vcglib/vcg/math/matrix44.h

615 lines
17 KiB
C++
Raw Blame History

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.12 2004/03/25 14:57:49 ponchio
Microerror. ($LOG$ -> $Log: not supported by cvs2svn $
****************************************************************************/
#ifndef __VCGLIB_MATRIX44
#define __VCGLIB_MATRIX44
#include <vcg/math/base.h>
#include <vcg/space/point3.h>
#include <vcg/space/point4.h>
namespace vcg {
/*
Annotations:
Opengl stores matrix in column-major order. That is, the matrix is stored as:
a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15
e.g. glTranslate generate a matrix that is
1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1
Matrix44 stores matrix in row-major order i.e.
a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15
and the Translate Function generate:
1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1
*/
/** This class represent a 4x4 matrix. T is the kind of element in the matrix.
*/
template <class T> class Matrix44 {
protected:
T _a[16];
public:
typedef T scalar;
///@{
/** $name Contrutors
* No automatic casting and default constructor is empty
*/
Matrix44() {};
~Matrix44() {};
Matrix44(const Matrix44 &m);
Matrix44(const T v[]);
T &element(const int row, const int col);
T element(const int row, const int col) const;
//T &operator[](const int i);
//const T &operator[](const int i) const;
T *V();
const T *V() const ;
T *operator[](const int i);
const T *operator[](const int i) const;
Matrix44 operator+(const Matrix44 &m) const;
Matrix44 operator-(const Matrix44 &m) const;
Matrix44 operator*(const Matrix44 &m) const;
Point4<T> operator*(const Point4<T> &v) const;
bool operator==(const Matrix44 &m) const;
bool operator!= (const Matrix44 &m) const;
Matrix44 operator-() const;
Matrix44 operator*(const T k) const;
void operator+=(const Matrix44 &m);
void operator-=(const Matrix44 &m);
void operator*=( const Matrix44 & m );
void operator*=( const T k );
void SetZero();
void SetIdentity();
void SetDiagonal(const T k);
Matrix44 &SetScale(const T sx, const T sy, const T sz);
Matrix44 &SetTranslate(const Point3<T> &t);
Matrix44 &SetTranslate(const T sx, const T sy, const T sz);
///use radiants for angle.
Matrix44 &SetRotate(T angle, const Point3<T> & axis);
T Determinant() const;
template <class Q> void Import(const Matrix44<Q> &m) {
for(int i = 0; i < 16; i++)
_a[i] = (T)(m.V()[i]);
}
};
/** Class for solving A * x = b. */
template <class T> class LinearSolve: public Matrix44<T> {
public:
LinearSolve(const Matrix44<T> &m);
Point4<T> Solve(const Point4<T> &b); // solve A <20> x = b
///If you need to solve some equation you can use this function instead of Matrix44 one for speed.
T Determinant() const;
protected:
///Holds row permutation.
int index[4]; //hold permutation
///Hold sign of row permutation (used for determinant sign)
T d;
bool Decompose();
};
/// Apply POST moltiplica la matrice al vettore (e.g. la traslazione deve stare nell'ultima riga)
/// Project PRE moltiplica la matrice al vettore (e.g. la traslazione deve stare nell'ultima colonna)
/*** Postmultiply (old Apply in the old interface).
* SetTranslate, SetScale, SetRotate prepare the matrix for this.
*/
template <class T> Point3<T> operator*(const Point3<T> &p, const Matrix44<T> &m);
///Premultiply (old Project in the old interface)
template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p);
template <class T> Matrix44<T> &Transpose(Matrix44<T> &m);
//return NULL matrix if not invertible
template <class T> Matrix44<T> &Invert(Matrix44<T> &m);
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m);
typedef Matrix44<short> Matrix44s;
typedef Matrix44<int> Matrix44i;
typedef Matrix44<float> Matrix44f;
typedef Matrix44<double> Matrix44d;
template <class T> Matrix44<T>::Matrix44(const Matrix44<T> &m) {
memcpy((T *)_a, (T *)m._a, 16 * sizeof(T));
}
template <class T> Matrix44<T>::Matrix44(const T v[]) {
memcpy((T *)_a, v, 16 * sizeof(T));
}
template <class T> T &Matrix44<T>::element(const int row, const int col) {
assert(row >= 0 && row < 4);
assert(col >= 0 && col < 4);
return _a[(row<<2) + col];
}
template <class T> T Matrix44<T>::element(const int row, const int col) const {
assert(row >= 0 && row < 4);
assert(col >= 0 && col < 4);
return _a[(row<<2) + col];
}
//template <class T> T &Matrix44<T>::operator[](const int i) {
// assert(i >= 0 && i < 16);
// return ((T *)_a)[i];
//}
//
//template <class T> const T &Matrix44<T>::operator[](const int i) const {
// assert(i >= 0 && i < 16);
// return ((T *)_a)[i];
//}
template <class T> T *Matrix44<T>::operator[](const int i) {
assert(i >= 0 && i < 16);
return _a+i*4;
}
template <class T> const T *Matrix44<T>::operator[](const int i) const {
assert(i >= 0 && i < 4);
return _a+i*4;
}
template <class T> T *Matrix44<T>::V() { return _a;}
template <class T> const T *Matrix44<T>::V() const { return _a;}
template <class T> Matrix44<T> Matrix44<T>::operator+(const Matrix44 &m) const {
Matrix44<T> ret;
for(int i = 0; i < 16; i++)
ret[i] = operator[](i) + m[i];
}
template <class T> Matrix44<T> Matrix44<T>::operator-(const Matrix44 &m) const {
Matrix44<T> ret;
for(int i = 0; i < 16; i++)
ret[i] = operator[](i) - m[i];
}
template <class T> Matrix44<T> Matrix44<T>::operator*(const Matrix44 &m) const {
Matrix44 ret;
for(int i = 0; i < 4; i++)
for(int j = 0; j < 4; j++) {
T t = 0.0;
for(int k = 0; k < 4; k++)
t += element(i, k) * m.element(k, j);
ret.element(i, j) = t;
}
return ret;
}
template <class T> Point4<T> Matrix44<T>::operator*(const Point4<T> &v) const {
Point4<T> ret;
for(int i = 0; i < 4; i++){
T t = 0.0;
for(int k = 0; k < 4; k++)
t += element(i,k) * v[k];
ret[i] = t;
}
return ret;
}
template <class T> bool Matrix44<T>::operator==(const Matrix44 &m) const {
for(int i = 0 ; i < 16; i++)
if(operator[](i) != m[i])
return false;
return true;
}
template <class T> bool Matrix44<T>::operator!=(const Matrix44 &m) const {
for(int i = 0 ; i < 16; i++)
if(operator[](i) != m[i])
return true;
return false;
}
template <class T> Matrix44<T> Matrix44<T>::operator-() const {
Matrix44<T> res;
for(int i = 0; i < 16; i++)
res[i] = -operator[](i);
return res;
}
template <class T> Matrix44<T> Matrix44<T>::operator*(const T k) const {
Matrix44<T> res;
for(int i = 0; i < 16; i++)
res[i] = operator[](i) * k;
return res;
}
template <class T> void Matrix44<T>::operator+=(const Matrix44 &m) {
for(int i = 0; i < 16; i++)
operator[](i) += m[i];
}
template <class T> void Matrix44<T>::operator-=(const Matrix44 &m) {
for(int i = 0; i < 16; i++)
operator[](i) -= m[i];
}
template <class T> void Matrix44<T>::operator*=( const Matrix44 & m ) {
*this = *this *m;
/*for(int i = 0; i < 4; i++) { //sbagliato
Point4<T> t(0, 0, 0, 0);
for(int k = 0; k < 4; k++) {
for(int j = 0; j < 4; j++) {
t[k] += element(i, k) * m.element(k, j);
}
}
for(int l = 0; l < 4; l++)
element(i, l) = t[l];
} */
}
template <class T> void Matrix44<T>::operator*=( const T k ) {
for(int i = 0; i < 4; i++)
operator[](i) *= k;
}
template <class T> void Matrix44<T>::SetZero() {
memset((T *)_a, 0, 16 * sizeof(T));
}
template <class T> void Matrix44<T>::SetIdentity() {
SetDiagonal(1);
}
template <class T> void Matrix44<T>::SetDiagonal(const T k) {
SetZero();
element(0, 0) = k;
element(1, 1) = k;
element(2, 2) = k;
element(3, 3) = 1;
}
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const T sx, const T sy, const T sz) {
SetZero();
element(0, 0) = sx;
element(1, 1) = sy;
element(2, 2) = sz;
element(3, 3) = 1;
return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const Point3<T> &t) {
SetTranslate(t[0], t[1], t[2]);
return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const T sx, const T sy, const T sz) {
SetIdentity();
element(3, 0) = sx;
element(3, 1) = sy;
element(3, 2) = sz;
return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetRotate(T angle, const Point3<T> & axis) {
//angle = angle*(T)3.14159265358979323846/180; e' in radianti!
T c = math::Cos(angle);
T s = math::Sin(angle);
T q = 1-c;
Point3<T> t = axis;
t.Normalize();
element(0,0) = t[0]*t[0]*q + c;
element(1,0) = t[0]*t[1]*q - t[2]*s;
element(2,0) = t[0]*t[2]*q + t[1]*s;
element(3,0) = 0;
element(0,1) = t[1]*t[0]*q + t[2]*s;
element(1,1) = t[1]*t[1]*q + c;
element(2,1) = t[1]*t[2]*q - t[0]*s;
element(3,1) = 0;
element(0,2) = t[2]*t[0]*q -t[1]*s;
element(1,2) = t[2]*t[1]*q +t[0]*s;
element(2,2) = t[2]*t[2]*q +c;
element(3,2) = 0;
element(0,3) = 0;
element(1,3) = 0;
element(2,3) = 0;
element(3,3) = 1;
return *this;
}
template <class T> T Matrix44<T>::Determinant() const {
LinearSolve<T> solve(*this);
return solve.Determinant();
}
template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p) {
T w;
Point3<T> s;
s[0] = m.element(0, 0)*p[0] + m.element(0, 1)*p[1] + m.element(0, 2)*p[2] + m.element(0, 3);
s[1] = m.element(1, 0)*p[0] + m.element(1, 1)*p[1] + m.element(1, 2)*p[2] + m.element(1, 3);
s[2] = m.element(2, 0)*p[0] + m.element(2, 1)*p[1] + m.element(2, 2)*p[2] + m.element(2, 3);
w = m.element(3, 0)*p[0] + m.element(3, 1)*p[1] + m.element(3, 2)*p[2] + m.element(3, 3);
if(w!= 0) s /= w;
return s;
}
template <class T> Point3<T> operator*(const Point3<T> &p, const Matrix44<T> &m) {
T w;
Point3<T> s;
s[0] = m.element(0, 0)*p[0] + m.element(1, 0)*p[1] + m.element(2, 0)*p[2] + m.element(3, 0);
s[1] = m.element(0, 1)*p[0] + m.element(1, 1)*p[1] + m.element(2, 1)*p[2] + m.element(3, 1);
s[2] = m.element(0, 2)*p[0] + m.element(1, 2)*p[1] + m.element(2, 2)*p[2] + m.element(3, 2);
w = m.element(0, 3)*p[0] + m.element(1, 3)*p[1] + m.element(2, 3)*p[2] + m.element(3, 3);
if(w != 0) s /= w;
return s;
}
template <class T> Matrix44<T> &Transpose(Matrix44<T> &m) {
for(int i = 1; i < 4; i++)
for(int j = 0; j < i; j++) {
T t = m.element(i, j);
m.element(i, j) = m.element(j, i);
m.element(j, i) = t;
}
return m;
}
template <class T> Matrix44<T> &Invert(Matrix44<T> &m) {
LinearSolve<T> solve(m);
for(int j = 0; j < 4; j++) { //Find inverse by columns.
Point4<T> col(0, 0, 0, 0);
col[j] = 1.0;
col = solve.Solve(col);
for(int i = 0; i < 4; i++)
m.element(i, j) = col[i];
}
return m;
}
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m) {
LinearSolve<T> solve(m);
Matrix44<T> res;
for(int j = 0; j < 4; j++) { //Find inverse by columns.
Point4<T> col(0, 0, 0, 0);
col[j] = 1.0;
col = solve.Solve(col);
for(int i = 0; i < 4; i++)
res.element(i, j) = col[i];
}
return res;
}
/* LINEAR SOLVE IMPLEMENTATION */
template <class T> LinearSolve<T>::LinearSolve(const Matrix44<T> &m): Matrix44<T>(m) {
if(!Decompose()) {
for(int i = 0; i < 4; i++)
index[i] = i;
SetZero();
}
}
template <class T> T LinearSolve<T>::Determinant() const {
T det = d;
for(int j = 0; j < 4; j++)
det *= element(j, j);
return det;
}
/*replaces a matrix by its LU decomposition of a rowwise permutation.
d is +or -1 depeneing of row permutation even or odd.*/
#define TINY 1e-100
template <class T> bool LinearSolve<T>::Decompose() {
/* Matrix44<T> A;
for(int i = 0; i < 16; i++)
A[i] = operator[](i);
SetIdentity();
Point4<T> scale;
//* Set scale factor, scale(i) = max( |a(i,j)| ), for each row
for(int i = 0; i < 4; i++ ) {
index[i] = i; // Initialize row index list
T scalemax = (T)0.0;
for(int j = 0; j < 4; j++)
scalemax = (scalemax > math::Abs(A.element(i,j))) ? scalemax : math::Abs(A.element(i,j));
scale[i] = scalemax;
}
//* Loop over rows k = 1, ..., (N-1)
int signDet = 1;
for(int k = 0; k < 3; k++ ) {
//* Select pivot row from max( |a(j,k)/s(j)| )
T ratiomax = (T)0.0;
int jPivot = k;
for(int i = k; i < 4; i++ ) {
T ratio = math::Abs(A.element(index[i], k))/scale[index[i]];
if(ratio > ratiomax) {
jPivot = i;
ratiomax = ratio;
}
}
//* Perform pivoting using row index list
int indexJ = index[k];
if( jPivot != k ) { // Pivot
indexJ = index[jPivot];
index[jPivot] = index[k]; // Swap index jPivot and k
index[k] = indexJ;
signDet *= -1; // Flip sign of determinant
}
//* Perform forward elimination
for(int i=k+1; i < 4; i++ ) {
T coeff = A.element(index[i],k)/A.element(indexJ,k);
for(int j=k+1; j < 4; j++ )
A.element(index[i],j) -= coeff*A.element(indexJ,j);
A.element(index[i],k) = coeff;
//for( j=1; j< 4; j++ )
// element(index[i],j) -= A.element(index[i], k)*element(indexJ, j);
}
}
for(int i = 0; i < 16; i++)
operator[](i) = A[i];
d = signDet;
//*this = A;
return true; */
d = 1; //no permutation still
T scaling[4];
//Saving the scvaling information per row
for(int i = 0; i < 4; i++) {
T largest = 0.0;
for(int j = 0; j < 4; j++) {
T t = math::Abs(element(i, j));
if (t > largest) largest = t;
}
if (largest == 0.0) { //oooppps there is a zero row!
return false;
}
scaling[i] = (T)1.0 / largest;
}
int imax;
for(int j = 0; j < 4; j++) {
for(int i = 0; i < j; i++) {
T sum = element(i,j);
for(int k = 0; k < i; k++)
sum -= element(i,k)*element(k,j);
element(i,j) = sum;
}
T largest = 0.0;
for(int i = j; i < 4; i++) {
T sum = element(i,j);
for(int k = 0; k < j; k++)
sum -= element(i,k)*element(k,j);
element(i,j) = sum;
T t = scaling[i] * math::Abs(sum);
if(t >= largest) {
largest = t;
imax = i;
}
}
if (j != imax) {
for (int k = 0; k < 4; k++) {
T dum = element(imax,k);
element(imax,k) = element(j,k);
element(j,k) = dum;
}
d = -(d);
scaling[imax] = scaling[j];
}
index[j]=imax;
if (element(j,j) == 0.0) element(j,j) = (T)TINY;
if (j != 3) {
T dum = (T)1.0 / (element(j,j));
for (i = j+1; i < 4; i++)
element(i,j) *= dum;
}
}
return true;
}
template <class T> Point4<T> LinearSolve<T>::Solve(const Point4<T> &b) {
Point4<T> x(b);
int first = -1, ip;
for(int i = 0; i < 4; i++) {
ip = index[i];
T sum = x[ip];
x[ip] = x[i];
if(first!= -1)
for(int j = first; j <= i-1; j++)
sum -= element(i,j) * x[j];
else
if(sum) first = i;
x[i] = sum;
}
for (int i = 3; i >= 0; i--) {
T sum = x[i];
for (int j = i+1; j < 4; j++)
sum -= element(i, j) * x[j];
x[i] = sum / element(i, i);
}
return x;
}
} //namespace
#endif
/*#ifdef __GL_H__
// Applicano la trasformazione intesa secondo la Apply
void glMultMatrix(Matrix44<double> const & M) { glMultMatrixd(&(M.a[0][0]));}
void glMultMatrix(Matrix44<float> const & M) { glMultMatrixf(&(M.a[0][0]));}
void glLoadMatrix(Matrix44<double> const & M) { glLoadMatrixd(&(M.a[0][0]));}
void glLoadMatrix(Matrix44<float> const & M) { glLoadMatrixf(&(M.a[0][0]));}
#endif*/