexIndex pos=-1;
|
|
if ((pos=_y_cs[index])==-1)
|
|
{
|
|
_y_cs[index] = (VertexIndex) _newM->vert.size();
|
|
pos = _y_cs[index];
|
|
Allocator<NewMeshType>::AddVertices( *_newM, 1);
|
|
v = &_newM->vert[ pos ];
|
|
v->P()=Interpolate(p1,p2,1);
|
|
}
|
|
assert(pos>=0);
|
|
v = &_newM->vert[pos];
|
|
}
|
|
|
|
///if there is a vertex in z axis of a cell return the vertex or create it
|
|
void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, NewVertexPointer &v)
|
|
{
|
|
assert(p1.X() == p2.X());
|
|
assert(p1.Y() == p2.Y());
|
|
assert(p1.Z()+1 == p2.Z());
|
|
|
|
int i = p1.X(); //(p1.X() - _bbox.min.X())/_cell_size.X();
|
|
int z = p1.Z(); //(p1.Z() - _bbox.min.Z())/_cell_size.Z();
|
|
VertexIndex index = i+z*this->siz.X();
|
|
|
|
VertexIndex pos=-1;
|
|
if (p1.Y()==CurrentSlice)
|
|
{
|
|
if ((pos=_z_cs[index])==-1)
|
|
{
|
|
_z_cs[index] = (VertexIndex) _newM->vert.size();
|
|
pos = _z_cs[index];
|
|
Allocator<NewMeshType>::AddVertices( *_newM, 1 );
|
|
v = &_newM->vert[pos];
|
|
v->P()=Interpolate(p1,p2,2);
|
|
return;
|
|
}
|
|
}
|
|
if (p1.Y()==CurrentSlice+1)
|
|
{
|
|
if ((pos=_z_ns[index])==-1)
|
|
{
|
|
_z_ns[index] = (VertexIndex) _newM->vert.size();
|
|
pos = _z_ns[index];
|
|
Allocator<NewMeshType>::AddVertices( *_newM, 1 );
|
|
v = &_newM->vert[pos];
|
|
v->P()=Interpolate(p1,p2,2);
|
|
return;
|
|
}
|
|
}
|
|
assert(pos>=0);
|
|
v = &_newM->vert[pos];
|
|
}
|
|
|
|
};//end class walker
|
|
|
|
public:
|
|
|
|
typedef Walker /*< Old_Mesh,New_Mesh>*/ MyWalker;
|
|
|
|
typedef vcg::tri::MarchingCubes<NewMeshType, MyWalker> MyMarchingCubes;
|
|
|
|
///resample the mesh using marching cube algorithm ,the accuracy is the dimension of one cell the parameter
|
|
static void Resample(OldMeshType &old_mesh, NewMeshType &new_mesh, NewBoxType volumeBox, vcg::Point3<int> accuracy,float max_dist, float thr=0, bool DiscretizeFlag=false, bool MultiSampleFlag=false, bool AbsDistFlag=false, vcg::CallBackPos *cb=0 )
|
|
{
|
|
///be sure that the bounding box is updated
|
|
vcg::tri::UpdateBounding<OldMeshType>::Box(old_mesh);
|
|
|
|
MyWalker walker(volumeBox,accuracy);
|
|
|
|
walker.max_dim=max_dist+fabs(thr);
|
|
walker.offset = - thr;
|
|
walker.DiscretizeFlag = DiscretizeFlag;
|
|
walker.MultiSampleFlag = MultiSampleFlag;
|
|
walker.AbsDistFlag = AbsDistFlag;
|
|
MyMarchingCubes mc(new_mesh, walker);
|
|
walker.BuildMesh(old_mesh,new_mesh,mc,cb);
|
|
}
|
|
|
|
|
|
};//end class resampler
|
|
|
|
}//end namespace tri
|
|
}//end namespace vcg
|
|
#endif
|