259 lines
9.8 KiB
C++
259 lines
9.8 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2006 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_TRIMESH_STAT
|
|
#define __VCGLIB_TRIMESH_STAT
|
|
|
|
// Standard headers
|
|
// VCG headers
|
|
|
|
#include <vcg/math/histogram.h>
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <vcg/simplex/face/topology.h>
|
|
#include <vcg/complex/algorithms/closest.h>
|
|
#include <vcg/space/index/grid_static_ptr.h>
|
|
#include <vcg/complex/algorithms/update/topology.h>
|
|
|
|
|
|
namespace vcg {
|
|
namespace tri{
|
|
template <class StatMeshType>
|
|
class Stat
|
|
{
|
|
public:
|
|
typedef StatMeshType MeshType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::EdgeIterator EdgeIterator;
|
|
typedef typename MeshType::FaceContainer FaceContainer;
|
|
typedef typename vcg::Box3<ScalarType> Box3Type;
|
|
|
|
static void ComputePerVertexQualityMinMax( MeshType & m, float &minV, float &maxV)
|
|
{
|
|
std::pair<float,float> pp=ComputePerVertexQualityMinMax(m);
|
|
minV=pp.first; maxV=pp.second;
|
|
}
|
|
static std::pair<float,float> ComputePerVertexQualityMinMax( MeshType & m)
|
|
{
|
|
// assert(0);
|
|
tri::RequirePerVertexQuality(m);
|
|
typename MeshType::template PerMeshAttributeHandle < std::pair<float,float> > mmqH;
|
|
mmqH = tri::Allocator<MeshType>::template GetPerMeshAttribute <std::pair<float,float> >(m,"minmaxQ");
|
|
|
|
std::pair<float,float> minmax = std::make_pair(std::numeric_limits<float>::max(),-std::numeric_limits<float>::max());
|
|
|
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if(!(*vi).IsD())
|
|
{
|
|
if( (*vi).Q() < minmax.first) minmax.first=(*vi).Q();
|
|
if( (*vi).Q() > minmax.second) minmax.second=(*vi).Q();
|
|
}
|
|
|
|
mmqH() = minmax;
|
|
return minmax;
|
|
}
|
|
|
|
static void ComputePerFaceQualityMinMax( MeshType & m, float &minV, float &maxV)
|
|
{
|
|
std::pair<float,float> pp=ComputePerFaceQualityMinMax(m);
|
|
minV=pp.first; maxV=pp.second;
|
|
}
|
|
|
|
static std::pair<ScalarType,ScalarType> ComputePerFaceQualityMinMax( MeshType & m)
|
|
{
|
|
tri::RequirePerFaceQuality(m);
|
|
std::pair<ScalarType,ScalarType> minmax = std::make_pair(std::numeric_limits<ScalarType>::max(),-std::numeric_limits<ScalarType>::max());
|
|
|
|
FaceIterator fi;
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
if( (*fi).Q() < minmax.first) minmax.first =(*fi).Q();
|
|
if( (*fi).Q() > minmax.second) minmax.second=(*fi).Q();
|
|
}
|
|
return minmax;
|
|
}
|
|
|
|
/**
|
|
\short compute the barycenter of the surface thin-shell.
|
|
E.g. it assume a 'empty' model where all the mass is located on the surface and compute the barycenter of that thinshell.
|
|
Works for any triangulated model (no problem with open, nonmanifold selfintersecting models).
|
|
Useful for computing the barycenter of 2D planar figures.
|
|
*/
|
|
static Point3<ScalarType> ComputeShellBarycenter(MeshType & m)
|
|
{
|
|
Point3<ScalarType> barycenter(0,0,0);
|
|
ScalarType areaSum=0;
|
|
FaceIterator fi;
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
ScalarType area=DoubleArea(*fi);
|
|
barycenter += Barycenter(*fi)*area;
|
|
areaSum+=area;
|
|
}
|
|
return barycenter/areaSum;
|
|
}
|
|
|
|
|
|
static ScalarType ComputeMeshArea(MeshType & m)
|
|
{
|
|
ScalarType area=0;
|
|
|
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
area += DoubleArea(*fi);
|
|
|
|
return area/ScalarType(2.0);
|
|
}
|
|
|
|
static void ComputePerVertexQualityDistribution( MeshType & m, Distribution<float> &h, bool selectionOnly = false) // V1.0
|
|
{
|
|
tri::RequirePerVertexQuality(m);
|
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
|
|
{
|
|
assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
|
h.Add((*vi).Q());
|
|
}
|
|
}
|
|
|
|
static void ComputePerFaceQualityDistribution( MeshType & m, Distribution<float> &h, bool selectionOnly = false) // V1.0
|
|
{
|
|
tri::RequirePerFaceQuality(m);
|
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD() && ((!selectionOnly) || (*fi).IsS()) )
|
|
{
|
|
assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
|
h.Add((*fi).Q());
|
|
}
|
|
}
|
|
|
|
static void ComputePerFaceQualityHistogram( MeshType & m, Histogramf &h, bool selectionOnly=false,int HistSize=10000 )
|
|
{
|
|
tri::RequirePerFaceQuality(m);
|
|
std::pair<float,float> minmax = tri::Stat<MeshType>::ComputePerFaceQualityMinMax(m);
|
|
h.Clear();
|
|
h.SetRange( minmax.first,minmax.second, HistSize );
|
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD() && ((!selectionOnly) || (*fi).IsS()) ){
|
|
assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
|
h.Add((*fi).Q());
|
|
}
|
|
}
|
|
|
|
static void ComputePerVertexQualityHistogram( MeshType & m, Histogramf &h, bool selectionOnly = false, int HistSize=10000 ) // V1.0
|
|
{
|
|
tri::RequirePerVertexQuality(m);
|
|
std::pair<float,float> minmax = ComputePerVertexQualityMinMax(m);
|
|
|
|
h.Clear();
|
|
h.SetRange( minmax.first,minmax.second, HistSize);
|
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
|
|
{
|
|
assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
|
h.Add((*vi).Q());
|
|
}
|
|
// Sanity check; If some very wrong value has happened in the Q value,
|
|
// the histogram is messed. If a significant percentage (20% )of the values are all in a single bin
|
|
// we should try to solve the problem. No easy solution here.
|
|
// We choose to compute the get the 1percentile and 99 percentile values as new mixmax ranges
|
|
// and just to be sure enlarge the Histogram.
|
|
|
|
if(h.MaxCount() > HistSize/5)
|
|
{
|
|
std::vector<float> QV;
|
|
QV.reserve(m.vn);
|
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if(!(*vi).IsD()) QV.push_back((*vi).Q());
|
|
|
|
std::nth_element(QV.begin(),QV.begin()+m.vn/100,QV.end());
|
|
float newmin=*(QV.begin()+m.vn/100);
|
|
std::nth_element(QV.begin(),QV.begin()+m.vn-m.vn/100,QV.end());
|
|
float newmax=*(QV.begin()+m.vn-m.vn/100);
|
|
|
|
h.Clear();
|
|
h.SetRange(newmin, newmax, HistSize*50);
|
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
|
|
h.Add((*vi).Q());
|
|
}
|
|
}
|
|
|
|
static void ComputeEdgeLengthHistogram( MeshType & m, Histogramf &h)
|
|
{
|
|
assert(m.edge.size()>0);
|
|
h.Clear();
|
|
h.SetRange( 0, m.bbox.Diag(), 10000);
|
|
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
|
|
{
|
|
if(!(*ei).IsD())
|
|
{
|
|
h.Add(Distance<float>((*ei).V(0)->P(),(*ei).V(1)->P()));
|
|
}
|
|
}
|
|
}
|
|
|
|
static ScalarType ComputeEdgeLengthAverage(MeshType & m)
|
|
{
|
|
Histogramf h;
|
|
ComputeEdgeLengthHistogram(m,h);
|
|
return h.Avg();
|
|
}
|
|
|
|
static void ComputeFaceEdgeLengthDistribution( MeshType & m, Distribution<float> &h, bool includeFauxEdge=false)
|
|
{
|
|
std::vector< typename tri::UpdateTopology<MeshType>::PEdge > edgeVec;
|
|
tri::UpdateTopology<MeshType>::FillUniqueEdgeVector(m,edgeVec,includeFauxEdge);
|
|
h.Clear();
|
|
tri::UpdateFlags<MeshType>::FaceBorderFromNone(m);
|
|
for(size_t i=0;i<edgeVec.size();++i)
|
|
h.Add(Distance(edgeVec[i].v[0]->P(),edgeVec[i].v[1]->P()));
|
|
}
|
|
|
|
static ScalarType ComputeFaceEdgeLengthAverage(MeshType & m)
|
|
{
|
|
double sum=0;
|
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
sum+=double(Distance(fi->P0(i),fi->P1(i)));
|
|
}
|
|
return sum/(m.fn*3.0);
|
|
}
|
|
|
|
}; // end class
|
|
|
|
} //End Namespace tri
|
|
} // End Namespace vcg
|
|
|
|
#endif
|
|
|