774 lines
20 KiB
C++
774 lines
20 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.25 2005/12/21 13:09:03 corsini
|
|
Modify genus computation
|
|
|
|
Revision 1.24 2005/12/19 15:13:06 corsini
|
|
Fix IsOrientedMesh
|
|
|
|
Revision 1.23 2005/12/16 13:13:44 cignoni
|
|
Reimplemented SelfIntersection
|
|
|
|
Revision 1.22 2005/12/16 10:54:59 corsini
|
|
Reimplement isOrientedMesh
|
|
|
|
Revision 1.21 2005/12/16 10:53:39 corsini
|
|
Take account for deletion in isComplexManifold
|
|
|
|
Revision 1.20 2005/12/16 10:51:43 corsini
|
|
Take account for deletion in isRegularMesh
|
|
|
|
Revision 1.19 2005/12/15 13:53:13 corsini
|
|
Reimplement isComplexManifold
|
|
Reimplement isRegular
|
|
|
|
Revision 1.18 2005/12/14 14:04:35 corsini
|
|
Fix genus computation
|
|
|
|
Revision 1.17 2005/12/12 12:11:40 cignoni
|
|
Removed unuseful detectunreferenced
|
|
|
|
Revision 1.16 2005/12/04 00:25:00 cignoni
|
|
Changed DegeneratedFaces -> RemoveZeroAreaFaces
|
|
|
|
Revision 1.15 2005/12/03 22:34:25 cignoni
|
|
Added missing include and sdt:: (tnx to Mario Latronico)
|
|
|
|
Revision 1.14 2005/12/02 00:14:43 cignoni
|
|
Removed some pointer vs iterator issues that prevented gcc compilation
|
|
|
|
Revision 1.13 2005/11/22 14:04:10 rita_borgo
|
|
Completed and tested self-intersection routine
|
|
|
|
Revision 1.12 2005/11/17 00:41:07 cignoni
|
|
Removed Initialize use updateflags::Clear() instead.
|
|
|
|
Revision 1.11 2005/11/16 16:33:23 rita_borgo
|
|
Changed ComputeSelfintersection
|
|
|
|
Revision 1.10 2005/11/15 12:16:34 rita_borgo
|
|
Changed DegeneratedFaces, sets the D flags for each faces
|
|
that is found to be degenerated.
|
|
CounEdges and ConnectedComponents check now if a face IsD()
|
|
else for degenerated faces many asserts fail.
|
|
|
|
Revision 1.9 2005/11/14 09:28:18 cignoni
|
|
changed access to face functions (border, area)
|
|
removed some typecast warnings
|
|
|
|
Revision 1.8 2005/10/11 16:03:40 rita_borgo
|
|
Added new functions belonging to triMeshInfo
|
|
Started the Self-Intersection routine
|
|
|
|
Revision 1.7 2005/10/03 15:57:53 rita_borgo
|
|
Alligned with TriMeshInfo Code
|
|
|
|
Revision 1.6 2005/01/28 11:59:35 cignoni
|
|
Add std:: to stl containers
|
|
|
|
Revision 1.5 2004/09/20 08:37:57 cignoni
|
|
Better Doxygen docs
|
|
|
|
Revision 1.4 2004/08/25 15:15:26 ganovelli
|
|
minor changes to comply gcc compiler (typename's and stuff)
|
|
|
|
Revision 1.3 2004/07/18 06:55:37 cignoni
|
|
NewUserBit -> NewBitFlag
|
|
|
|
Revision 1.2 2004/07/09 15:48:37 tarini
|
|
Added an include (<algorithm>)
|
|
|
|
Revision 1.1 2004/06/24 08:03:59 cignoni
|
|
Initial Release
|
|
|
|
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_CLEAN
|
|
#define __VCGLIB_CLEAN
|
|
|
|
// Standard headers
|
|
#include <map>
|
|
#include <algorithm>
|
|
#include <stack>
|
|
|
|
// VCG headers
|
|
#include <vcg/simplex/face/face.h>
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <vcg/simplex/face/topology.h>
|
|
#include <vcg/complex/trimesh/base.h>
|
|
#include <vcg/complex/trimesh/closest.h>
|
|
#include <vcg/space/index/grid_static_ptr.h>
|
|
#include<vcg/complex/trimesh/allocate.h>
|
|
|
|
|
|
namespace vcg {
|
|
namespace tri{
|
|
///
|
|
/** \addtogroup trimesh */
|
|
/*@{*/
|
|
/// Class of static functions to clean/correct/restore meshs.
|
|
template <class CleanMeshType>
|
|
class Clean
|
|
{
|
|
|
|
public:
|
|
typedef CleanMeshType MeshType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::FaceContainer FaceContainer;
|
|
|
|
typedef GridStaticPtr<FaceType, ScalarType > TriMeshGrid;
|
|
typedef Point3<ScalarType> Point3x;
|
|
|
|
TriMeshGrid gM;
|
|
FaceIterator fi;
|
|
FaceIterator gi;
|
|
vcg::face::Pos<FaceType> he;
|
|
vcg::face::Pos<FaceType> hei;
|
|
|
|
/* classe di confronto per l'algoritmo di eliminazione vertici duplicati*/
|
|
class RemoveDuplicateVert_Compare{
|
|
public:
|
|
inline bool operator()(VertexPointer const &a, VertexPointer const &b)
|
|
{
|
|
return (*a).cP() < (*b).cP();
|
|
}
|
|
};
|
|
|
|
|
|
/** This function removes all duplicate vertices of the mesh by looking only at their spatial positions.
|
|
Note that it does not update any topology relation that could be affected by this like the VT or TT relation.
|
|
the reason this function is usually performed BEFORE building any topology information.
|
|
*/
|
|
static int RemoveDuplicateVertex( MeshType & m ) // V1.0
|
|
{
|
|
if(m.vert.size()==0 || m.vn==0) return 0;
|
|
|
|
std::map<VertexPointer, VertexPointer> mp;
|
|
int i,j;
|
|
VertexIterator vi;
|
|
int deleted=0;
|
|
int k=0;
|
|
size_t num_vert = m.vert.size();
|
|
std::vector<VertexPointer> perm(num_vert);
|
|
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k)
|
|
perm[k] = &(*vi);
|
|
|
|
RemoveDuplicateVert_Compare c_obj;
|
|
|
|
std::sort(perm.begin(),perm.end(),c_obj);
|
|
|
|
j = 0;
|
|
i = j;
|
|
mp[perm[i]] = perm[j];
|
|
++i;
|
|
for(;i!=num_vert;)
|
|
{
|
|
if( (! (*perm[i]).IsD()) &&
|
|
(! (*perm[j]).IsD()) &&
|
|
(*perm[i]).P() == (*perm[j]).cP() )
|
|
{
|
|
VertexPointer t = perm[i];
|
|
mp[perm[i]] = perm[j];
|
|
++i;
|
|
(*t).SetD();
|
|
deleted++;
|
|
}
|
|
else
|
|
{
|
|
j = i;
|
|
++i;
|
|
}
|
|
}
|
|
FaceIterator fi;
|
|
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
|
|
for(k = 0; k < 3; ++k)
|
|
if( !(*fi).IsD() )
|
|
if( mp.find( (typename MeshType::VertexPointer)(*fi).V(k) ) != mp.end() )
|
|
{
|
|
(*fi).V(k) = &*mp[ (*fi).V(k) ];
|
|
}
|
|
m.vn -= deleted;
|
|
return deleted;
|
|
}
|
|
|
|
|
|
/** This function removes that are not referenced by any face. The function updates the vn counter.
|
|
@param m The mesh
|
|
@return The number of removed vertices
|
|
*/
|
|
static int RemoveUnreferencedVertex( MeshType& m, bool DeleteVertexFlag=true) // V1.0
|
|
{
|
|
FaceIterator fi;
|
|
VertexIterator vi;
|
|
int referredBit = VertexType::NewBitFlag();
|
|
|
|
int j;
|
|
int deleted = 0;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
(*vi).ClearUserBit(referredBit);
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
if( !(*fi).IsD() )
|
|
for(j=0;j<3;++j)
|
|
(*fi).V(j)->SetUserBit(referredBit);
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
if( (!(*vi).IsD()) && (!(*vi).IsUserBit(referredBit)))
|
|
{
|
|
if(DeleteVertexFlag)
|
|
{
|
|
(*vi).SetD();
|
|
--m.vn;
|
|
}
|
|
++deleted;
|
|
}
|
|
VertexType::DeleteBitFlag(referredBit);
|
|
return deleted;
|
|
}
|
|
|
|
static int RemoveZeroAreaFace(MeshType& m, ScalarType epsilon=0)
|
|
{
|
|
FaceIterator fi;
|
|
int count_fd = 0;
|
|
|
|
for(fi=m.face.begin(); fi!=m.face.end();++fi)
|
|
if(Area<FaceType>(*fi) <= epsilon)
|
|
{
|
|
count_fd++;
|
|
fi->SetD();
|
|
m.fn--;
|
|
}
|
|
return count_fd;
|
|
}
|
|
|
|
/**
|
|
* Check if the mesh is a manifold.
|
|
*
|
|
* First of all, for each face the FF condition is checked.
|
|
* Then, a second test is performed: for each vertex the
|
|
* number of face found have to be the same of the number of
|
|
* face found with the VF walk trough.
|
|
*/
|
|
static bool IsComplexManifold( MeshType & m )
|
|
{
|
|
bool flagManifold = true;
|
|
|
|
VertexIterator vi;
|
|
FaceIterator fi;
|
|
|
|
// First Test
|
|
assert(m.HasFFTopology());
|
|
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
{
|
|
if (!fi->IsD())
|
|
{
|
|
if ((!IsManifold(*fi,0))||
|
|
(!IsManifold(*fi,1))||
|
|
(!IsManifold(*fi,2)))
|
|
{
|
|
flagManifold = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Second Test
|
|
if (flagManifold)
|
|
{
|
|
assert(m.HasVFTopology());
|
|
|
|
face::VFIterator<FaceType> vfi;
|
|
int starSizeFF;
|
|
int starSizeVF;
|
|
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
{
|
|
if (!vi->IsD())
|
|
{
|
|
face::VFIterator<FaceType> vfi(&*vi);
|
|
face::Pos<FaceType> pos((*vi).VFp(), &*vi);
|
|
|
|
starSizeFF = pos.StarSize();
|
|
|
|
starSizeVF = 0;
|
|
while(!vfi.End())
|
|
{
|
|
++vfi;
|
|
starSizeVF++;
|
|
}
|
|
|
|
if (starSizeFF != starSizeVF)
|
|
{
|
|
flagManifold = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return flagManifold;
|
|
}
|
|
|
|
static void CountEdges( MeshType & m, int &count_e, int &boundary_e )
|
|
{
|
|
FaceIterator fi;
|
|
vcg::face::Pos<FaceType> he;
|
|
vcg::face::Pos<FaceType> hei;
|
|
bool counted =false;
|
|
for(fi=m.face.begin();fi!=m.face.end();fi++)
|
|
{
|
|
if(!((*fi).IsD()))
|
|
{
|
|
(*fi).SetS();
|
|
count_e +=3; //assume that we have to increase the number of edges with three
|
|
for(int j=0; j<3; j++)
|
|
{
|
|
if (face::IsBorder(*fi,j)) //If this edge is a border edge
|
|
boundary_e++; // then increase the number of boundary edges
|
|
else if (IsManifold(*fi,j))//If this edge is manifold
|
|
{
|
|
if((*fi).FFp(j)->IsS()) //If the face on the other side of the edge is already selected
|
|
count_e--; // we counted one edge twice
|
|
}
|
|
else//We have a non-manifold edge
|
|
{
|
|
hei.Set(&(*fi), j , fi->V(j));
|
|
he=hei;
|
|
he.NextF();
|
|
while (he.f!=hei.f)// so we have to iterate all faces that are connected to this edge
|
|
{
|
|
if (he.f->IsS())// if one of the other faces was already visited than this edge was counted already.
|
|
{
|
|
counted=true;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
he.NextF();
|
|
}
|
|
}
|
|
if (counted)
|
|
{
|
|
count_e--;
|
|
counted=false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int CountHoles( MeshType & m)
|
|
{
|
|
int numholes=0;
|
|
int numholev=0;
|
|
int BEdges=0;
|
|
FaceIterator fi;
|
|
FaceIterator gi;
|
|
vcg::face::Pos<FaceType> he;
|
|
vcg::face::Pos<FaceType> hei;
|
|
|
|
vector<vector<Point3x> > holes; //indices of vertices
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
(*fi).ClearS();
|
|
gi=m.face.begin(); fi=gi;
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();fi++)//for all faces do
|
|
{
|
|
for(int j=0;j<3;j++)//for all edges
|
|
{
|
|
if(fi->V(j)->IsS()) continue;
|
|
|
|
if(face::IsBorder(*fi,j))//found an unvisited border edge
|
|
{
|
|
he.Set(&(*fi),j,fi->V(j)); //set the face-face iterator to the current face, edge and vertex
|
|
vector<Point3x> hole; //start of a new hole
|
|
hole.push_back(fi->P(j)); // including the first vertex
|
|
numholev++;
|
|
he.v->SetS(); //set the current vertex as selected
|
|
he.NextB(); //go to the next boundary edge
|
|
|
|
|
|
while(fi->V(j) != he.v)//will we do not encounter the first boundary edge.
|
|
{
|
|
Point3x newpoint = he.v->P(); //select its vertex.
|
|
if(he.v->IsS())//check if this vertex was selected already, because then we have an additional hole.
|
|
{
|
|
//cut and paste the additional hole.
|
|
vector<Point3x> hole2;
|
|
int index = find(hole.begin(),hole.end(),newpoint) - hole.begin();
|
|
for(unsigned int i=index; i<hole.size(); i++)
|
|
hole2.push_back(hole[i]);
|
|
|
|
hole.resize(index);
|
|
if(hole2.size()!=0) //annoying in degenerate cases
|
|
holes.push_back(hole2);
|
|
}
|
|
hole.push_back(newpoint);
|
|
numholev++;
|
|
he.v->SetS(); //set the current vertex as selected
|
|
he.NextB(); //go to the next boundary edge
|
|
}
|
|
holes.push_back(hole);
|
|
}
|
|
}
|
|
}
|
|
return static_cast<int>(holes.size());
|
|
}
|
|
|
|
static int BorderEdges( MeshType & m, int numholes)
|
|
{
|
|
int BEdges = 0;
|
|
for(int i=0; i<numholes; i++)
|
|
{
|
|
if(i==numholes-1)
|
|
BEdges++;
|
|
else
|
|
BEdges++;
|
|
}
|
|
return BEdges;
|
|
|
|
}
|
|
|
|
static int ConnectedComponents(MeshType &m)
|
|
{
|
|
FaceIterator fi;
|
|
//FaceIterator gi;
|
|
vcg::face::Pos<FaceType> he;
|
|
vcg::face::Pos<FaceType> hei;
|
|
|
|
vector<int> nrfaces;
|
|
nrfaces.reserve(1);
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
(*fi).ClearS();
|
|
//gi=m.face.begin(); fi=gi;
|
|
int Compindex=0;
|
|
std::stack<FacePointer> sf;
|
|
FacePointer gi=&*(m.face.begin());
|
|
FaceType *l;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
if(!((*fi).IsD()))
|
|
{
|
|
if (!(*fi).IsS())
|
|
{
|
|
(*fi).SetS();
|
|
//(*fi).Q()=Compindex;
|
|
nrfaces.push_back(1);
|
|
sf.push(&*fi);
|
|
while (!sf.empty())
|
|
{
|
|
gi=sf.top();
|
|
he.Set(&(*gi),0,gi->V(0));
|
|
sf.pop();
|
|
for(int j=0;j<3;++j)
|
|
{
|
|
if( !face::IsBorder(*gi,j) )
|
|
{
|
|
l=he.f->FFp(j);
|
|
if( !(*l).IsS() )
|
|
{
|
|
(*l).SetS();
|
|
sf.push(l);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Compindex++;
|
|
}
|
|
}
|
|
}
|
|
return Compindex;
|
|
}
|
|
|
|
|
|
/**
|
|
GENUS.
|
|
|
|
A topologically invariant property of a surface defined as
|
|
the largest number of non-intersecting simple closed curves that can be
|
|
drawn on the surface without separating it.
|
|
|
|
Roughly speaking, it is the number of holes in a surface.
|
|
The genus g of a closed surface, also called the geometric genus, is related to the
|
|
Euler characteristic by the relation $chi$ by $chi==2-2g$.
|
|
|
|
The genus of a connected, orientable surface is an integer representing the maximum
|
|
number of cuttings along closed simple curves without rendering the resultant
|
|
manifold disconnected. It is equal to the number of handles on it.
|
|
|
|
For general polyhedra the <em>Euler Formula</em> is:
|
|
|
|
V + F - E = 2 - 2G - B
|
|
|
|
where V is the number of vertices, F is the number of faces, E is the
|
|
number of edges, G is the genus and B is the number of <em>boundary polygons</em>.
|
|
|
|
The above formula is valid for a mesh with one single connected component.
|
|
By considering multiple connected components the formula becomes:
|
|
|
|
V + F - E = 2C - 2Gs - B
|
|
|
|
where C is the number of connected components and Gs is the sum of
|
|
the genus of all connected components.
|
|
|
|
*/
|
|
static int MeshGenus(MeshType &m, int numholes, int numcomponents, int count_e)
|
|
{
|
|
int V = m.vn;
|
|
int F = m.fn;
|
|
int E = count_e;
|
|
return -((V + F - E + numholes - 2 * numcomponents) / 2);
|
|
}
|
|
|
|
/**
|
|
* Check if the given mesh is regular, semi-regular or irregular.
|
|
*
|
|
* Each vertex of a \em regular mesh has valence 6 except for border vertices
|
|
* which have valence 4.
|
|
*
|
|
* A \em semi-regular mesh is derived from an irregular one applying
|
|
* 1-to-4 subdivision recursively. (not checked for now)
|
|
*
|
|
* All other meshes are \em irregular.
|
|
*/
|
|
static void IsRegularMesh(MeshType &m, bool &Regular, bool &Semiregular)
|
|
{
|
|
// This algorithm requires Vertex-Face topology
|
|
assert(m.HasVFTopology());
|
|
|
|
Regular = true;
|
|
|
|
VertexIterator vi;
|
|
|
|
// for each vertex the number of edges are count
|
|
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
{
|
|
if (!vi->IsD())
|
|
{
|
|
face::Pos<FaceType> he((*vi).VFp(), &*vi);
|
|
face::Pos<FaceType> ht = he;
|
|
|
|
int n=0;
|
|
bool border=false;
|
|
do
|
|
{
|
|
++n;
|
|
ht.NextE();
|
|
if (ht.IsBorder())
|
|
border=true;
|
|
}
|
|
while (ht != he);
|
|
|
|
if (border)
|
|
n = n/2;
|
|
|
|
if ((n != 6)&&(!border && n != 4))
|
|
{
|
|
Regular = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Regular)
|
|
Semiregular = false;
|
|
else
|
|
{
|
|
// For now we do not account for semi-regularity
|
|
Semiregular = false;
|
|
}
|
|
}
|
|
|
|
static void IsOrientedMesh(MeshType &m, bool &Oriented, bool &Orientable)
|
|
{
|
|
// This algorithms requires FF topology
|
|
assert(m.HasFFTopology());
|
|
|
|
Orientable = true;
|
|
Oriented = true;
|
|
|
|
// Ensure that each face is deselected
|
|
FaceIterator fi;
|
|
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
fi->ClearS();
|
|
|
|
// initialize stack
|
|
stack<FacePointer> faces;
|
|
|
|
// for each face of the mesh
|
|
FacePointer fp,fpaux;
|
|
int iaux;
|
|
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
{
|
|
if (!fi->IsD() && !fi->IsS())
|
|
{
|
|
// each face put in the stack is selected (and oriented)
|
|
fi->SetS();
|
|
faces.push(&(*fi));
|
|
|
|
// empty the stack
|
|
while (!faces.empty())
|
|
{
|
|
fp = faces.top();
|
|
faces.pop();
|
|
|
|
// make consistently oriented the adjacent faces
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
// get one of the adjacent face
|
|
fpaux = fp->FFp(j);
|
|
iaux = fp->FFi(j);
|
|
|
|
if (!fpaux->IsD() && fpaux != fp)
|
|
{
|
|
if (!CheckOrientation(*fpaux, iaux))
|
|
{
|
|
Oriented = false;
|
|
|
|
if (!fpaux->IsS())
|
|
{
|
|
SwapEdge(*fpaux, iaux);
|
|
assert(CheckOrientation(*fpaux, iaux));
|
|
}
|
|
else
|
|
Orientable = false;
|
|
}
|
|
|
|
// put the oriented face into the stack
|
|
|
|
if (!fpaux->IsS())
|
|
{
|
|
fpaux->SetS();
|
|
faces.push(fpaux);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Orientable)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool SelfIntersections(MeshType &m, std::vector<FaceType*> &ret)
|
|
{
|
|
assert(FaceType::HasMark()); // Needed by the UG
|
|
|
|
Box3< ScalarType> bbox;
|
|
TriMeshGrid gM;
|
|
ret.clear();
|
|
FaceIterator fi;
|
|
int referredBit = FaceType::NewBitFlag();
|
|
|
|
int deleted = 0;
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
(*fi).ClearUserBit(referredBit);
|
|
|
|
std::vector<FaceType*> inBox;
|
|
gM.Set(m.face.begin(),m.face.end());
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
(*fi).SetUserBit(referredBit);
|
|
(*fi).GetBBox(bbox);
|
|
vcg::trimesh::GetInBoxFace(m, gM, bbox,inBox);
|
|
bool Intersected=false;
|
|
std::vector<FaceType*>::iterator fib;
|
|
for(fib=inBox.begin();fib!=inBox.end();++fib)
|
|
{
|
|
if(!(*fib)->IsUserBit(referredBit) && (*fib != &*fi) )
|
|
if(TestIntersection(&*fi,*fib)){
|
|
ret.push_back(*fib);
|
|
if(!Intersected) {
|
|
ret.push_back(&*fi);
|
|
Intersected=true;
|
|
}
|
|
}
|
|
}
|
|
inBox.clear();
|
|
}
|
|
|
|
FaceType::DeleteBitFlag(referredBit);
|
|
return (ret.size()>0);
|
|
}
|
|
|
|
|
|
//test real intersection between faces
|
|
static bool TestIntersection(FaceType *f0,FaceType *f1)
|
|
{
|
|
assert((!f0->IsD())&&(!f1->IsD()));
|
|
//no adiacent faces
|
|
if ( (f0!=f1) && (!ShareEdge(f0,f1))
|
|
&& (!ShareVertex(f0,f1)) )
|
|
return (vcg::Intersection<FaceType>((*f0),(*f1)));
|
|
return false;
|
|
}
|
|
|
|
//control if two faces share an edge
|
|
static bool ShareEdge(FaceType *f0,FaceType *f1)
|
|
{
|
|
assert((!f0->IsD())&&(!f1->IsD()));
|
|
for (int i=0;i<3;i++)
|
|
if (f0->FFp(i)==f1)
|
|
return (true);
|
|
|
|
return(false);
|
|
}
|
|
|
|
//control if two faces share a vertex
|
|
static bool ShareVertex(FaceType *f0,FaceType *f1)
|
|
{
|
|
assert((!f0->IsD())&&(!f1->IsD()));
|
|
for (int i=0;i<3;i++)
|
|
for (int j=0;j<3;j++)
|
|
if (f0->V(i)==f1->V(j))
|
|
return (true);
|
|
|
|
return(false);
|
|
}
|
|
|
|
|
|
}; // end class
|
|
/*@}*/
|
|
|
|
} //End Namespace Tri
|
|
} // End Namespace vcg
|
|
#endif
|