vcglib/vcg/simplex/edgeplus/component.h

490 lines
21 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_EDGE_PLUS_COMPONENT
#define __VCG_EDGE_PLUS_COMPONENT
//#include <vector>
//#include <string>
//#include <vcg/space/point3.h>
//#include <vcg/space/texcoord2.h>
#include <vcg/space/color4.h>
namespace vcg {
namespace edge {
/*
Some naming Rules
All the Components that can be added to a vertex should be defined in the namespace edge:
*/
/*-------------------------- VERTEX ----------------------------------------*/
template <class T> class EmptyVertexRef: public T {
public:
// typedef typename T::VertexType VertexType;
// typedef typename T::CoordType CoordType;
inline typename T::VertexType * & V( const int j ) { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::VertexType * const & V( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::VertexType * const cV( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::CoordType & P( const int j ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
inline const typename T::CoordType & P( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
inline const typename T::CoordType &cP( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
template <class LeftF>
void ImportLocal(const LeftF & leftF) {T::ImportLocal(leftF);}
static bool HasVertexRef() { return false; }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class VertexRef: public T {
public:
VertexRef(){
v[0]=0;
v[1]=0;
}
inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<2); return v[j]; }
inline typename T::VertexType * const & V( const int j ) const { assert(j>=0 && j<2); return v[j]; }
inline typename T::VertexType * const cV( const int j ) const { assert(j>=0 && j<2); return v[j]; }
// Shortcut per accedere ai punti delle facce
inline typename T::CoordType & P( const int j ) { assert(j>=0 && j<2); return v[j]->P(); }
inline const typename T::CoordType &cP( const int j ) const { assert(j>=0 && j<2); return v[j]->cP(); }
/** Return the pointer to the ((j+1)%3)-th vertex of the face.
@param j Index of the face vertex.
*/
inline typename T::VertexType * & V0( const int j ) { return V(j);}
inline typename T::VertexType * & V1( const int j ) { return V((j+1)%2);}
inline const typename T::VertexType * const & V0( const int j ) const { return V(j);}
inline const typename T::VertexType * const & V1( const int j ) const { return V((j+1)%2);}
inline const typename T::VertexType * const & cV0( const int j ) const { return cV(j);}
inline const typename T::VertexType * const & cV1( const int j ) const { return cV((j+1)%2);}
/// Shortcut per accedere ai punti delle facce
inline typename T::CoordType & P0( const int j ) { return V(j)->P();}
inline typename T::CoordType & P1( const int j ) { return V((j+1)%2)->P();}
inline const typename T::CoordType & P0( const int j ) const { return V(j)->P();}
inline const typename T::CoordType & P1( const int j ) const { return V((j+1)%2)->P();}
inline const typename T::CoordType & cP0( const int j ) const { return cV(j)->P();}
inline const typename T::CoordType & cP1( const int j ) const { return cV((j+1)%2)->P();}
inline typename T::VertexType * & UberV( const int j ) { assert(j>=0 && j<2); return v[j]; }
inline const typename T::VertexType * const & UberV( const int j ) const { assert(j>=0 && j<2); return v[j]; }
template <class LeftF>
void ImportLocal(const LeftF & leftF){ V(0) = NULL; V(1) = NULL; V(2) = NULL; T::ImportLocal(leftF);}
static bool HasVertexRef() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("VertexRef"));T::Name(name);}
private:
typename T::VertexType *v[2];
};
/*-------------------------- INCREMENTAL MARK ----------------------------------------*/
template <class T> class EmptyMark: public T {
public:
static bool HasMark() { return false; }
static bool HasMarkOcc() { return false; }
inline void InitIMark() { }
inline int & IMark() { assert(0); static int tmp=-1; return tmp;}
inline const int & IMark() const {return 0;}
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class Mark: public T {
public:
static bool HasMark() { return true; }
static bool HasMarkOcc() { return true; }
inline void InitIMark() { _imark = 0; }
inline int & IMark() { return _imark;}
inline const int & IMark() const {return _imark;}
template < class LeftV>
void ImportLocal(const LeftV & left ) { IMark() = left.IMark(); T::ImportLocal( left); }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Mark"));T::Name(name);}
private:
int _imark;
};
/*------------------------- FLAGS -----------------------------------------*/
template <class T> class EmptyBitFlags: public T {
public:
typedef int FlagType;
/// Return the vector of Flags(), senza effettuare controlli sui bit
int &Flags() { static int dummyflags(0); assert(0); return dummyflags; }
const int Flags() const { return 0; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasFlags() { return false; }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class BitFlags: public T {
public:
BitFlags(){_flags=0;}
typedef int FlagType;
int &Flags() {return _flags; }
const int Flags() const {return _flags; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { Flags() = left.Flags(); T::ImportLocal( left); }
static bool HasFlags() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("BitFlags"));T::Name(name);}
private:
int _flags;
};
/*-------------------------- EMPTY COLOR & QUALITY ----------------------------------*/
template <class T> class EmptyColorQuality: public T {
public:
typedef float QualityType;
QualityType &Q() { static QualityType dummyQuality(0); assert(0); return dummyQuality; }
static bool HasQuality() { return false; }
typedef vcg::Color4b ColorType;
ColorType &C() { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasColor() { return false; }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
/*-------------------------- Color ----------------------------------*/
template <class A, class T> class Color: public T {
public:
Color():_color(vcg::Color4b::White) {}
typedef A ColorType;
ColorType &C() { return _color; }
const ColorType &C() const { return _color; }
const ColorType &cC() const { return _color; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { C() = left.cC(); T::ImportLocal( left); }
static bool HasColor() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Color"));T::Name(name);}
private:
ColorType _color;
};
template <class TT> class Color4b: public edge::Color<vcg::Color4b, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Color4b"));TT::Name(name);}
};
/*-------------------------- Quality ----------------------------------*/
template <class A, class TT> class Quality: public TT {
public:
typedef A QualityType;
QualityType &Q() { return _quality; }
const QualityType & cQ() const {return _quality; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { Q() = left.cQ(); TT::ImportLocal( left); }
static bool HasQuality() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality"));TT::Name(name);}
private:
QualityType _quality;
};
template <class TT> class Qualitys: public Quality<short, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualitys"));TT::Name(name);}
};
template <class TT> class Qualityf: public Quality<float, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityf"));TT::Name(name);}
};
template <class TT> class Qualityd: public Quality<double, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityd"));TT::Name(name);}
};
/*----------------------------- EVADJ ------------------------------*/
template <class T> class EmptyEVAdj: public T {
public:
typename T::VertexPointer &V(const int &) { static typename T::VertexPointer ep=0; assert(0); return ep; }
typename T::VertexPointer cV(const int &) { static typename T::VertexPointer ep=0; assert(0); return ep; }
int &EVi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasEVAdjacency() { return false; }
static bool HasEVAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class EVAdj: public T {
public:
EVAdj(){_vp[0]= _vp[1] =0;}
typename T::VertexPointer & V(const int & i) {return _vp[i]; }
const typename T::VertexPointer cV(const int & i) const {return _vp[i]; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { V() = NULL; T::ImportLocal( left); }
static bool HasEVAdjacency() { return true; }
static bool HasEVAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("EVAdj"));T::Name(name);}
private:
typename T::VertexPointer _vp[2] ;
};
/*----------------------------- HEVADJ ------------------------------*/
template <class T> class EmptyHEVAdj: public T {
public:
typename T::VertexPointer &HEVp() { static typename T::VertexPointer ep=0; assert(0); return ep; }
typename T::VertexPointer cHEVp() { static typename T::VertexPointer ep=0; assert(0); return ep; }
int &EVi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasHEVAdjacency() { return false; }
static bool HasHEVAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HEVAdj: public T {
public:
HEVAdj(){_vp =0;}
typename T::VertexPointer & HEVp() {return _vp ; }
const typename T::VertexPointer cHEVp() const {return _vp ; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { this->V() = NULL; T::ImportLocal( left); }
static bool HasHEVAdjacency() { return true; }
static bool HasHEVAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HEVAdj"));T::Name(name);}
private:
typename T::VertexPointer _vp ;
};
/*----------------------------- EEADJ ------------------------------*/
template <class T> class EmptyEEAdj: public T {
public:
typename T::EdgePointer &EEp(const int & i ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::EdgePointer cEEp(const int & i) { static typename T::EdgePointer ep=0; assert(0); return ep; }
int &EEi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasEEAdjacency() { return false; }
static bool HasEEAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class EEAdj: public T {
public:
EEAdj(){_ep=0;}
typename T::EdgePointer &EEp(const int & i) {return _ep[i]; }
typename T::EdgePointer cEEp(const int & i) {return _ep[i]; }
int &EEi(const int & i) {return _zp[i]; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { EEp() = NULL; T::ImportLocal( left); }
static bool HasEEAdjacency() { return true; }
static bool HasEEAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("EEAdj"));T::Name(name);}
private:
typename T::EdgePointer _ep[2] ;
int _zp[2] ;
};
/*----------------------------- ETADJ ------------------------------*/
template <class T> class EmptyETAdj: public T {
public:
typename T::TetraPointer &ETp() { static typename T::TetraPointer tp = 0; assert(0); return tp; }
typename T::TetraPointer cETp() { static typename T::TetraPointer tp = 0; assert(0); return tp; }
int &VTi() { static int z = 0; return z; };
static bool HasETAdjacency() { return false; }
static bool HasETAdjacencyOcc() { return false; }
static void Name( std::vector< std::string > & name ) { T::Name(name); }
};
template <class T> class ETAdj: public T {
public:
ETAdj() { _tp = 0; }
typename T::TetraPointer &ETp() { return _tp; }
typename T::TetraPointer cETp() { return _tp; }
int &ETi() {return _zp; }
static bool HasETAdjacency() { return true; }
static bool HasETAdjacencyOcc() { return true; }
static void Name( std::vector< std::string > & name ) { name.push_back( std::string("ETAdj") ); T::Name(name); }
private:
typename T::TetraPointer _tp ;
int _zp ;
};
/*----------------------------- HENextADJ ------------------------------*/
template <class T> class EmptyHENextAdj: public T {
public:
typename T::EdgePointer &HENp( ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::EdgePointer cHEp( ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasHENextAdjacency() { return false; }
static bool HasHENextAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HENextAdj: public T {
public:
HENextAdj(){_nep=0;}
typename T::EdgePointer &HENp() {return _nep; }
typename T::EdgePointer cHENp() {return _nep; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { this->EEp() = NULL; T::ImportLocal( left); }
static bool HasHENextAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HENextAdj"));T::Name(name);}
private:
typename T::EdgePointer _nep ;
};
/*----------------------------- HEOppADJ ------------------------------*/
template <class T> class EmptyHEOppAdj: public T {
public:
typename T::EdgePointer &HEOp(const int & i ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::EdgePointer cHOp(const int & i) { static typename T::EdgePointer ep=0; assert(0); return ep; }
int &EEi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasHEOppAdjacency() { return false; }
static bool HasHEOpptAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HEOppAdj: public T {
public:
HEOppAdj(){_oep=0;}
typename T::EdgePointer &HEOp() {return _oep; }
typename T::EdgePointer cHEOp() {return _oep; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { this->EEp() = NULL; T::ImportLocal( left); }
static bool HasHEOppAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HEOpptAdj"));T::Name(name);}
private:
typename T::EdgePointer _oep ;
};
/*----------------------------- HEPrevADJ ------------------------------*/
template <class T> class EmptyHEPrevAdj: public T {
public:
typename T::EdgePointer &HEPp() { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::EdgePointer cHPp() { static typename T::EdgePointer ep=0; assert(0); return ep; }
int &EEi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasHEPrevAdjacency() { return false; }
static bool HasHEPrevAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HEPrevAdj: public T {
public:
HEPrevAdj(){_pep=0;}
typename T::EdgePointer &HEPp() {return _pep; }
typename T::EdgePointer cHEPp() {return _pep; }
int &EEi(const int & i) {return this->_nei[i]; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { this->EEp() = NULL; T::ImportLocal( left); }
static bool HasHEPrevAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HEPrevAdj"));T::Name(name);}
private:
typename T::EdgePointer _pep ;
};
/*----------------------------- EFADJ ------------------------------*/
template <class T> class EmptyEFAdj: public T {
public:
typename T::FacePointer &EFp() { static typename T::FacePointer fp=0; assert(0); return fp; }
typename T::FacePointer cEFp() { static typename T::FacePointer fp=0; assert(0); return fp; }
int &EFi(){static int z=0; return z;};
template < class LeftV>
void ImportLocal(const LeftV & left ) { T::ImportLocal( left); }
static bool HasEFAdjacency() { return false; }
static bool HasEFAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class EFAdj: public T {
public:
EFAdj(){_fp=0;}
typename T::FacePointer &EFp() {return _fp; }
typename T::FacePointer cEFp() {return _fp; }
int &EFi() {return _zp; }
template < class LeftV>
void ImportLocal(const LeftV & left ) { this->EFp() = NULL; T::ImportLocal( left); }
static bool HasEFAdjacency() { return true; }
static bool HasEFAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("EFAdj"));T::Name(name);}
private:
typename T::FacePointer _fp ;
int _zp ;
};
/*----------------------------- EFADJ ------------------------------*/
/**
HEdgeData keep all the data for the half edge
*/
template <class T>
class EmptyHEdgeData : public EmptyEFAdj< // pointer to the face
EmptyHEOppAdj < // pointer to the opposite half edge
EmptyHENextAdj < // pointer to the next half edge along the face
EmptyHEVAdj < // pointer to the vertex
EmptyHEPrevAdj<
T > > > > >{};
template <class T>
class HEdgeData : public EFAdj< // pointer to the face
HEOppAdj < // pointer to the opposite half edge
HENextAdj < // pointer to the next half edge along the face
HEVAdj < // pointer to the vertex
T > > > >{
// functions to make the half edge user confortable
typename T::VertexPointer & Vertex() { return this->HEVp();}
const typename T::VertexPointer & cVertex() const { return this->cHEVp();}
typename T::EdgePointer Opposite() { return &this->HEOp();}
const typename T::EdgePointer & cOpposite() const { return this->cHEOp();}
typename T::EdgePointer & Next() { return this->HENp();}
const typename T::EdgePointer & Next() const { return this->HENp();}
};
} // end namespace edge
}// end namespace vcg
#endif