974 lines
26 KiB
C++
974 lines
26 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCG_TETRA_EDGE_COLLAPSE
|
|
#define __VCG_TETRA_EDGE_COLLAPSE
|
|
|
|
#include <vcg/space/tetra3.h>
|
|
#include <vcg/complex/tetramesh/update/topology.h>
|
|
#include <vcg/complex/tetramesh/update/normal.h>
|
|
|
|
|
|
|
|
namespace vcg{
|
|
namespace tetra{
|
|
|
|
/** \addtogroup tetramesh */
|
|
/*@{*/
|
|
/// This Class is used for the edge collapse
|
|
template <class TETRA_MESH_TYPE>
|
|
class EdgeCollapse
|
|
{
|
|
public:
|
|
/// The tetrahedral mesh type
|
|
typedef TETRA_MESH_TYPE TetraMeshType;
|
|
/// The tetrahedron type
|
|
typedef typename TetraMeshType::TetraType TetraType;
|
|
/// The vertex type
|
|
typedef typename TetraType::VertexType VertexType;
|
|
/// The vertex iterator type
|
|
typedef typename TetraMeshType::VertexIterator VertexIterator;
|
|
/// The tetra iterator type
|
|
typedef typename TetraMeshType::TetraIterator TetraIterator;
|
|
/// The coordinate type
|
|
typedef typename TetraType::VertexType::CoordType CoordType;
|
|
/// The scalar type
|
|
typedef typename TetraMeshType::VertexType::ScalarType ScalarType;
|
|
///the container of tetrahedron type
|
|
typedef typename TetraMeshType::TetraContainer TetraContainer;
|
|
///the container of vertex type
|
|
typedef typename TetraMeshType::VertexContainer VertexContainer;
|
|
/// The HEdgePos type
|
|
typedef Pos<TetraType> PosType;
|
|
/// The HEdgePos Loop type
|
|
typedef PosLoop<TetraType> PosLType;
|
|
/// The topology updater type
|
|
typedef typename vcg::tetra::UpdateTetraTopology<VertexContainer,TetraContainer> Topology;
|
|
///the normal updater type
|
|
typedef typename vcg::tetra::UpdateNormals<TetraMeshType> UpdateNormals;
|
|
|
|
|
|
/// Default Constructor
|
|
EdgeCollapse()
|
|
{
|
|
};
|
|
|
|
~EdgeCollapse()
|
|
{
|
|
};
|
|
|
|
private:
|
|
|
|
typedef pair <int,int> FacePair;
|
|
struct Face
|
|
{
|
|
VertexType* v[3];
|
|
|
|
Face( VertexType* a, VertexType* b,VertexType* c)
|
|
{
|
|
assert((a!=b)&&(b!=c)&&(a!=c));
|
|
v[0]=a;
|
|
v[1]=b;
|
|
v[2]=c;
|
|
sort(v,v+3);
|
|
}
|
|
|
|
const bool operator <(const Face & f) const
|
|
{
|
|
return ((v[0]==f.v[0])?((v[1]==f.v[1])?(v[2]<f.v[2]):(v[1]<f.v[1])):(v[0]<f.v[0]));
|
|
}
|
|
|
|
const bool operator ==(const Face & f) const {
|
|
return ((v[0]==f.v[0])&&(v[1]==f.v[1])&&(v[2]==f.v[2]));
|
|
}
|
|
|
|
};
|
|
|
|
struct Edge{
|
|
VertexType* v0;
|
|
VertexType* v1;
|
|
Edge( VertexType* a, VertexType* b){
|
|
assert(a!=b);
|
|
if(a<b)
|
|
{v0=a;v1=b;}
|
|
else
|
|
{v1=a;v0=b;}
|
|
}
|
|
|
|
const bool operator <(const Edge & e) const {
|
|
return (v0==e.v0)?(v1<e.v1):(v0<e.v0);
|
|
}
|
|
|
|
const bool operator ==(const Edge & e) const {
|
|
return (v0==e.v0)&&(v1==e.v1);
|
|
}
|
|
|
|
};
|
|
struct TetraSets
|
|
{
|
|
std::vector <TetraType*> v0;
|
|
std::vector <TetraType*> v1;
|
|
std::vector <TetraType*> v0_U_v1;
|
|
std::vector <TetraType*> no_E;
|
|
std::vector <TetraType*> E;
|
|
std::vector <char> indexE;
|
|
std::vector <char> indexv0;
|
|
std::vector <char> indexv1;
|
|
|
|
void clear()
|
|
{
|
|
v0.clear();
|
|
v1.clear();
|
|
v0_U_v1.clear();
|
|
no_E.clear();
|
|
E.clear();
|
|
indexE.clear();
|
|
indexv0.clear();
|
|
indexv1.clear();
|
|
}
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static map<Edge,char> & _EdgeMark(){
|
|
static map<Edge,char> em;
|
|
return em;
|
|
};
|
|
|
|
static map<Face,char> & _FaceMark(){
|
|
static map<Face,char> fm;
|
|
return fm;
|
|
}
|
|
|
|
static VertexType &_DummyV(){
|
|
static VertexType _dv;
|
|
return _dv;
|
|
}
|
|
|
|
static TetraSets &_Sets(){
|
|
static TetraSets _s;
|
|
return _s;
|
|
}
|
|
|
|
|
|
|
|
///select the 2 faces that does not share the edge
|
|
static FacePair _FindNoEdgeFace(TetraType *t,int edge)
|
|
{
|
|
//as first I find the 2 faces on the opposite sides of the egde
|
|
int fa0=Tetra::FofE(edge,0);
|
|
int fa1=Tetra::FofE(edge,1);
|
|
|
|
//then find the faces that remain
|
|
int fa2=(fa0+1)%4;
|
|
while ((fa2==fa0)||(fa2==fa1))
|
|
{
|
|
fa2=(fa2+1)%4;
|
|
}
|
|
int fa3=(fa2+1)%4;
|
|
while ((fa3==fa0)||(fa3==fa1)||(fa3==fa2))
|
|
{
|
|
fa3=(fa3+1)%4;
|
|
}
|
|
return FacePair(fa2,fa3);
|
|
}
|
|
|
|
#ifdef _DEBUG
|
|
static void _AssertingVolume(TetraType *t)
|
|
{
|
|
//assert(t->ComputeVolume() >0);
|
|
assert(vcg::ComputeVolume<TetraType>(*t)>0);
|
|
}
|
|
#endif
|
|
|
|
|
|
///collpse de edge specified by pos (the first vertex on edge remain)
|
|
static int _Collapse(PosType p,CoordType NewP)
|
|
{
|
|
int n_deleted=0;
|
|
vector<TetraType*> To_Del;
|
|
VertexType *Vrem=(p.T()->V(Tetra::VofE(p.E(),0)));
|
|
VertexType *Vdel=(p.T()->V(Tetra::VofE(p.E(),1)));
|
|
//Vrem->P()=(Vrem->P()*alfa)+(Vdel->P()*(1.f-alfa));
|
|
Vrem->P()=NewP;
|
|
PosLType pos(p.T(),p.F(),p.E(),p.V());
|
|
pos.Reset();
|
|
To_Del.reserve(40);
|
|
To_Del.clear();
|
|
while (!pos.LoopEnd())
|
|
{
|
|
//get the two faces that doesn't share the edge
|
|
FacePair fp=_FindNoEdgeFace(pos.T(),pos.E());
|
|
int fa0=fp.first;
|
|
int fa1=fp.second;
|
|
|
|
//now set the T-T topology on that faces
|
|
TetraType *tleft=pos.T()->TTp(fa0);
|
|
TetraType *tright=pos.T()->TTp(fa1);
|
|
int ileft=pos.T()->TTi(fa0);
|
|
int iright=pos.T()->TTi(fa1);
|
|
|
|
//in this case I cannot do the collapse
|
|
assert (!((pos.T()==tleft)&&(pos.T()==tright)));
|
|
|
|
//case no one is extern face
|
|
if ((!pos.T()->IsBorderF(fa0))&&(!pos.T()->IsBorderF(fa1)))
|
|
//connect the 2 tetrahedrons
|
|
Topology::_AttachTTTopology(tleft,ileft,tright,iright);
|
|
else
|
|
//case f2 is an extern face
|
|
if (pos.T()->IsBorderF(fa0))
|
|
{
|
|
tright->TTp(iright)=tright;
|
|
tright->TTi(iright)=iright;
|
|
}
|
|
|
|
else //case fa1 is an extern face
|
|
//if ((pos.T()->IsBorderF(fa3))
|
|
{
|
|
tleft->TTp(ileft)=tleft;
|
|
tleft->TTi(ileft)=ileft;
|
|
}
|
|
|
|
//end setting T-T topology
|
|
|
|
//setting the V-T topology
|
|
|
|
//i remove the tetrahedrons that have the edge
|
|
// to collapse
|
|
Topology::DetachVTTopology(pos.T());
|
|
|
|
//end setting the V-T topology
|
|
To_Del.push_back(pos.T());
|
|
pos.NextT();
|
|
n_deleted++;
|
|
// tm.tn--;
|
|
}
|
|
|
|
//delting old tetrahedrons
|
|
typename vector<TetraType*>::iterator ti;
|
|
for (ti=To_Del.begin();ti<To_Del.end();ti++)
|
|
(*ti)->SetD();
|
|
|
|
//now I cycle on the tetrahedron that had the old vertex
|
|
//reassegning the new one.
|
|
|
|
VTIterator<TetraType> VTi(Vdel->VTb(),Vdel->VTi());
|
|
while (!VTi.End())
|
|
{
|
|
TetraType *T_Change=VTi.Vt();
|
|
int index=VTi.Vi();
|
|
//VTi++;
|
|
//assegning the vertex that remain
|
|
T_Change->V(index)=Vrem;
|
|
Topology::DetachVTTopology(Vdel,T_Change);
|
|
Topology::InsertVTTopology(Vrem,index,T_Change);
|
|
//that's cause i restart everytime in the chain
|
|
//from the vertex
|
|
VTi.Vt()=Vdel->VTb();
|
|
VTi.Vi()=Vdel->VTi();
|
|
#ifdef _DEBUG
|
|
_AssertingVolume(T_Change);
|
|
#endif
|
|
|
|
}
|
|
|
|
if (Vdel->IsB())
|
|
Vrem->SetB();
|
|
//set as deleted the vertex
|
|
Vdel->SetD();
|
|
return n_deleted;
|
|
}
|
|
|
|
|
|
static void orMarkE(Edge E,char M)
|
|
{
|
|
typename map<Edge,char>::iterator EI;
|
|
EI=_EdgeMark().find(E);
|
|
if (EI==_EdgeMark().end())
|
|
_EdgeMark().insert (pair<Edge,char>(E,M));
|
|
else
|
|
(*EI).second|=M;
|
|
}
|
|
|
|
static bool isMarkedE(Edge E,char M)
|
|
{
|
|
typename map<Edge,char>::iterator EI;
|
|
EI=_EdgeMark().find(E);
|
|
if (EI==_EdgeMark().end())
|
|
return false;
|
|
else return (((*EI).second & M)!=0);
|
|
}
|
|
|
|
static void orMarkF(Face F,char M)
|
|
{
|
|
typename map< Face,char>::iterator FI;
|
|
FI=_FaceMark().find(F);
|
|
if (FI==_FaceMark().end())
|
|
_FaceMark().insert (pair<Face,char>(F,M));
|
|
else
|
|
(*FI).second|=M;
|
|
}
|
|
|
|
static bool isMarkedF(Face F,char M)
|
|
{
|
|
typename map<Face,char>::iterator FI;
|
|
FI=_FaceMark().find(F);
|
|
if (FI==_FaceMark().end())
|
|
return false;
|
|
else return (((*FI).second & M)!=0);
|
|
}
|
|
|
|
|
|
///verify the link conditions on faces
|
|
static bool _LinkConditionsF(PosType pos)
|
|
{
|
|
const int LINK_V0 = 0x00000001;
|
|
const int LINK_EE = 0x00000002;
|
|
|
|
_EdgeMark().clear();
|
|
|
|
// Mark edges of ve0
|
|
typename vector< TetraType *>::iterator ti=_Sets().v0.begin();
|
|
typename vector< char >::iterator en=_Sets().indexv0.begin();
|
|
VertexType *v0=(*ti)->V(*en);
|
|
while (ti!=_Sets().v0.end())
|
|
{
|
|
assert(v0==(*ti)->V(*en));
|
|
//put dummy face
|
|
for (int f=0;f<3;f++)
|
|
{
|
|
int f_test=Tetra::FofV((*en),f);
|
|
if ((*ti)->IsBorderF(f_test))
|
|
{
|
|
orMarkF(Face((*ti)->V(Tetra::VofF(f_test,0)),(*ti)->V(Tetra::VofF(f_test,1)),&_DummyV()),LINK_V0);
|
|
orMarkF(Face((*ti)->V(Tetra::VofF(f_test,1)),(*ti)->V(Tetra::VofF(f_test,2)),&_DummyV()),LINK_V0);
|
|
orMarkF(Face((*ti)->V(Tetra::VofF(f_test,2)),(*ti)->V(Tetra::VofF(f_test,0)),&_DummyV()),LINK_V0);
|
|
}
|
|
}
|
|
ti++;
|
|
en++;
|
|
}
|
|
|
|
ti=_Sets().E.begin();
|
|
en=_Sets().indexE.begin();
|
|
//mark them as intersection
|
|
while (ti!=_Sets().E.end())
|
|
{
|
|
//faces on the edge
|
|
int f0=Tetra::FofE((*en),0);
|
|
int f1=Tetra::FofE((*en),1);
|
|
|
|
if ((*ti)->IsBorderF(f0))
|
|
{
|
|
orMarkF(Face((*ti)->V(Tetra::VofF(f0,0)),(*ti)->V(Tetra::VofF(f0,1)),&_DummyV()),LINK_EE);
|
|
orMarkF(Face((*ti)->V(Tetra::VofF(f0,1)),(*ti)->V(Tetra::VofF(f0,2)),&_DummyV()),LINK_EE);
|
|
orMarkF(Face((*ti)->V(Tetra::VofF(f0,2)),(*ti)->V(Tetra::VofF(f0,0)),&_DummyV()),LINK_EE);
|
|
}
|
|
|
|
if ((*ti)->IsBorderF(f1))
|
|
{
|
|
orMarkF(Face((*ti)->V(Tetra::VofF(f1,0)),(*ti)->V(Tetra::VofF(f1,1)),&_DummyV()),LINK_EE);
|
|
orMarkF(Face((*ti)->V(Tetra::VofF(f1,1)),(*ti)->V(Tetra::VofF(f1,2)),&_DummyV()),LINK_EE);
|
|
orMarkF(Face((*ti)->V(Tetra::VofF(f1,2)),(*ti)->V(Tetra::VofF(f1,0)),&_DummyV()),LINK_EE);
|
|
}
|
|
|
|
ti++;
|
|
en++;
|
|
}
|
|
|
|
//and at the end I verify if the intersection is equal to the star of the edge
|
|
ti=_Sets().v1.begin();
|
|
en=_Sets().indexv1.begin();
|
|
VertexType *v1=(*ti)->V(*en);
|
|
while (ti!=_Sets().v1.end())
|
|
{
|
|
assert(v1==(*ti)->V(*en));
|
|
//dummy edges control
|
|
for (int f=0;f<3;f++)
|
|
{
|
|
int f_test=Tetra::FofV((*en),f);
|
|
if ((*ti)->IsBorderF(f_test))
|
|
{
|
|
//control all the 3 edges
|
|
Face f_test0=Face((*ti)->V(Tetra::VofF(f_test,0)),(*ti)->V(Tetra::VofF(f_test,1)),&_DummyV());
|
|
Face f_test1=Face((*ti)->V(Tetra::VofF(f_test,1)),(*ti)->V(Tetra::VofF(f_test,2)),&_DummyV());
|
|
Face f_test2=Face((*ti)->V(Tetra::VofF(f_test,2)),(*ti)->V(Tetra::VofF(f_test,0)),&_DummyV());
|
|
if (((isMarkedF(f_test0,LINK_V0))&&(!isMarkedF(f_test0,LINK_EE)))||
|
|
((isMarkedF(f_test1,LINK_V0))&&(!isMarkedF(f_test1,LINK_EE)))||
|
|
((isMarkedF(f_test2,LINK_V0))&&(!isMarkedF(f_test2,LINK_EE))))
|
|
{
|
|
// FAIL::LKF();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
ti++;
|
|
en++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
///verify the link conditions on edges
|
|
static bool _LinkConditionsE(PosType pos)
|
|
{
|
|
const int LINK_V0 = 0x00000001;
|
|
const int LINK_EE = 0x00000002;
|
|
|
|
_FaceMark().clear();
|
|
|
|
// Mark edges of ve0
|
|
typename vector< TetraType *>::iterator ti=_Sets().v0.begin();
|
|
typename vector< char >::iterator en=_Sets().indexv0.begin();
|
|
while (ti!=_Sets().v0.end())
|
|
{
|
|
//put dummy edge
|
|
for (int f=0;f<3;f++)
|
|
{
|
|
int f_test=Tetra::FofV((*en),f);
|
|
if ((*ti)->IsBorderF(f_test))
|
|
{
|
|
orMarkE(Edge((*ti)->V(Tetra::VofF(f_test,0)),&_DummyV()),LINK_V0);
|
|
orMarkE(Edge((*ti)->V(Tetra::VofF(f_test,1)),&_DummyV()),LINK_V0);
|
|
orMarkE(Edge((*ti)->V(Tetra::VofF(f_test,2)),&_DummyV()),LINK_V0);
|
|
}
|
|
}
|
|
ti++;
|
|
en++;
|
|
}
|
|
|
|
ti=_Sets().E.begin();
|
|
en=_Sets().indexE.begin();
|
|
//mark them as intersection
|
|
while (ti!=_Sets().E.end())
|
|
{
|
|
//faces on the edge
|
|
int f0=Tetra::FofE((*en),0);
|
|
int f1=Tetra::FofE((*en),1);
|
|
|
|
if ((*ti)->IsBorderF(f0))
|
|
{
|
|
orMarkE(Edge((*ti)->V(Tetra::VofF(f0,0)),&_DummyV()),LINK_EE);
|
|
orMarkE(Edge((*ti)->V(Tetra::VofF(f0,1)),&_DummyV()),LINK_EE);
|
|
orMarkE(Edge((*ti)->V(Tetra::VofF(f0,2)),&_DummyV()),LINK_EE);
|
|
}
|
|
|
|
if ((*ti)->IsBorderF(f1))
|
|
{
|
|
orMarkE(Edge((*ti)->V(Tetra::VofF(f1,0)),&_DummyV()),LINK_EE);
|
|
orMarkE(Edge((*ti)->V(Tetra::VofF(f1,1)),&_DummyV()),LINK_EE);
|
|
orMarkE(Edge((*ti)->V(Tetra::VofF(f1,2)),&_DummyV()),LINK_EE);
|
|
}
|
|
|
|
ti++;
|
|
en++;
|
|
}
|
|
|
|
//and at the end I verify if the intersection is equal to the star of the edge
|
|
ti=_Sets().v1.begin();
|
|
en=_Sets().indexv1.begin();
|
|
while (ti!=_Sets().v1.end())
|
|
{
|
|
|
|
//dummy edges control
|
|
for (int f=0;f<3;f++)
|
|
{
|
|
int f_test=Tetra::FofV((*en),f);
|
|
if ((*ti)->IsBorderF(f_test))
|
|
{
|
|
//control all the 3 edges
|
|
Edge e_test0=Edge((*ti)->V(Tetra::VofF(f_test,0)),&_DummyV());
|
|
Edge e_test1=Edge((*ti)->V(Tetra::VofF(f_test,1)),&_DummyV());
|
|
Edge e_test2=Edge((*ti)->V(Tetra::VofF(f_test,2)),&_DummyV());
|
|
if (((isMarkedE(e_test0,LINK_V0))&&(!isMarkedE(e_test0,LINK_EE)))||
|
|
((isMarkedE(e_test1,LINK_V0))&&(!isMarkedE(e_test1,LINK_EE)))||
|
|
((isMarkedE(e_test2,LINK_V0))&&(!isMarkedE(e_test2,LINK_EE))))
|
|
{
|
|
// FAIL::LKE();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
ti++;
|
|
en++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool _QuickConditions(PosType pos)
|
|
{
|
|
VertexType *v0=pos.T()->V(Tetra::VofE(pos.E(),0));
|
|
VertexType *v1=pos.T()->V(Tetra::VofE(pos.E(),1));
|
|
|
|
//if the two vertices are of border and the edge is not a border edge
|
|
//we can do it.
|
|
|
|
bool border0=v0->IsB();
|
|
bool border1=v1->IsB();
|
|
bool bordere=Topology::IsExternEdge(pos.T(),pos.E());
|
|
|
|
//first case vertex external and edge internal
|
|
if ((border0 && border1)&&(!bordere))
|
|
{
|
|
return false;
|
|
}
|
|
else /// look if the 2 other faces that don't share the vertex are external on not
|
|
{
|
|
|
|
typename vector< TetraType *>::iterator ti=_Sets().E.begin();
|
|
typename vector< char >::iterator en=_Sets().indexE.begin();
|
|
//mark them as intersection
|
|
while (ti!=_Sets().E.end())
|
|
{
|
|
//get the two faces that doesn't share the edge
|
|
FacePair fp=_FindNoEdgeFace(pos.T(),pos.E());
|
|
int fa0=fp.first;
|
|
int fa1=fp.second;
|
|
|
|
//now set the T-T topology on that faces
|
|
TetraType *tleft=pos.T()->TTp(fa0);
|
|
TetraType *tright=pos.T()->TTp(fa1);
|
|
int ileft=pos.T()->TTi(fa0);
|
|
int iright=pos.T()->TTi(fa1);
|
|
|
|
//in this case I cannot do the collapse
|
|
if (((pos.T()==tleft)&&(pos.T()==tright)))
|
|
{
|
|
return false;
|
|
}
|
|
ti++;
|
|
en++;
|
|
}
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
///verify the link conditions on vertices
|
|
static bool _LinkConditionsV()
|
|
{
|
|
const int LINK_V0 = VertexType::NewBitFlag();
|
|
const int LINK_V1 = VertexType::NewBitFlag();
|
|
const int LINK_EE = VertexType::NewBitFlag();
|
|
|
|
const int NOT_LINKED = ~(LINK_V0 | LINK_V1 | LINK_EE);
|
|
_DummyV().Flags() &= NOT_LINKED;
|
|
|
|
VertexType *vt0;
|
|
VertexType *vt1;
|
|
VertexType *vt2;
|
|
VertexType *vt3;
|
|
|
|
|
|
typename vector< TetraType *>::iterator ti=_Sets().v0_U_v1.begin();
|
|
|
|
//reset all link flags
|
|
while (ti!=_Sets().v0_U_v1.end())
|
|
{
|
|
for(int i=0;i<4;i++)
|
|
(*ti)->V(i)->Flags() &= NOT_LINKED;
|
|
ti++;
|
|
}
|
|
|
|
|
|
//also in the ones that appartain to the edge
|
|
typename vector< char >::iterator en;
|
|
ti=_Sets().E.begin();
|
|
en=_Sets().indexE.begin();
|
|
//reset all link flags for intersection and in the same
|
|
//time mark them as intersection
|
|
while (ti!=_Sets().E.end())
|
|
{
|
|
for(int i=0;i<4;i++)
|
|
{
|
|
(*ti)->V(i)->Flags() &= NOT_LINKED;
|
|
(*ti)->V(i)->Flags() |= LINK_EE;
|
|
}
|
|
|
|
//dummy vertex
|
|
|
|
//faces on the edge
|
|
int f0=Tetra::FofE((*en),0);
|
|
int f1=Tetra::FofE((*en),1);
|
|
|
|
if (((*ti)->IsBorderF(f0))||((*ti)->IsBorderF(f1)))
|
|
_DummyV().Flags() |= LINK_EE;
|
|
|
|
ti++;
|
|
en++;
|
|
}
|
|
|
|
|
|
// Mark vertices of ve0
|
|
ti=_Sets().v0.begin();
|
|
en=_Sets().indexv0.begin();
|
|
|
|
while (ti!=_Sets().v0.end())
|
|
{
|
|
for(int i=0;i<4;i++)
|
|
(*ti)->V(i)->Flags() |= LINK_V0;
|
|
|
|
//dummy faces on the vertex
|
|
int f0=Tetra::FofV((*en),0);
|
|
int f1=Tetra::FofV((*en),1);
|
|
int f2=Tetra::FofV((*en),2);
|
|
|
|
if (((*ti)->IsBorderF(f0))||((*ti)->IsBorderF(f1))||((*ti)->IsBorderF(f2)))
|
|
_DummyV().Flags() |= LINK_V0;
|
|
|
|
ti++;
|
|
en++;
|
|
}
|
|
|
|
//and at the end I verify if the intersection is equal to the star of the edge
|
|
bool correct=true;
|
|
ti=_Sets().v1.begin();
|
|
en=_Sets().indexv1.begin();
|
|
|
|
while (ti!=_Sets().v1.end())
|
|
{
|
|
vt0=(*ti)->V(0);
|
|
vt1=(*ti)->V(1);
|
|
vt2=(*ti)->V(2);
|
|
vt3=(*ti)->V(3);
|
|
|
|
if ((vt0->Flags()& LINK_V0)&&(!(vt0->Flags()& LINK_EE)))
|
|
correct=false;
|
|
else
|
|
if ((vt1->Flags()& LINK_V0)&&(!(vt1->Flags()& LINK_EE)))
|
|
correct=false;
|
|
else
|
|
if ((vt2->Flags()& LINK_V0)&&(!(vt2->Flags()& LINK_EE)))
|
|
correct=false;
|
|
else
|
|
if ((vt3->Flags()& LINK_V0)&&(!(vt3->Flags()& LINK_EE)))
|
|
correct=false;
|
|
|
|
//dummy vertex control
|
|
int f0=Tetra::FofV((*en),0);
|
|
int f1=Tetra::FofV((*en),1);
|
|
int f2=Tetra::FofV((*en),2);
|
|
|
|
if (((*ti)->IsBorderF(f0))||((*ti)->IsBorderF(f1))||((*ti)->IsBorderF(f2)))
|
|
if ((_DummyV().Flags()& LINK_V0)&&(!(_DummyV().Flags()& LINK_EE)))
|
|
correct=false;
|
|
|
|
if (!correct)
|
|
{
|
|
VertexType::DeleteBitFlag(LINK_EE);
|
|
VertexType::DeleteBitFlag(LINK_V1);
|
|
VertexType::DeleteBitFlag(LINK_V0);
|
|
// FAIL::LKV();
|
|
return (false);
|
|
}
|
|
en++;
|
|
ti++;
|
|
}
|
|
VertexType::DeleteBitFlag(LINK_EE);
|
|
VertexType::DeleteBitFlag(LINK_V1);
|
|
VertexType::DeleteBitFlag(LINK_V0);
|
|
return true;
|
|
}
|
|
|
|
///verify the flip condition
|
|
static bool _FlipCondition(PosType pos,CoordType NewP)
|
|
{
|
|
int edge=pos.E();
|
|
VertexType *ve0=pos.T()->V(Tetra::VofE(edge,0));
|
|
VertexType *ve1=pos.T()->V(Tetra::VofE(edge,1));
|
|
CoordType oldpos0;
|
|
CoordType oldpos1;
|
|
|
|
typename vector< TetraType *>::iterator ti=_Sets().no_E.begin();
|
|
|
|
//saving old position
|
|
oldpos0 = ve0->P();
|
|
oldpos1 = ve1->P();
|
|
|
|
//assegning new position
|
|
ve0->P() =NewP;
|
|
ve1->P() =NewP;
|
|
|
|
while (ti!=_Sets().no_E.end())
|
|
{
|
|
assert(!(*ti)->IsD());
|
|
assert((((*ti)->V(0)==ve0)||((*ti)->V(1)==ve0)||((*ti)->V(2)==ve0)||((*ti)->V(3)==ve0))^
|
|
(((*ti)->V(0)==ve1)||((*ti)->V(1)==ve1)||((*ti)->V(2)==ve1)||((*ti)->V(3)==ve1)));
|
|
if (vcg::ComputeVolume<TetraType>(**ti)<=0)
|
|
{
|
|
// FAIL::VOL();
|
|
ve0->P()=oldpos0;
|
|
ve1->P()=oldpos1;
|
|
return false;
|
|
}
|
|
ti++;
|
|
}
|
|
|
|
//reset initial value
|
|
ve0->P()=oldpos0;
|
|
ve1->P()=oldpos1;
|
|
|
|
return true;
|
|
}
|
|
|
|
///update the normal of the modified tetrahedrons ond the normal of the vertex that remain after collapse
|
|
static void _InitTetrahedronValues(VertexType* v)
|
|
{
|
|
|
|
VTIterator<TetraType> VTi= VTIterator<TetraType>(v->VTb(),v->VTi());
|
|
while (!VTi.End())
|
|
{
|
|
if (TetraType::HasTetraQuality())
|
|
{
|
|
VTi.Vt()->ComputeAspectRatio();
|
|
}
|
|
|
|
if (TetraType::HasTetraNormal())
|
|
{
|
|
VTi.Vt()->ComputeNormal();
|
|
}
|
|
|
|
++VTi;
|
|
}
|
|
|
|
VTi.Vt()=v->VTb();
|
|
VTi.Vi()=v->VTi();
|
|
while (!VTi.End())
|
|
{
|
|
for (int i=0;i<4;i++)
|
|
{
|
|
if (VTi.Vt()->V(i)->IsB())
|
|
{
|
|
if (VertexType::HasNormal())
|
|
UpdateNormals::PerVertex(VTi.Vt()->V(i));
|
|
}
|
|
|
|
}
|
|
++VTi;
|
|
}
|
|
|
|
}
|
|
|
|
public:
|
|
|
|
/// clean everything
|
|
static void Reset(){
|
|
_EdgeMark().clear();
|
|
_FaceMark().clear();
|
|
_Sets().clear();
|
|
_DummyV().ClearFlags();
|
|
}
|
|
///Return the aspect Ratio media of the tetrahedrons
|
|
///that share the adge to collapse
|
|
static ScalarType AspectRatioCollapsed(PosType p)
|
|
{
|
|
//PosL pos=PosL(p.T(),p.F(),p.E(),p.V());
|
|
PosLoop<TetraType> pos=PosLoop<TetraType>(p.T(),p.F(),p.E(),p.V());
|
|
pos.Reset();
|
|
int num=0;
|
|
ScalarType ratio_media=0.f;
|
|
while(!pos.end())
|
|
{
|
|
ratio_media+=pos.T()->AspectRatio();
|
|
pos.NextT();
|
|
num++;
|
|
}
|
|
ratio_media=ratio_media/num;
|
|
return (ratio_media);
|
|
}
|
|
|
|
|
|
///check the topologycal preserving conditions for the collapse indicated by pos
|
|
static bool CheckPreconditions(PosType pos,CoordType NewP)
|
|
{
|
|
VertexType *v0=pos.T()->V(Tetra::VofE(pos.E(),0));
|
|
VertexType *v1=pos.T()->V(Tetra::VofE(pos.E(),1));
|
|
//if the two vertices are of border and the edge is not a border edge
|
|
//we can do it.
|
|
bool border0=v0->IsB();
|
|
bool border1=v1->IsB();
|
|
bool bordere=Topology::IsExternEdge(pos.T(),pos.E());
|
|
if (!_QuickConditions(pos))
|
|
{
|
|
//FAIL::BOR();
|
|
return false;
|
|
}
|
|
// //first case vertex external and edge internal
|
|
//if ((border0 && border1)&&(!bordere))
|
|
//{
|
|
// //FAIL::BOR();
|
|
// return false;
|
|
//}
|
|
else
|
|
//if both vertex are internal so is enougth to verify flip conditions
|
|
if ((!border0) && (!border1))
|
|
return (_FlipCondition(pos,NewP));
|
|
else
|
|
//if the edge is internal is enougth to verify link condition on vertex
|
|
if (!bordere)
|
|
return((_FlipCondition(pos,NewP))&&(_LinkConditionsV()));
|
|
else
|
|
//at the end if trh edge is on the border we must verify also with the complete test
|
|
return ((_FlipCondition(pos,NewP))&&(_LinkConditionsV())&&(_LinkConditionsE(pos))&&(_LinkConditionsF(pos)));
|
|
//return false;
|
|
}
|
|
|
|
///return the sum of volumes of the union of stars on vertices (the original volume of tetrahedrons)
|
|
static ScalarType VolumeOriginal()
|
|
{
|
|
typename vector< TetraType *>::iterator ti=_Sets().v0_U_v1.begin();
|
|
ScalarType vol=0;
|
|
while (ti!=_Sets().v0_U_v1.end())
|
|
{
|
|
vol+=(*ti)->Volume();
|
|
ti++;
|
|
}
|
|
return vol;
|
|
}
|
|
|
|
///Calculate the volume on the vertex resulting after collapse...
|
|
static ScalarType VolumeSimulateCollapse(PosType Pos,CoordType &newP)
|
|
{
|
|
VertexType *Vrem=(Pos.T()->V(Tetra::VofE(Pos.E(),0)));
|
|
VertexType *Vdel=(Pos.T()->V(Tetra::VofE(Pos.E(),1)));
|
|
|
|
if (Vrem!=Pos.T()->V(Pos.V()))
|
|
swap<VertexType*>(Vdel,Vrem);
|
|
|
|
ScalarType vol=0;
|
|
CoordType oldpos = Vrem->P();
|
|
|
|
//move vertex that remain in the new position
|
|
Vrem->P() = newP;
|
|
|
|
typename vector< TetraType *>::iterator ti=_Sets().no_E.begin();
|
|
|
|
while (ti!=_Sets().no_E.end())
|
|
{
|
|
/* Tetra3<ScalarType> T=Tetra3<ScalarType>();
|
|
T.P0(0)=(*ti)->V(0)->cP();
|
|
T.P1(0)=(*ti)->V(1)->cP();
|
|
T.P2(0)=(*ti)->V(2)->cP();
|
|
T.P3(0)=(*ti)->V(3)->cP();
|
|
|
|
vol+=T.ComputeVolume(); */
|
|
// vol+= vcg::ComputeVolume<TetraType>(*((Tetra3<ScalarType>*)&*ti));
|
|
|
|
vol+= vcg::ComputeVolume(**ti);
|
|
ti++;
|
|
}
|
|
Vrem->P()=oldpos;
|
|
return vol;
|
|
}
|
|
|
|
///finds sets used for all test in edge collapse
|
|
static void FindSets(vcg::tetra::Pos<TetraType> pos)
|
|
{
|
|
|
|
_Sets().clear();
|
|
int size=40;
|
|
_Sets().v0.reserve(size);
|
|
_Sets().indexv0.reserve(size);
|
|
_Sets().v1.reserve(size);
|
|
_Sets().indexv1.reserve(size);
|
|
_Sets().v0_U_v1.reserve(size*2);
|
|
_Sets().no_E.reserve(size*2);
|
|
_Sets().E.reserve(size);
|
|
_Sets().indexE.reserve(size);
|
|
|
|
int edge =pos.E();
|
|
|
|
VertexType *ve0=pos.T()->V(Tetra::VofE(edge,0));
|
|
VertexType *ve1=pos.T()->V(Tetra::VofE(edge,1));
|
|
|
|
// put all tetrahedrons in the first one vector and in the union
|
|
VTIterator<TetraType> vf0(ve0->VTb(),ve0->VTi());
|
|
while (!vf0.End())
|
|
{
|
|
//set of ve0
|
|
_Sets().v0.push_back(vf0.Vt());
|
|
_Sets().indexv0.push_back(vf0.Vi());
|
|
//set of union
|
|
_Sets().v0_U_v1.push_back(vf0.Vt());
|
|
//set of union minus intersection
|
|
if ((vf0.Vt()->V(0)!=ve1)&&(vf0.Vt()->V(1)!=ve1)&&(vf0.Vt()->V(2)!=ve1)&&(vf0.Vt()->V(3)!=ve1))
|
|
_Sets().no_E.push_back(vf0.Vt());
|
|
++vf0;
|
|
}
|
|
|
|
//second vertex iteration
|
|
vf0.Vt()=ve1->VTb();
|
|
vf0.Vi()=ve1->VTi();
|
|
|
|
while (!vf0.End())
|
|
{
|
|
//set of ve1
|
|
_Sets().v1.push_back(vf0.Vt());
|
|
_Sets().indexv1.push_back(vf0.Vi());
|
|
//set of union
|
|
_Sets().v0_U_v1.push_back(vf0.Vt());
|
|
//set of union minus intersection
|
|
if ((vf0.Vt()->V(0)!=ve0)&&(vf0.Vt()->V(1)!=ve0)&&(vf0.Vt()->V(2)!=ve0)&&(vf0.Vt()->V(3)!=ve0))
|
|
_Sets().no_E.push_back(vf0.Vt());
|
|
++vf0;
|
|
}
|
|
|
|
//erase duplicated tetrahedrons from the union set
|
|
sort(_Sets().v0_U_v1.begin(),_Sets().v0_U_v1.end());
|
|
unique(_Sets().v0_U_v1.begin(),_Sets().v0_U_v1.end());
|
|
|
|
//now compute the intersection
|
|
PosLType PL(pos.T(),pos.F(),pos.E(),pos.V());
|
|
|
|
//mark the vertex on the edge
|
|
while (!PL.LoopEnd())
|
|
{
|
|
_Sets().E.push_back(PL.T());
|
|
_Sets().indexE.push_back(PL.E());
|
|
PL.NextT();
|
|
}
|
|
|
|
}
|
|
|
|
///do the collapse on the edge in postype p
|
|
static int DoCollapse(PosType p,CoordType newP)
|
|
{
|
|
VertexType *v=p.T()->V(p.V());
|
|
assert(p.T()->HasVTAdjacency());
|
|
int n_del=_Collapse(p,newP);
|
|
_InitTetrahedronValues(v);
|
|
return n_del;
|
|
}
|
|
|
|
|
|
};
|
|
}//end namespace
|
|
}//end namespace
|
|
#endif
|