vcglib/vcg/complex/algorithms/hole.h

993 lines
28 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.34 2007/01/31 15:25:49 giec
Remove some usless code in Minimum Weight Triangulation.
Revision 1.33 2007/01/31 11:46:12 giec
Bug fix
Revision 1.32 2007/01/18 18:15:14 cignoni
added missing typenames
Revision 1.31 2007/01/18 11:17:43 giec
The minimum weight algorithm keep the topology consistent.
Revision 1.30 2007/01/10 12:07:54 giec
Bugfixed ComputeDihedralAngle function
Revision 1.29 2006/12/27 15:09:52 giec
Bug fix on ComputeDihedralAngle function
Revision 1.28 2006/12/12 11:14:51 cignoni
Commented some variant of the quality measure of weighted ears
Revision 1.27 2006/12/07 00:40:18 cignoni
Added many this-> for gcc compiling
Revision 1.26 2006/12/06 13:03:59 cignoni
Corrected bugs on selfintersection
Revision 1.25 2006/12/06 00:12:53 cignoni
Heavily restructured and corrected. Now a single Close ear function
Corrected Hole search function, and management of double non manifold vertex in a hole
Changed priority strategy in the heap, now a mix of quality and dihedral angle.
Changed but still untested IntersectionEar
Revision 1.24 2006/12/01 21:24:16 cignoni
Corrected bug in the search of holes. Removed output prints
Revision 1.23 2006/12/01 08:53:55 cignoni
Corrected pop_heap vs pop_back issue in heap usage
Revision 1.22 2006/12/01 00:11:17 cignoni
Added Callback, Corrected some spelling errors (adiacense -> adjacency).
Added Validity Check function for hole loops
Revision 1.21 2006/11/30 11:49:20 cignoni
small gcc compiling issues
Revision 1.20 2006/11/29 16:21:45 cignoni
Made static exposed funtions of the class
Revision 1.19 2006/11/29 15:25:22 giec
Removed limit.
Revision 1.18 2006/11/29 15:18:49 giec
Code refactory and bugfix.
Revision 1.17 2006/11/24 10:42:39 mariolatronico
Now compiles on gcc under linux.
Revision 1.16 2006/11/22 13:43:28 giec
Code refactory and added minimum weight triangolation.
Revision 1.15 2006/11/13 10:11:38 giec
Clear some useless code
Revision 1.14 2006/11/07 15:13:56 zifnab1974
Necessary changes for compilation with gcc 3.4.6. Especially the hash function is a problem
Revision 1.13 2006/11/07 11:47:11 cignoni
gcc compiling issues
Revision 1.12 2006/11/07 07:56:43 cignoni
Added missing std::
Revision 1.11 2006/11/06 16:12:29 giec
Leipa ear now compute max dihedral angle.
Revision 1.10 2006/10/31 11:30:41 ganovelli
changed access throught iterator with static call to comply 2005 compiler
Revision 1.9 2006/10/20 07:44:45 cignoni
Added missing std::
Revision 1.8 2006/10/18 15:06:47 giec
New policy for compute quality in TrivialEar.
Bugfixed LeipaEar.
Added new algorithm "selfintersection" with test for self intersection.
Revision 1.7 2006/10/10 09:12:02 giec
Bugfix and added a new type of ear (Liepa like)
Revision 1.6 2006/10/09 10:07:07 giec
Optimized version of "EAR HOLE FILLING", the Ear is selected according to its dihedral angle.
Revision 1.5 2006/10/06 15:28:14 giec
first working implementationof "EAR HOLE FILLING".
Revision 1.4 2006/10/02 12:06:40 giec
BugFix
Revision 1.3 2006/09/27 15:33:32 giec
It close one simple hole . . .
Revision 1.2 2006/09/27 09:29:53 giec
Frist working release whit a few bugs.
It almost fills the hole ...
Revision 1.1 2006/09/25 09:17:44 cignoni
First Non working Version
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_HOLE
#define __VCG_TRI_UPDATE_HOLE
#include <wrap/callback.h>
#include <vcg/math/base.h>
#include <vcg/complex/algorithms/clean.h>
#include <vcg/space/point3.h>
#include <vector>
#include <float.h>
namespace vcg {
namespace tri {
/*
Un ear e' identificato da due hedge pos.
i vertici dell'ear sono
e0.VFlip().v
e0.v
e1.v
Vale che e1== e0.NextB();
e che e1.FlipV() == e0;
Situazioni ear non manifold, e degeneri (buco triangolare)
T XXXXXXXXXXXXX A /XXXXX B en/XXXXX
/XXXXXXXXXXXXXXX /XXXXXX /XXXXXX
XXXXXXep==en XXX ep\ /en XXXX /e1 XXXX
XXXXXX ----/| XX ------ ----/| XX ------ ----/|XXX
XXXXXX| /e1 XX XXXXXX| /e1 XX XXXXXX| o/e0 XX
XXXXXX| /XXXXXX XXXXXX| /XXXXXX XXXXXX| /XXXXXX
XXX e0|o/XXXXXXX XXX e0|o/XXXXXXX XXX ep| /XXXXXXX
XXX \|/XXXXXXXX XXX \|/XXXXXXXX XXX \|/XXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
*/
template<class MESH> class TrivialEar
{
public:
typedef typename MESH::FaceType FaceType;
typedef typename MESH::FacePointer FacePointer;
typedef typename face::Pos<FaceType> PosType;
typedef typename MESH::ScalarType ScalarType;
typedef typename MESH::CoordType CoordType;
PosType e0;
PosType e1;
CoordType n; // the normal of the face defined by the ear
const char * Dump() {return 0;}
const CoordType &cP(int i) const {return P(i);}
const CoordType &P(int i) const {
switch(i) {
case 0 : return e0.v->cP();
case 1 : return e1.v->cP();
case 2 : return e0.VFlip()->cP();
default: assert(0);
}
return e0.v->cP();
}
ScalarType quality;
ScalarType angle;
//std::vector<typename MESH::FaceType>* vf;
TrivialEar(){}
TrivialEar(const PosType & ep)
{
e0=ep;
assert(e0.IsBorder());
e1=e0;
e1.NextB();
n=vcg::Normal<TrivialEar>(*this);
ComputeQuality();
ComputeAngle();
}
/// Compute the angle of the two edges of the ear.
// it tries to make the computation in a precision safe way.
// the angle computation takes into account the case of reversed ears
void ComputeAngle()
{
angle=Angle(cP(2)-cP(0), cP(1)-cP(0));
ScalarType flipAngle = n.dot(e0.v->N());
if(flipAngle<0) angle = (2.0 *(float)M_PI) - angle;
}
virtual inline bool operator < ( const TrivialEar & c ) const { return quality < c.quality; }
bool IsNull(){return e0.IsNull() || e1.IsNull();}
void SetNull(){e0.SetNull();e1.SetNull();}
virtual void ComputeQuality() { quality = QualityFace(*this) ; };
bool IsUpToDate() {return ( e0.IsBorder() && e1.IsBorder());};
// An ear is degenerated if both of its two endpoints are non manifold.
bool IsDegen(const int nonManifoldBit)
{
if(e0.VFlip()->IsUserBit(nonManifoldBit) && e1.V()->IsUserBit(nonManifoldBit))
return true;
else return false;
}
bool IsConcave() const {return(angle > (float)M_PI);}
virtual bool Close(PosType &np0, PosType &np1, FaceType * f)
{
// simple topological check
if(e0.f==e1.f) {
//printf("Avoided bad ear");
return false;
}
//usato per generare una delle due nuove orecchie.
PosType ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
PosType en=e1; en.NextB(); // he successivo a e1
(*f).V(0) = e0.VFlip();
(*f).V(1) = e0.v;
(*f).V(2) = e1.v;
ComputeNormal(*f);
(*f).FFp(0) = e0.f;
(*f).FFi(0) = e0.z;
(*f).FFp(1) = e1.f;
(*f).FFi(1) = e1.z;
(*f).FFp(2) = f;
(*f).FFi(2) = 2;
e0.f->FFp(e0.z)=f;
e0.f->FFi(e0.z)=0;
e1.f->FFp(e1.z)=f;
e1.f->FFi(e1.z)=1;
// caso ear degenere per buco triangolare
if(ep==en)
{
//printf("Closing the last triangle");
f->FFp(2)=en.f;
f->FFi(2)=en.z;
en.f->FFp(en.z)=f;
en.f->FFi(en.z)=2;
np0.SetNull();
np1.SetNull();
}
// Caso ear non manifold a
else if(ep.v==en.v)
{
//printf("Ear Non manif A\n");
PosType enold=en;
en.NextB();
f->FFp(2)=enold.f;
f->FFi(2)=enold.z;
enold.f->FFp(enold.z)=f;
enold.f->FFi(enold.z)=2;
np0=ep;
np1=en;
}
// Caso ear non manifold b
else if(ep.VFlip()==e1.v)
{
//printf("Ear Non manif B\n");
PosType epold=ep;
ep.FlipV(); ep.NextB(); ep.FlipV();
f->FFp(2)=epold.f;
f->FFi(2)=epold.z;
epold.f->FFp(epold.z)=f;
epold.f->FFi(epold.z)=2;
np0=ep; // assign the two new
np1=en; // pos that denote the ears
}
else // caso standard // Now compute the new ears;
{
np0=ep;
np1=PosType(f,2,e1.v);
}
return true;
}
};
//Ear with FillHoleMinimumWeight's quality policy
template<class MESH> class MinimumWeightEar : public TrivialEar<MESH>
{
public:
static float &DiedralWeight() { static float _dw=1.0; return _dw;}
typedef TrivialEar<MESH> TE;
typename MESH::ScalarType dihedralRad;
typename MESH::ScalarType aspectRatio;
const char * Dump() {
static char buf[200];
if(this->IsConcave()) sprintf(buf,"Dihedral -(deg) %6.2f Quality %6.2f\n",math::ToDeg(dihedralRad),aspectRatio);
else sprintf(buf,"Dihedral (deg) %6.2f Quality %6.2f\n",math::ToDeg(dihedralRad),aspectRatio);
return buf;
}
MinimumWeightEar(){}
//MinimumWeightEar(const PosType & ep) : TrivialEar<MESH>(ep)
MinimumWeightEar(const typename face::Pos<typename MESH::FaceType>& ep) : TrivialEar<MESH>(ep)
{
ComputeQuality();
}
// In the heap, by default, we retrieve the LARGEST value,
// so if we need the ear with minimal dihedral angle, we must reverse the sign of the comparison.
// The concave elements must be all in the end of the heap, sorted accordingly,
// So if only one of the two ear is Concave that one is always the minimum one.
// the pow function is here just to give a way to play with different weighting schemas, balancing in a different way
virtual inline bool operator < ( const MinimumWeightEar & c ) const
{
if(TE::IsConcave() == c.IsConcave())
{
return (pow((float)dihedralRad,(float)DiedralWeight())/aspectRatio) > (pow((float)c.dihedralRad,(float)DiedralWeight())/c.aspectRatio);
}
if(TE::IsConcave()) return true;
// assert(c.IsConcave());
return false;
}
// the real core of the whole hole filling strategy.
virtual void ComputeQuality()
{
//compute quality by (dihedral ancgle, area/sum(edge^2) )
typename MESH::CoordType n1=TE::e0.FFlip()->cN();
typename MESH::CoordType n2=TE::e1.FFlip()->cN();
dihedralRad = std::max(Angle(TE::n,n1),Angle(TE::n,n2));
aspectRatio = QualityFace(*this);
}
};
//Ear for selfintersection algorithm
template<class MESH> class SelfIntersectionEar : public MinimumWeightEar<MESH>
{
public:
typedef typename MESH::FaceType FaceType;
typedef typename MESH::FacePointer FacePointer;
typedef typename face::Pos<FaceType> PosType;
typedef typename MESH::ScalarType ScalarType;
typedef typename MESH::CoordType CoordType;
static std::vector<FacePointer> &AdjacencyRing()
{
static std::vector<FacePointer> ar;
return ar;
}
SelfIntersectionEar(){}
SelfIntersectionEar(const PosType & ep):MinimumWeightEar<MESH>(ep){}
virtual bool Close(PosType &np0, PosType &np1, FacePointer f)
{
PosType ep=this->e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
PosType en=this->e1; en.NextB(); // he successivo a e1
//costruisco la faccia e poi testo, o copio o butto via.
(*f).V(0) = this->e0.VFlip();
(*f).V(1) = this->e0.v;
(*f).V(2) = this->e1.v;
(*f).FFp(0) = this->e0.f;
(*f).FFi(0) = this->e0.z;
(*f).FFp(1) = this->e1.f;
(*f).FFi(1) = this->e1.z;
(*f).FFp(2) = f;
(*f).FFi(2) = 2;
int a1, a2;
a1= this->e0.z;
a2= this->e1.z;
this->e0.f->FFp(this->e0.z)=f;
this->e0.f->FFi(this->e0.z)=0;
this->e1.f->FFp(this->e1.z)=f;
this->e1.f->FFi(this->e1.z)=1;
typename std::vector< FacePointer >::iterator it;
for(it = this->AdjacencyRing().begin();it!= this->AdjacencyRing().end();++it)
{
if(!(*it)->IsD())
if( tri::Clean<MESH>::TestIntersection(&(*f),*it))
{
this->e0.f->FFp(this->e0.z)= this->e0.f;
this->e0.f->FFi(this->e0.z)=a1;
this->e1.f->FFp(this->e1.z)= this->e1.f;
this->e1.f->FFi(this->e1.z)=a2;
return false;
}
}
//return ((TrivialEar<MESH> *)this)->Close(np0,np1,f);
this->e0.f->FFp(this->e0.z)= this->e0.f;
this->e0.f->FFi(this->e0.z)=a1;
this->e1.f->FFp(this->e1.z)=this->e1.f;
this->e1.f->FFi(this->e1.z)=a2;
bool ret=TrivialEar<MESH>::Close(np0,np1,f);
if(ret) AdjacencyRing().push_back(f);
return ret;
}
};
// Funzione principale per chiudier un buco in maniera topologicamente corretta.
// Gestisce situazioni non manifold ragionevoli
// (tutte eccetto quelle piu' di 2 facce per 1 edge).
// Controlla che non si generino nuove situazioni non manifold chiudendo orecchie
// che sottendono un edge che gia'esiste.
template <class MESH>
class Hole
{
public:
typedef typename MESH::VertexType VertexType;
typedef typename MESH::VertexPointer VertexPointer;
typedef typename MESH::ScalarType ScalarType;
typedef typename MESH::FaceType FaceType;
typedef typename MESH::FacePointer FacePointer;
typedef typename MESH::FaceIterator FaceIterator;
typedef typename MESH::CoordType CoordType;
typedef typename vcg::Box3<ScalarType> Box3Type;
typedef typename face::Pos<FaceType> PosType;
public:
class Info
{
public:
Info(){}
Info(PosType const &pHole, int const pHoleSize, Box3<ScalarType> &pHoleBB)
{
p=pHole;
size=pHoleSize;
bb=pHoleBB;
}
PosType p;
int size;
Box3Type bb;
bool operator < (const Info & hh) const {return size < hh.size;}
ScalarType Perimeter()
{
ScalarType sum=0;
PosType ip = p;
do
{
sum+=Distance(ip.v->cP(),ip.VFlip()->cP());
ip.NextB();
}
while (ip != p);
return sum;
}
// Support function to test the validity of a single hole loop
// for now it test only that all the edges are border;
// The real test should check if all non manifold vertices
// are touched only by edges belonging to this hole loop.
bool CheckValidity()
{
if(!p.IsBorder())
return false;
PosType ip=p;ip.NextB();
for(;ip!=p;ip.NextB())
{
if(!ip.IsBorder())
return false;
}
return true;
}
};
template<class EAR>
static void FillHoleEar(MESH &m, Info &h ,int UBIT, std::vector<FacePointer *> &app,std::vector<FaceType > *vf =0)
{
//Aggiungo le facce e aggiorno il puntatore alla faccia!
FaceIterator f = tri::Allocator<MESH>::AddFaces(m, h.size-2, app);
assert(h.p.f >= &*m.face.begin());
assert(h.p.f <= &m.face.back());
assert(h.p.IsBorder());//test fondamentale altrimenti qualcosa s'e' rotto!
std::vector< EAR > H;
H.reserve(h.size);
int nmBit= VertexType::NewBitFlag(); // non manifoldness bit
//First loops around the hole to mark non manifold vertices.
PosType ip = h.p; // Pos iterator
do{
ip.V()->ClearUserBit(nmBit);
ip.V()->ClearV();
ip.NextB();
} while(ip!=h.p);
ip = h.p; // Re init the pos iterator for another loop (useless if everithing is ok!!)
do{
if(!ip.V()->IsV())
ip.V()->SetV(); // All the vertexes that are visited more than once are non manifold
else ip.V()->SetUserBit(nmBit);
ip.NextB();
} while(ip!=h.p);
PosType fp = h.p;
do{
EAR app = EAR(fp);
H.push_back( app );
//printf("Adding ear %s ",app.Dump());
fp.NextB();
assert(fp.IsBorder());
}while(fp!=h.p);
int cnt=h.size;
make_heap(H.begin(), H.end());
//finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare.
while( cnt > 2 && !H.empty() )
{
//printf("Front of the heap is %s", H.front().Dump());
pop_heap(H.begin(), H.end()); // retrieve the MAXIMUM value and put in the back;
PosType ep0,ep1;
EAR BestEar=H.back();
H.pop_back();
if(BestEar.IsUpToDate() && !BestEar.IsDegen(nmBit))
{
if((*f).HasPolyInfo()) (*f).Alloc(3);
if(BestEar.Close(ep0,ep1,&*f))
{
if(!ep0.IsNull()){
H.push_back(EAR(ep0));
push_heap( H.begin(), H.end());
}
if(!ep1.IsNull()){
H.push_back(EAR(ep1));
push_heap( H.begin(), H.end());
}
--cnt;
f->SetUserBit(UBIT);
if(vf != 0) (*vf).push_back(*f);
++f;
}
}//is update()
}//fine del while principale.
//tolgo le facce non utilizzate.
while(f!=m.face.end())
{
(*f).SetD();
++f;
m.fn--;
}
VertexType::DeleteBitFlag(nmBit); // non manifoldness bit
}
template<class EAR>
static int EarCuttingFill(MESH &m, int sizeHole,bool Selected = false, CallBackPos *cb=0)
{
std::vector< Info > vinfo;
int UBIT = GetInfo(m, Selected,vinfo);
typename std::vector<Info >::iterator ith;
//Info app;
int indCb=0;
int holeCnt=0;
std::vector<FacePointer *> vfp;
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
vfp.push_back( &(*ith).p.f );
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
{
indCb++;
if(cb) (*cb)(indCb*10/vinfo.size(),"Closing Holes");
if((*ith).size < sizeHole){
holeCnt++;
FillHoleEar< EAR >(m, *ith,UBIT,vfp);
}
}
FaceIterator fi;
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
{
if(!(*fi).IsD())
(*fi).ClearUserBit(UBIT);
}
return holeCnt;
}
// it returns the number of created holes.
template<class EAR>
static int EarCuttingIntersectionFill(MESH &m, int sizeHole, bool Selected = false, CallBackPos *cb=0)
{
std::vector<Info > vinfo;
int UBIT = GetInfo(m, Selected,vinfo);
std::vector<FaceType > vf;
PosType sp;
PosType ap;
typename std::vector<Info >::iterator ith;
// collect the face pointer that has to be updated by the various addfaces
std::vector<FacePointer *> vfpOrig;
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
vfpOrig.push_back( &(*ith).p.f );
int indCb=0;
int holeCnt=0;
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
{
indCb++;
if(cb) (*cb)(indCb*10/vinfo.size(),"Closing Holes");
if((*ith).size < sizeHole){
std::vector<FacePointer *> vfp;
holeCnt++;
vfp=vfpOrig;
EAR::AdjacencyRing().clear();
//Loops around the hole to collect the races .
PosType ip = (*ith).p;
do
{
PosType inp = ip;
do
{
inp.FlipE();
inp.FlipF();
EAR::AdjacencyRing().push_back(inp.f);
} while(!inp.IsBorder());
ip.NextB();
}while(ip != (*ith).p);
typename std::vector<FacePointer>::iterator fpi;
for(fpi=EAR::AdjacencyRing().begin();fpi!=EAR::AdjacencyRing().end();++fpi)
vfp.push_back( &*fpi );
FillHoleEar<EAR >(m, *ith,UBIT,vfp,&vf);
EAR::AdjacencyRing().clear();
}
}
FaceIterator fi;
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
{
if(!(*fi).IsD())
(*fi).ClearUserBit(UBIT);
}
return holeCnt;
}
static int GetInfo(MESH &m,bool Selected ,std::vector<Info >& VHI)
{
FaceIterator fi;
int UBIT = FaceType::LastBitFlag();
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
{
if(!(*fi).IsD())
{
if(Selected && !(*fi).IsS())
{
//se devo considerare solo i triangoli selezionati e
//quello che sto considerando non lo e' lo marchio e vado avanti
(*fi).SetUserBit(UBIT);
}
else
{
for(int j =0; j<3 ; ++j)
{
if( face::IsBorder(*fi,j) && !(*fi).IsUserBit(UBIT) )
{//Trovato una faccia di bordo non ancora visitata.
(*fi).SetUserBit(UBIT);
PosType sp(&*fi, j, (*fi).V(j));
PosType fp=sp;
int holesize=0;
Box3Type hbox;
hbox.Add(sp.v->cP());
//printf("Looping %i : (face %i edge %i) \n", VHI.size(),sp.f-&*m.face.begin(),sp.z);
sp.f->SetUserBit(UBIT);
do
{
sp.f->SetUserBit(UBIT);
hbox.Add(sp.v->cP());
++holesize;
sp.NextB();
sp.f->SetUserBit(UBIT);
assert(sp.IsBorder());
}while(sp != fp);
//ho recuperato l'inofrmazione su tutto il buco
VHI.push_back( Info(sp,holesize,hbox) );
}
}//for sugli edge del triangolo
}//S & !S
}//!IsD()
}//for principale!!!
return UBIT;
}
//Minimum Weight Algorithm
class Weight
{
public:
Weight() { ang = 180; ar = FLT_MAX ;}
Weight( float An, float Ar ) { ang=An ; ar= Ar;}
~Weight() {}
float angle() const { return ang; }
float area() const { return ar; }
Weight operator+( const Weight & other ) const {return Weight( std::max( angle(), other.angle() ), area() + other.area());}
bool operator<( const Weight & rhs ) const {return ( angle() < rhs.angle() ||(angle() == rhs.angle() && area() < rhs.area())); }
private:
float ang;
float ar;
};
/*
\ / \/
v1*---------*v4
/ \ /
/ \ /
/ \ /
/ear \ /
*---------*-
| v3 v2\
*/
static float ComputeDihedralAngle(CoordType p1,CoordType p2,CoordType p3,CoordType p4)
{
CoordType n1 = NormalizedNormal(p1,p3,p2);
CoordType n2 = NormalizedNormal(p1,p2,p4);
return math::ToDeg(AngleN(n1,n2));
}
static bool existEdge(PosType pi,PosType pf)
{
PosType app = pi;
PosType appF = pi;
PosType tmp;
assert(pi.IsBorder());
appF.NextB();
appF.FlipV();
do
{
tmp = app;
tmp.FlipV();
if(tmp.v == pf.v)
return true;
app.FlipE();
app.FlipF();
if(app == pi)return false;
}while(app != appF);
return false;
}
static Weight computeWeight( int i, int j, int k,
std::vector<PosType > pv,
std::vector< std::vector< int > > v)
{
PosType pi = pv[i];
PosType pj = pv[j];
PosType pk = pv[k];
//test complex edge
if(existEdge(pi,pj) || existEdge(pj,pk)|| existEdge(pk,pi) )
{
return Weight();
}
// Return an infinite weight, if one of the neighboring patches
// could not be created.
if(v[i][j] == -1){return Weight();}
if(v[j][k] == -1){return Weight();}
//calcolo il massimo angolo diedrale, se esiste.
float angle = 0.0f;
PosType px;
if(i + 1 == j)
{
px = pj;
px.FlipE(); px.FlipV();
angle = std::max<float>(angle , ComputeDihedralAngle(pi.v->P(), pj.v->P(), pk.v->P(), px.v->P()) );
}
else
{
angle = std::max<float>( angle, ComputeDihedralAngle(pi.v->P(),pj.v->P(), pk.v->P(), pv[ v[i][j] ].v->P()));
}
if(j + 1 == k)
{
px = pk;
px.FlipE(); px.FlipV();
angle = std::max<float>(angle , ComputeDihedralAngle(pj.v->P(), pk.v->P(), pi.v->P(), px.v->P()) );
}
else
{
angle = std::max<float>( angle, ComputeDihedralAngle(pj.v->P(),pk.v->P(), pi.v->P(), pv[ v[j][k] ].v->P()));
}
if( i == 0 && k == (int)v.size() - 1)
{
px = pi;
px.FlipE(); px.FlipV();
angle = std::max<float>(angle , ComputeDihedralAngle(pk.v->P(), pi.v->P(), pj.v->P(),px.v->P() ) );
}
ScalarType area = ( (pj.v->P() - pi.v->P()) ^ (pk.v->P() - pi.v->P()) ).Norm() * 0.5;
return Weight(angle, area);
}
static void calculateMinimumWeightTriangulation(MESH &m, FaceIterator f,std::vector<PosType > vv )
{
std::vector< std::vector< Weight > > w; //matrice dei pesi minimali di ogni orecchio preso in conzideraione
std::vector< std::vector< int > > vi;//memorizza l'indice del terzo vertice del triangolo
//hole size
int nv = vv.size();
w.clear();
w.resize( nv, std::vector<Weight>( nv, Weight() ) );
vi.resize( nv, std::vector<int>( nv, 0 ) );
//inizializzo tutti i pesi possibili del buco
for ( int i = 0; i < nv-1; ++i )
w[i][i+1] = Weight( 0, 0 );
//doppio ciclo for per calcolare di tutti i possibili triangoli i loro pesi.
for ( int j = 2; j < nv; ++j )
{
for ( int i = 0; i + j < nv; ++i )
{
//per ogni triangolazione mi mantengo il minimo valore del peso tra i triangoli possibili
Weight minval;
//indice del vertice che da il peso minimo nella triangolazione corrente
int minIndex = -1;
//ciclo tra i vertici in mezzo a i due prefissati
for ( int m = i + 1; m < i + j; ++m )
{
Weight a = w[i][m];
Weight b = w[m][i+j];
Weight newval = a + b + computeWeight( i, m, i+j, vv, vi);
if ( newval < minval )
{
minval = newval;
minIndex = m;
}
}
w[i][i+j] = minval;
vi[i][i+j] = minIndex;
}
}
//Triangulate
int i, j;
i=0; j=nv-1;
triangulate(m,f, i, j, vi, vv);
while(f!=m.face.end())
{
(*f).SetD();
++f;
m.fn--;
}
}
static void triangulate(MESH &m, FaceIterator &f,int i, int j,
std::vector< std::vector<int> > vi, std::vector<PosType > vv)
{
if(i + 1 == j){return;}
if(i==j)return;
int k = vi[i][j];
if(k == -1) return;
//Setto i vertici
f->V(0) = vv[i].v;
f->V(1) = vv[k].v;
f->V(2) = vv[j].v;
f++;
triangulate(m,f,i,k,vi,vv);
triangulate(m,f,k,j,vi,vv);
}
static void MinimumWeightFill(MESH &m, int holeSize, bool Selected)
{
FaceIterator fi;
std::vector<PosType > vvi;
std::vector<FacePointer * > vfp;
std::vector<Info > vinfo;
typename std::vector<Info >::iterator VIT;
GetInfo(m, Selected,vinfo);
for(VIT = vinfo.begin(); VIT != vinfo.end();++VIT)
{
vvi.push_back(VIT->p);
}
typename std::vector<PosType >::iterator ith;
typename std::vector<PosType >::iterator ithn;
typename std::vector<VertexPointer >::iterator itf;
std::vector<PosType > app;
PosType ps;
std::vector<FaceType > tr;
std::vector<VertexPointer > vf;
for(ith = vvi.begin(); ith!= vvi.end(); ++ith)
{
tr.clear();
vf.clear();
app.clear();
vfp.clear();
ps = *ith;
getBoundHole(ps,app);
if(app.size() <= size_t(holeSize) )
{
typename std::vector<PosType >::iterator itP;
std::vector<FacePointer *> vfp;
for(ithn = vvi.begin(); ithn!= vvi.end(); ++ithn)
vfp.push_back(&(ithn->f));
for(itP = app.begin (); itP != app.end ();++itP)
vfp.push_back( &(*itP).f );
//aggiungo le facce
FaceIterator f = tri::Allocator<MESH>::AddFaces(m, (app.size()-2) , vfp);
calculateMinimumWeightTriangulation(m,f, app);
}
}
}
static void getBoundHole (PosType sp,std::vector<PosType >&ret)
{
PosType fp = sp;
//take vertex around the hole
do
{
assert(fp.IsBorder());
ret.push_back(fp);
fp.NextB();
}while(sp != fp);
}
};//close class Hole
} // end namespace
}
#endif