vcglib/vcg/complex/trimesh/platonic.h

518 lines
15 KiB
C++

/***************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.2 2004/03/03 16:11:46 cignoni
First working version (tetrahedron!)
****************************************************************************/
#ifndef __VCGLIB_PLATONIC
#define __VCGLIB_PLATONIC
//#include <vcg/Mesh/Refine.h>
#include<vcg/complex/trimesh/allocate.h>
namespace vcg {
namespace tri {
template <class MESH_TYPE>
void Tetrahedron(MESH_TYPE &in)
{
typedef typename MESH_TYPE::VertexPointer VertexPointer;
typedef typename MESH_TYPE::VertexIterator VertexIterator;
typedef typename MESH_TYPE::FaceIterator FaceIterator;
in.Clear();
Allocator<MESH_TYPE>::AddVertices(in,4);
Allocator<MESH_TYPE>::AddFaces(in,4);
VertexPointer ivp[4];
VertexIterator vi=in.vert.begin();
ivp[0]=&*vi;(*vi).P()=MESH_TYPE::CoordType ( 1, 1, 1); ++vi;
ivp[1]=&*vi;(*vi).P()=MESH_TYPE::CoordType (-1, 1,-1); ++vi;
ivp[2]=&*vi;(*vi).P()=MESH_TYPE::CoordType (-1,-1, 1); ++vi;
ivp[3]=&*vi;(*vi).P()=MESH_TYPE::CoordType ( 1,-1,-1);
FaceIterator fi=in.face.begin();
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[2]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[3]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[3]; (*fi).V(2)=ivp[1]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[1];
}
template <class MESH_TYPE>
void Octahedron(MESH_TYPE &in)
{
typedef typename MESH_TYPE::VertexPointer VertexPointer;
typedef typename MESH_TYPE::VertexIterator VertexIterator;
typedef typename MESH_TYPE::FaceIterator FaceIterator;
in.Clear();
Allocator<MESH_TYPE>::AddVertices(in,6);
Allocator<MESH_TYPE>::AddFaces(in,8);
MESH_TYPE::VertexType tv;tv.Supervisor_Flags()=0;
MESH_TYPE::CoordType tp;
VertexPointer ivp[4];
VertexIterator vi=in.vert.begin();
ivp[0]=&*vi;(*vi).P()=MESH_TYPE::CoordType ( 1, 0, 0); ++vi;
ivp[1]=&*vi;(*vi).P()=MESH_TYPE::CoordType ( 0, 1, 0); ++vi;
ivp[2]=&*vi;(*vi).P()=MESH_TYPE::CoordType ( 0, 0, 1); ++vi;
ivp[3]=&*vi;(*vi).P()=MESH_TYPE::CoordType (-1, 0, 0); ++vi;
ivp[4]=&*vi;(*vi).P()=MESH_TYPE::CoordType ( 0,-1, 0); ++vi;
ivp[5]=&*vi;(*vi).P()=MESH_TYPE::CoordType ( 0, 0,-1);
FaceIterator fi=in.face.begin();
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[2]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[4]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[4]; (*fi).V(2)=ivp[5]; ++fi;
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[5]; (*fi).V(2)=ivp[1]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[5]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[5]; (*fi).V(2)=ivp[4]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[4]; (*fi).V(2)=ivp[2]; ++fi;
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[1];
}
template <class MESH_TYPE>
void Icosahedron(MESH_TYPE &in)
{
MESH_TYPE::ScalarType L=(Sqrt(5.0)+1.0)/2.0;
MESH_TYPE::CoordType vv[12]={
MESH_TYPE::CoordType ( 0, L, 1),
MESH_TYPE::CoordType ( 0, L,-1),
MESH_TYPE::CoordType ( 0,-L, 1),
MESH_TYPE::CoordType ( 0,-L,-1),
MESH_TYPE::CoordType ( L, 1, 0),
MESH_TYPE::CoordType ( L,-1, 0),
MESH_TYPE::CoordType (-L, 1, 0),
MESH_TYPE::CoordType (-L,-1, 0),
MESH_TYPE::CoordType ( 1, 0, L),
MESH_TYPE::CoordType (-1, 0, L),
MESH_TYPE::CoordType ( 1, 0,-L),
MESH_TYPE::CoordType (-1, 0,-L)
};
int ff[20][3]={
{1,0,4},{0,1,6},{2,3,5},{3,2,7},
{4,5,10},{5,4,8},{6,7,9},{7,6,11},
{8,9,2},{9,8,0},{10,11,1},{11,10,3},
{0,8,4},{0,6,9},{1,4,10},{1,11,6},
{2,5,8},{2,9,7},{3,10,5},{3,7,11}
};
in.vn=12;
in.fn=20;
in.vert.clear();
in.face.clear();
MESH_TYPE::VertexType tv;tv.Supervisor_Flags()=0;
MESH_TYPE::CoordType tp;
for(int i=0;i<in.vn;i++)
{
tv.P()=vv[i];
in.vert.push_back(tv);
}
vector<MESH_TYPE::vertex_pointer> index(in.vn);
MESH_TYPE::face_type f;f.Supervisor_Flags()=0;
MESH_TYPE::vertex_iterator vi;
int j;
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &*vi;
for(j=0;j<in.fn;++j)
{
f.V(0)=index[ff[j][0]];
f.V(1)=index[ff[j][1]];
f.V(2)=index[ff[j][2]];
in.face.push_back(f);
}
}
template <class MESH_TYPE>
void Hexahedron(MESH_TYPE &in)
{
in.vn=8;
in.fn=12;
in.vert.clear();
in.face.clear();
MESH_TYPE::VertexType tv;tv.Supervisor_Flags()=0;
MESH_TYPE::CoordType tp;
tp=MESH_TYPE::CoordType (-1,-1,-1); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType ( 1,-1,-1); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (-1, 1,-1); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType ( 1, 1,-1); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (-1,-1, 1); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType ( 1,-1, 1); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (-1, 1, 1); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType ( 1, 1, 1); tv.P()=tp; in.vert.push_back(tv);
vector<MESH_TYPE::vertex_pointer> index(in.vn);
MESH_TYPE::face_type f;f.Supervisor_Flags()=0;
MESH_TYPE::vertex_iterator vi;
int j;
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &*vi;
f.V(0)=index[0]; f.V(1)=index[1];f.V(2)=index[2]; in.face.push_back(f);
f.V(0)=index[3]; f.V(1)=index[2];f.V(2)=index[1]; in.face.push_back(f);
f.V(0)=index[0]; f.V(1)=index[2];f.V(2)=index[4]; in.face.push_back(f);
f.V(0)=index[6]; f.V(1)=index[4];f.V(2)=index[2]; in.face.push_back(f);
f.V(0)=index[0]; f.V(1)=index[4];f.V(2)=index[1]; in.face.push_back(f);
f.V(0)=index[5]; f.V(1)=index[1];f.V(2)=index[4]; in.face.push_back(f);
f.V(0)=index[7]; f.V(1)=index[5];f.V(2)=index[6]; in.face.push_back(f);
f.V(0)=index[4]; f.V(1)=index[6];f.V(2)=index[5]; in.face.push_back(f);
f.V(0)=index[7]; f.V(1)=index[6];f.V(2)=index[3]; in.face.push_back(f);
f.V(0)=index[2]; f.V(1)=index[3];f.V(2)=index[6]; in.face.push_back(f);
f.V(0)=index[7]; f.V(1)=index[3];f.V(2)=index[5]; in.face.push_back(f);
f.V(0)=index[1]; f.V(1)=index[5];f.V(2)=index[3]; in.face.push_back(f);
}
template <class MESH_TYPE>
void HalfOctahedron(MESH_TYPE &in)
{
in.vn=5;
in.fn=4;
in.vert.clear();
in.face.clear();
MESH_TYPE::VertexType tv;tv.Supervisor_Flags()=0;
MESH_TYPE::CoordType tp;
tp=MESH_TYPE::CoordType ( 1, 0, 0); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType ( 0, 1, 0); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType ( 0, 0, 1); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (-1, 0, 0); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType ( 0,-1, 0); tv.P()=tp; in.vert.push_back(tv);
vector<MESH_TYPE::vertex_pointer> index(in.vn);
MESH_TYPE::face_type f;f.Supervisor_Flags()=0;
MESH_TYPE::vertex_iterator vi;
int j;
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &*vi;
f.V(0)=index[0]; f.V(1)=index[1];f.V(2)=index[2]; in.face.push_back(f);
f.V(0)=index[0]; f.V(1)=index[2];f.V(2)=index[4]; in.face.push_back(f);
//f.V(0)=index[0]; f.V(1)=index[4];f.V(2)=index[5]; in.face.push_back(f);
//f.V(0)=index[0]; f.V(1)=index[5];f.V(2)=index[1]; in.face.push_back(f);
//f.V(0)=index[3]; f.V(1)=index[1];f.V(2)=index[5]; in.face.push_back(f);
//f.V(0)=index[3]; f.V(1)=index[5];f.V(2)=index[4]; in.face.push_back(f);
f.V(0)=index[3]; f.V(1)=index[4];f.V(2)=index[2]; in.face.push_back(f);
f.V(0)=index[3]; f.V(1)=index[2];f.V(2)=index[1]; in.face.push_back(f);
}
template <class MESH_TYPE>
void Square(MESH_TYPE &in)
{
in.vn=4;
in.fn=2;
in.vert.clear();
in.face.clear();
MESH_TYPE::VertexType tv;tv.Supervisor_Flags()=0;
MESH_TYPE::CoordType tp;
tp=MESH_TYPE::CoordType ( 1, 0, 0); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType ( 0, 1, 0); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (-1, 0, 0); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType ( 0,-1, 0); tv.P()=tp; in.vert.push_back(tv);
vector<MESH_TYPE::vertex_pointer> index(in.vn);
MESH_TYPE::face_type f;f.Supervisor_Flags()=0;
MESH_TYPE::vertex_iterator vi;
int j;
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &*vi;
f.V(0)=index[0]; f.V(1)=index[1];f.V(2)=index[2]; in.face.push_back(f);
f.V(0)=index[0]; f.V(1)=index[2];f.V(2)=index[3]; in.face.push_back(f);
}
template <class MESH_TYPE>
void Sphere(MESH_TYPE &in, const int subdiv = 3 )
{
Icosahedron(in);
in.ComputeBorderFlag();
int lastsize = 0;
for(int i=0;i<subdiv;++i)
{
Refine<MESH_TYPE, MidPoint<MESH_TYPE> >(in,MidPoint<MESH_TYPE>(),0);
MESH_TYPE::vertex_iterator vi;
for(vi = in.vert.begin()+lastsize;vi!=in.vert.end();++vi)
vi->P().Normalize();
lastsize = in.vert.size();
}
}
/// r1 = raggio 1, r2 = raggio2, h = altezza (asse y)
template <class MESH_TYPE>
void Cone( MESH_TYPE & in,
const typename MESH_TYPE::ScalarType r1,
const typename MESH_TYPE::ScalarType r2,
const typename MESH_TYPE::ScalarType h )
{
const int D = 24;
int i,b1,b2;
if(r1==0 || r2==0)
{
in.vn=D+2;
in.fn=D*2;
}
else
{
in.vn=D*2+2;
in.fn=D*4;
}
in.vert.clear();
in.face.clear();
MESH_TYPE::VertexType tv;tv.Supervisor_Flags()=0;
MESH_TYPE::CoordType tp;
tp=MESH_TYPE::CoordType ( 0,-h/2,0 );
tv.P()=tp;
in.vert.push_back(tv);
tp=MESH_TYPE::CoordType ( 0, h/2,0 );
tv.P()=tp;
in.vert.push_back(tv);
b1 = b2 = 2;
if(r1!=0)
{
for(i=0;i<D;++i)
{
double a = i*3.14159265358979323846*2/D;
double s = sin(a);
double c = cos(a);
double x,y,z;
x = r1*c;
z = r1*s;
y = -h/2;
tp=MESH_TYPE::CoordType ( x,y,z );
tv.P()=tp;
in.vert.push_back(tv);
}
b2 += D;
}
if(r2!=0)
{
for(i=0;i<D;++i)
{
double a = i*3.14159265358979323846*2/D;
double s = sin(a);
double c = cos(a);
double x,y,z;
x = r2*c;
z = r2*s;
y = h/2;
tp=MESH_TYPE::CoordType ( x,y,z );
tv.P()=tp;
in.vert.push_back(tv);
}
}
vector<MESH_TYPE::vertex_pointer> index(in.vn);
MESH_TYPE::face_type f;
f.Supervisor_Flags()=0;
MESH_TYPE::vertex_iterator vi;
int j;
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &*vi;
if(r1!=0)
{
for(i=0;i<D;++i)
{
f.V(0)=index[0];
f.V(1)=index[b1+i];
f.V(2)=index[b1+(i+1)%D];
in.face.push_back(f);
}
}
if(r2!=0)
{
for(i=0;i<D;++i)
{
f.V(0)=index[1];
f.V(1)=index[b2+(i+1)%D];
f.V(2)=index[b2+i];
in.face.push_back(f);
}
}
if(r1==0)
{
for(i=0;i<D;++i)
{
f.V(0)=index[0];
f.V(1)=index[b2+i];
f.V(2)=index[b2+(i+1)%D];
in.face.push_back(f);
}
}
else if(r2==0)
{
for(i=0;i<D;++i)
{
f.V(0)=index[1];
f.V(2)=index[b1+i];
f.V(1)=index[b1+(i+1)%D];
in.face.push_back(f);
}
}
else
{
for(i=0;i<D;++i)
{
f.V(0)=index[b1+i];
f.V(1)=index[b2+i];
f.V(2)=index[b2+(i+1)%D];
in.face.push_back(f);
f.V(0)=index[b1+i];
f.V(1)=index[b2+(i+1)%D];
f.V(2)=index[b1+(i+1)%D];
in.face.push_back(f);
}
}
}
template <class MESH_TYPE>
void Box(MESH_TYPE &in, const typename MESH_TYPE::BoxType & bb )
{
in.vn=8;
in.fn=12;
in.vert.clear();
in.face.clear();
MESH_TYPE::VertexType tv;tv.Supervisor_Flags()=0;
MESH_TYPE::CoordType tp;
tp=MESH_TYPE::CoordType (bb.min[0],bb.min[1],bb.min[2]); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (bb.max[0],bb.min[1],bb.min[2]); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (bb.min[0],bb.max[1],bb.min[2]); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (bb.max[0],bb.max[1],bb.min[2]); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (bb.min[0],bb.min[1],bb.max[2]); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (bb.max[0],bb.min[1],bb.max[2]); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (bb.min[0],bb.max[1],bb.max[2]); tv.P()=tp; in.vert.push_back(tv);
tp=MESH_TYPE::CoordType (bb.max[0],bb.max[1],bb.max[2]); tv.P()=tp; in.vert.push_back(tv);
vector<MESH_TYPE::vertex_pointer> index(in.vn);
MESH_TYPE::face_type f;f.Supervisor_Flags()=0;
MESH_TYPE::vertex_iterator vi;
int j;
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &*vi;
f.V(0)=index[0]; f.V(1)=index[1];f.V(2)=index[2]; in.face.push_back(f);
f.V(0)=index[3]; f.V(1)=index[2];f.V(2)=index[1]; in.face.push_back(f);
f.V(0)=index[0]; f.V(1)=index[2];f.V(2)=index[4]; in.face.push_back(f);
f.V(0)=index[6]; f.V(1)=index[4];f.V(2)=index[2]; in.face.push_back(f);
f.V(0)=index[0]; f.V(1)=index[4];f.V(2)=index[1]; in.face.push_back(f);
f.V(0)=index[5]; f.V(1)=index[1];f.V(2)=index[4]; in.face.push_back(f);
f.V(0)=index[7]; f.V(1)=index[5];f.V(2)=index[6]; in.face.push_back(f);
f.V(0)=index[4]; f.V(1)=index[6];f.V(2)=index[5]; in.face.push_back(f);
f.V(0)=index[7]; f.V(1)=index[6];f.V(2)=index[3]; in.face.push_back(f);
f.V(0)=index[2]; f.V(1)=index[3];f.V(2)=index[6]; in.face.push_back(f);
f.V(0)=index[7]; f.V(1)=index[3];f.V(2)=index[5]; in.face.push_back(f);
f.V(0)=index[1]; f.V(1)=index[5];f.V(2)=index[3]; in.face.push_back(f);
}
/// Questa funzione costruisce una mesh a partire da un insieme di coordiante
/// ed un insieme di terne di indici di vertici
template <class M,class V, class F >
void Build( M & in, const V & v, const F & f)
{
in.vn = v.size();
in.fn = f.size();
in.vert.clear();
in.face.clear();
V::const_iterator vi;
M::VertexType tv;
tv.Supervisor_Flags()=0;
for(vi=v.begin();vi!=v.end();++vi)
{
tv.P() = M::CoordType(
(M::ScalarType)(*vi).Ext(0),
(M::ScalarType)(*vi).Ext(1),
(M::ScalarType)(*vi).Ext(2)
);
in.vert.push_back(tv);
}
vector<M::vertex_pointer> index(in.vn);
M::vertex_iterator j;
int k;
for(k=0,j=in.vert.begin();j!=in.vert.end();++j,++k)
index[k] = &*j;
F::const_iterator fi;
M::face_type ft;
ft.Supervisor_Flags()=0;
for(fi=f.begin();fi!=f.end();++fi)
{
assert( (*fi)[0]>=0 );
assert( (*fi)[1]>=0 );
assert( (*fi)[2]>=0 );
assert( (*fi)[0]<in.vn );
assert( (*fi)[1]<in.vn );
assert( (*fi)[2]<in.vn );
ft.V(0) = index[ (*fi)[0] ];
ft.V(1) = index[ (*fi)[1] ];
ft.V(2) = index[ (*fi)[2] ];
in.face.push_back(ft);
}
}
} // End Namespace TriMesh
} // End Namespace vcg
#endif