vcglib/vcg/complex/trimesh/refine_loop.h

264 lines
8.2 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_REFINE_LOOP
#define __VCGLIB_REFINE_LOOP
#include <math.h>
#include <vcg/complex/trimesh/base.h>
#include <vcg/complex/trimesh/refine.h>
#include <vcg/space/color4.h>
#include <vcg/container/simple_temporary_data.h>
#include <vcg/complex/trimesh/update/flag.h>
#include <vcg/complex/trimesh/update/color.h>
namespace vcg{
namespace tri{
/*
Metodo di Loop dalla documentazione "Siggraph 2000 course on subdivision"
d4------d3 d4------d3
/ \ / \ / \ / \ u
/ \ / \ / e4--e3 \ / \
/ \/ \ / / \/ \ \ / \
d5------d1------d2 -> d5--e5--d1--e2--d2 l--M--r
\ /\ / \ \ /\ / / \ /
\ / \ / \ e6--e7 / \ /
\ / \ / \ / \ / d
d6------d7 d6------d7
*******************************************************
*/
// Nuovi punti (e.g. midpoint), ossia odd vertices
//
template<class MESH_TYPE>
struct OddPointLoop : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
{
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep) {
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
typename MESH_TYPE::CoordType *l,*r,*u,*d;
l = &he.v->P();
he.FlipV();
r = &he.v->P();
if( MESH_TYPE::HasPerVertexColor())
nv.C().lerp(ep.f->V(ep.z)->C(),ep.f->V1(ep.z)->C(),.5f);
if (he.IsBorder()) {
nv.P() = ((*l)*0.5 + (*r)*0.5);
}
else {
he.FlipE(); he.FlipV();
u = &he.v->P();
he.FlipV(); he.FlipE();
assert(&he.v->P()== r); // back to r
he.FlipF(); he.FlipE(); he.FlipV();
d = &he.v->P();
// abbiamo i punti l,r,u e d per ottenere M in maniera pesata
nv.P()=((*l)*(3.0/8.0)+(*r)*(3.0/8.0)+(*d)*(1.0/8.0)+(*u)*(1.0/8.0));
}
}
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
{
Color4<typename MESH_TYPE::ScalarType> cc;
return cc.lerp(c0,c1,0.5f);
}
template<class FL_TYPE>
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
{
TexCoord2<FL_TYPE,1> tmp;
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
};
// vecchi punti, ossia even vertices
template<class MESH_TYPE>
struct EvenPointLoop : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
{
void operator()(typename MESH_TYPE::CoordType &nP, face::Pos<typename MESH_TYPE::FaceType> ep) {
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
typename MESH_TYPE::CoordType *r, *l, *curr;
curr = &he.v->P();
if (he.IsBorder()) {//half edge di bordo
he.FlipV();
r = &he.v->P();
he.FlipV();
assert(&he.v->P()== curr); // back to curr
he.NextB();
if (&he.v->P() == curr)
he.FlipV();
l = &he.v->P();
nP = ( *(curr) * (3.0)/(4.0) + (*l)*(1.0/8.0) + (*r)*(1.0/8.0));
}
else {
// compute valence of this vertex
int k = 0;
face::Pos<typename MESH_TYPE::FaceType> heStart = he;
std::vector<typename MESH_TYPE::CoordType> otherVertVec;
if(he.v->IsB())return ;
do {
he.FlipV();
otherVertVec.push_back(he.v->P());
he.FlipV();
he.FlipE(); he.FlipF();
k++;
} while(he.f!=heStart.f || he.z!=heStart.z || he.v!=heStart.v);
// while(he != heStart);
float beta = 3.0 / 16.0;
if(k > 3 )
beta = (1.0/(float)k) * (5.0/8.0 - pow((3.0/8.0 + 0.25 * cos(2*M_PI/k)),2));
*curr = *curr * (1 - k * beta) ;
typename std::vector<typename MESH_TYPE::CoordType>::iterator iter;
for (iter = otherVertVec.begin();
iter != otherVertVec.end();
++iter) {
*curr = *curr + (*iter) * beta;
}
nP = *curr;
}
} // end of operator()
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
{
Color4<typename MESH_TYPE::ScalarType> cc;
return cc.lerp(c0,c1,0.5f);
}
Color4b WedgeInterp(Color4b &c0, Color4b &c1)
{
Color4b cc;
cc.lerp(c0,c1,0.5f);
return cc;
}
template<class FL_TYPE>
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
{
TexCoord2<FL_TYPE,1> tmp;
// assert(t0.n()== t1.n());
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
};
template<class CoordType> struct EvenParam {
CoordType sum;
bool border;
int k;
} ;
template<class MESH_TYPE,class ODD_VERT, class EVEN_VERT>
bool RefineOddEven(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even,float length,
bool RefineSelected=false, CallBackPos *cbOdd = 0, CallBackPos *cbEven = 0)
{
EdgeLen <MESH_TYPE, typename MESH_TYPE::ScalarType> ep(length);
return RefineOddEvenE(m, odd, even, ep, RefineSelected, cbOdd, cbEven);
}
template<class MESH_TYPE, class ODD_VERT, class EVEN_VERT, class PREDICATE>
bool RefineOddEvenE(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even, PREDICATE edgePred,
bool RefineSelected=false, CallBackPos *cbOdd = 0, CallBackPos *cbEven = 0)
{
// n = numero di vertici iniziali
int n = m.vn;
// refine dei vertici odd, crea dei nuovi vertici in coda
RefineE< MESH_TYPE,OddPointLoop<MESH_TYPE> > (m, odd, edgePred, RefineSelected, cbOdd);
// momentaneamente le callback sono identiche, almeno cbOdd deve essere passata
cbEven = cbOdd;
vcg::tri::UpdateFlags<MESH_TYPE>::FaceBorderFromFF(m);
// aggiorno i flag perche' IsB funzioni
vcg::tri::UpdateFlags<MESH_TYPE>::VertexBorderFromFace (m);
//vcg::tri::UpdateColor<MESH_TYPE>::VertexBorderFlag(m);
// marco i vertici even [ i primi n ] come visitati
int evenFlag = MESH_TYPE::VertexType::NewBitFlag();
for (int i = 0; i < n ; i++ ) {
m.vert[i].SetUserBit(evenFlag);
}
int j = 0;
typename MESH_TYPE::FaceType::ColorType color[6]; // per ogni faccia sono al piu' tre i nuovi valori
// di texture per wedge (uno per ogni edge)
typename MESH_TYPE::VertexIterator vi;
typename MESH_TYPE::FaceIterator fi;
for (fi = m.face.begin(); fi != m.face.end(); fi++) if(!(*fi).IsD()){ //itero facce
for (int i = 0; i < 3; i++) { //itero vert
if ( (*fi).V(i)->IsUserBit(evenFlag) && ! (*fi).V(i)->IsD() ) {
if (RefineSelected && !(*fi).V(i)->IsS() )
break;
face::Pos<typename MESH_TYPE::FaceType>aux (&(*fi),i);
if( MESH_TYPE::HasPerVertexColor() ) {
(*fi).V(i)->C().lerp((*fi).V0(i)->C() , (*fi).V1(i)->C(),0.5f);
}
if (cbEven) {
(*cbEven)(int(100.0f * (float)j / (float)m.fn),"Refining");
j++;
}
even((*fi).V(i)->P(), aux);
}
}
}
return true;
}
} // namespace tri
} // namespace vcg
#endif