vcglib/vcg/simplex/face/distance.h

471 lines
22 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_FACE_DISTANCE
#define __VCGLIB_FACE_DISTANCE
#include <vcg/math/base.h>
#include <vcg/space/point3.h>
#include <vcg/space/segment3.h>
#include <vcg/space/distance3.h>
namespace vcg {
namespace face{
/*
Basic Wrapper for getting point-triangular face distance
distance is unsigned;
return true if the closest point <q> on <f> is nearer than the passed <dist>;
return false otherwiswe (and q is not valid)
This wrapper requires that your face has
- Per Face Flags well initialized
- Per Face EdgePlane component initialized.
Initialization must be done with:
tri::UpdateEdges<MeshType>::Set(yourMesh);
*/
template <class FaceType>
bool PointDistanceEP( const FaceType &f,
const vcg::Point3<typename FaceType::ScalarType> & q,
typename FaceType::ScalarType & dist,
vcg::Point3<typename FaceType::ScalarType> & p )
{
typedef typename FaceType::ScalarType ScalarType;
const ScalarType EPS = ScalarType( 0.000001);
ScalarType b,b0,b1,b2;
ScalarType d = SignedDistancePlanePoint( f.cPlane(), q );
if( d>dist || d<-dist ) return false;
Point3<ScalarType> t = f.cPlane().Direction();
p = q - t*d; // p is the projection of q on the face plane
// Now Choose the best plane and test to see if p is inside the triangle
switch( f.cFlags() & (FaceType::NORMX|FaceType::NORMY|FaceType::NORMZ) )
{
case FaceType::NORMX:
b0 = f.cEdge(1)[1]*(p[2] - f.cP(1)[2]) - f.cEdge(1)[2]*(p[1] - f.cP(1)[1]);
if(b0<=0)
{
b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
if(dist>b0) { dist = b0; return true; }
else return false;
}
b1 = f.cEdge(2)[1]*(p[2] - f.cP(2)[2]) - f.cEdge(2)[2]*(p[1] - f.cP(2)[1]);
if(b1<=0)
{
b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
if(dist>b1) { dist = b1; return true; }
else return false;
}
b2 = f.cEdge(0)[1]*(p[2] - f.cP(0)[2]) - f.cEdge(0)[2]*(p[1] - f.cP(0)[1]);
if(b2<=0)
{
b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
if(dist>b2) { dist = b2; return true; }
else return false;
}
// if all these tests failed the projection p should be inside.
// Some further tests for more robustness...
if( (b=std::min(b0,std::min(b1,b2)) ) < EPS*DoubleArea(f))
{
ScalarType bt;
if(b==b0) bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
else if(b==b1) bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
else { assert(b==b2);
bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
}
if(dist>bt) { dist = bt; return true; }
else return false;
}
break;
case FaceType::NORMY:
b0 = f.cEdge(1)[2]*(p[0] - f.cP(1)[0]) - f.cEdge(1)[0]*(p[2] - f.cP(1)[2]);
if(b0<=0)
{
b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
if(dist>b0) { dist = b0; return true; }
else return false;
}
b1 = f.cEdge(2)[2]*(p[0] - f.cP(2)[0]) - f.cEdge(2)[0]*(p[2] - f.cP(2)[2]);
if(b1<=0)
{
b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
if(dist>b1) { dist = b1; return true; }
else return false;
}
b2 = f.cEdge(0)[2]*(p[0] - f.cP(0)[0]) - f.cEdge(0)[0]*(p[2] - f.cP(0)[2]);
if(b2<=0)
{
b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
if(dist>b2) { dist = b2; return true; }
else return false;
}
if( (b=math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
{
ScalarType bt;
if(b==b0) bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
else if(b==b1) bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
else { assert(b==b2);
bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
}
if(dist>bt) { dist = bt; return true; }
else return false;
}
break;
case FaceType::NORMZ:
b0 = f.cEdge(1)[0]*(p[1] - f.cP(1)[1]) - f.cEdge(1)[1]*(p[0] - f.cP(1)[0]);
if(b0<=0)
{
b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
if(dist>b0) { dist = b0; return true; }
else return false;
}
b1 = f.cEdge(2)[0]*(p[1] - f.cP(2)[1]) - f.cEdge(2)[1]*(p[0] - f.cP(2)[0]);
if(b1<=0)
{
b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
if(dist>b1) { dist = b1; return true; }
else return false;
}
b2 = f.cEdge(0)[0]*(p[1] - f.cP(0)[1]) - f.cEdge(0)[1]*(p[0] - f.cP(0)[0]);
if(b2<=0)
{
b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
if(dist>b2) { dist = b2; return true; }
else return false;
}
if( (b=math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
{
ScalarType bt;
if(b==b0) bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
else if(b==b1) bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
else { assert(b==b2);
bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
}
if(dist>bt) { dist = bt; return true; }
else return false;
}
break;
} // end switch
dist = ScalarType(fabs(d));
return true;
}
template <class S>
class PointDistanceEPFunctor {
public:
typedef S ScalarType;
typedef Point3<ScalarType> QueryType;
static inline const Point3<ScalarType> & Pos(const QueryType & qt) {return qt;}
template <class FACETYPE, class SCALARTYPE>
inline bool operator () (const FACETYPE & f, const Point3<SCALARTYPE> & p, SCALARTYPE & minDist, Point3<SCALARTYPE> & q) {
const Point3<typename FACETYPE::ScalarType> fp = Point3<typename FACETYPE::ScalarType>::Construct(p);
Point3<typename FACETYPE::ScalarType> fq;
typename FACETYPE::ScalarType md = (typename FACETYPE::ScalarType)(minDist);
const bool ret = PointDistanceEP(f, fp, md, fq);
minDist = (SCALARTYPE)(md);
q = Point3<SCALARTYPE>::Construct(fq);
return (ret);
}
};
template <class S>
class PointNormalDistanceFunctor {
public:
typedef typename S::ScalarType ScalarType;
typedef S QueryType;
static inline const Point3<ScalarType> & Pos(const QueryType & qt) {return qt.P();}
static ScalarType & Alpha(){static ScalarType alpha = 1.0; return alpha;}
static ScalarType & Beta (){static ScalarType beta = 1.0; return beta;}
static ScalarType & Gamma(){static ScalarType gamma = 1.0; return gamma;}
static ScalarType & InterPoint(){static ScalarType interpoint= 1.0; return interpoint;}
template <class FACETYPE, class SCALARTYPE>
inline bool operator () (const FACETYPE &f, const typename FACETYPE::VertexType &p,
SCALARTYPE & minDist,Point3<SCALARTYPE> & q)
{
const Point3<typename FACETYPE::ScalarType> fp = Point3<typename FACETYPE::ScalarType>::Construct(p.cP());
const Point3<typename FACETYPE::ScalarType> fn = Point3<typename FACETYPE::ScalarType>::Construct(p.cN());
Point3<typename FACETYPE::ScalarType> fq;
typename FACETYPE::ScalarType md = (typename FACETYPE::ScalarType)(minDist);
const bool ret=PointDistance(f,fp,md,fq);
SCALARTYPE dev=InterPoint()*(pow((ScalarType)(1-f.cN().dot(fn)),(ScalarType)Beta())/(Gamma()*md+0.1));
if (md+dev < minDist){
minDist = (SCALARTYPE)(md+dev);
q = Point3<SCALARTYPE>::Construct(fq);
//q.N() = f.N();
return (ret);
}
return false;
}
};
/// BASIC VERSION of the Point-face distance that does not require the EdgePlane Additional data.
/// Given a face and a point, returns the closest point of the face to p.
template <class FaceType>
bool PointDistanceBase(
const FaceType &f, /// the face to be tested
const vcg::Point3<typename FaceType::ScalarType> & q, /// the point tested
typename FaceType::ScalarType & dist, /// bailout distance. It must be initialized with the max admittable value.
vcg::Point3<typename FaceType::ScalarType> & p )
{
typedef typename FaceType::ScalarType ScalarType;
if(f.cN()==Point3<ScalarType>(0,0,0)) // to correctly manage the case of degenerate triangles we consider them as segments.
{
Box3<ScalarType> bb;
f.GetBBox(bb);
Segment3<ScalarType> degenTri(bb.min,bb.max);
Point3<ScalarType> closest;
ScalarType d;
if(bb.Diag()>0)
vcg::SegmentPointDistance<ScalarType>(degenTri,q,closest,d);
else // very degenerate triangle (just a point)
{
closest = bb.min;
d=Distance(q,closest);
}
if( d>dist) return false;
dist=d;
p=closest;
assert(!math::IsNAN(dist));
return true;
}
Plane3<ScalarType,true> fPlane;
fPlane.Init(f.cP(0),f.cN());
const ScalarType EPS = ScalarType( 0.000001);
ScalarType b,b0,b1,b2;
// Calcolo distanza punto piano
ScalarType d = SignedDistancePlanePoint( fPlane, q );
if( d>dist || d<-dist ) // Risultato peggiore: niente di fatto
return false;
// Projection of query point onto the triangle plane
p = q - fPlane.Direction()*d;
Point3<ScalarType> fEdge[3];
fEdge[0] = f.cP(1); fEdge[0] -= f.cP(0);
fEdge[1] = f.cP(2); fEdge[1] -= f.cP(1);
fEdge[2] = f.cP(0); fEdge[2] -= f.cP(2);
/*
This piece of code is part of the EdgePlane initialization structure: note that the edges are scaled!.
if(nx>ny && nx>nz) { f.Flags() |= FaceType::NORMX; d = 1/f.Plane().Direction()[0]; }
else if(ny>nz) { f.Flags() |= FaceType::NORMY; d = 1/f.Plane().Direction()[1]; }
else { f.Flags() |= FaceType::NORMZ; d = 1/f.Plane().Direction()[2]; }
f.Edge(0)*=d; f.Edge(1)*=d;f.Edge(2)*=d;
So we must apply the same scaling according to the plane orientation, eg in the case of NORMX
scaleFactor= 1/fPlane.Direction()[0];
fEdge[0]*=d; fEdge[1]*=d;fEdge[2]*=d;
*/
int bestAxis;
if(fabs(f.cN()[0])>fabs(f.cN()[1]))
{
if(fabs(f.cN()[0])>fabs(f.cN()[2])) bestAxis = 0;
else bestAxis = 2;
} else {
if(fabs(f.cN()[1])>fabs(f.cN()[2])) bestAxis=1; /* 1 > 0 ? 2 */
else bestAxis=2; /* 2 > 1 ? 2 */
}
ScalarType scaleFactor;
switch( bestAxis )
{
case 0: /************* X AXIS **************/
scaleFactor= 1/fPlane.Direction()[0];
fEdge[0]*=scaleFactor; fEdge[1]*=scaleFactor; fEdge[2]*=scaleFactor;
b0 = fEdge[1][1]*(p[2] - f.cP(1)[2]) - fEdge[1][2]*(p[1] - f.cP(1)[1]);
if(b0<=0)
{
b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
if(dist>b0) { dist = b0; return true; }
else return false;
}
b1 = fEdge[2][1]*(p[2] - f.cP(2)[2]) - fEdge[2][2]*(p[1] - f.cP(2)[1]);
if(b1<=0)
{
b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
if(dist>b1) { dist = b1; return true; }
else return false;
}
b2 = fEdge[0][1]*(p[2] - f.cP(0)[2]) - fEdge[0][2]*(p[1] - f.cP(0)[1]);
if(b2<=0)
{
b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
if(dist>b2) { dist = b2; return true; }
else return false;
}
// sono tutti e tre > 0 quindi dovrebbe essere dentro;
// per sicurezza se il piu' piccolo dei tre e' < epsilon (scalato rispetto all'area della faccia
// per renderlo dimension independent.) allora si usa ancora la distanza punto
// segmento che e' piu robusta della punto piano, e si fa dalla parte a cui siamo piu'
// vicini (come prodotto vettore)
// Nota: si potrebbe rendere un pochino piu' veloce sostituendo Area()
// con il prodotto vettore dei due edge in 2d lungo il piano migliore.
if( (b=vcg::math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
{
ScalarType bt;
if(b==b0) bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
else if(b==b1) bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
else {assert(b==b2); bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);}
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
if(dist>bt) { dist = bt; return true; }
else return false;
}
break;
case 1: /************* Y AXIS **************/
scaleFactor= 1/fPlane.Direction()[1];
fEdge[0]*=scaleFactor; fEdge[1]*=scaleFactor; fEdge[2]*=scaleFactor;
b0 = fEdge[1][2]*(p[0] - f.cP(1)[0]) - fEdge[1][0]*(p[2] - f.cP(1)[2]);
if(b0<=0)
{
b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
if(dist>b0) { dist = b0; return true; }
else return false;
}
b1 = fEdge[2][2]*(p[0] - f.cP(2)[0]) - fEdge[2][0]*(p[2] - f.cP(2)[2]);
if(b1<=0)
{
b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
if(dist>b1) { dist = b1; return true; }
else return false;
}
b2 = fEdge[0][2]*(p[0] - f.cP(0)[0]) - fEdge[0][0]*(p[2] - f.cP(0)[2]);
if(b2<=0)
{
b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
if(dist>b2) { dist = b2; return true; }
else return false;
}
if( (b=vcg::math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
{
ScalarType bt;
if(b==b0) bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
else if(b==b1) bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
else{ assert(b==b2); bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);}
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
if(dist>bt) { dist = bt; return true; }
else return false;
}
break;
case 2: /************* Z AXIS **************/
scaleFactor= 1/fPlane.Direction()[2];
fEdge[0]*=scaleFactor; fEdge[1]*=scaleFactor; fEdge[2]*=scaleFactor;
b0 = fEdge[1][0]*(p[1] - f.cP(1)[1]) - fEdge[1][1]*(p[0] - f.cP(1)[0]);
if(b0<=0)
{
b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
if(dist>b0) { dist = b0; return true; }
else return false;
}
b1 = fEdge[2][0]*(p[1] - f.cP(2)[1]) - fEdge[2][1]*(p[0] - f.cP(2)[0]);
if(b1<=0)
{
b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
if(dist>b1) { dist = b1; return true; }
else return false;
}
b2 = fEdge[0][0]*(p[1] - f.cP(0)[1]) - fEdge[0][1]*(p[0] - f.cP(0)[0]);
if(b2<=0)
{
b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
if(dist>b2) { dist = b2; return true; }
else return false;
}
if( (b=vcg::math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
{
ScalarType bt;
if(b==b0) bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
else if(b==b1) bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
else { assert(b==b2); bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p); }
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
if(dist>bt) { dist = bt; return true; }
else return false;
}
break;
default: assert(0); // if you get this assert it means that you forgot to set the required UpdateFlags<MeshType>::FaceProjection(m);
}
dist = ScalarType(fabs(d));
//dist = Distance(p,q);
return true;
}
template <class S>
class PointDistanceBaseFunctor {
public:
typedef S ScalarType;
typedef Point3<ScalarType> QueryType;
static inline const Point3<ScalarType> & Pos(const Point3<ScalarType> & qt) {return qt;}
template <class FACETYPE, class SCALARTYPE>
inline bool operator () (const FACETYPE & f, const Point3<SCALARTYPE> & p, SCALARTYPE & minDist, Point3<SCALARTYPE> & q) {
const Point3<typename FACETYPE::ScalarType> fp = Point3<typename FACETYPE::ScalarType>::Construct(p);
Point3<typename FACETYPE::ScalarType> fq;
typename FACETYPE::ScalarType md = (typename FACETYPE::ScalarType)(minDist);
const bool ret = PointDistanceBase(f, fp, md, fq);
minDist = (SCALARTYPE)(md);
q = Point3<SCALARTYPE>::Construct(fq);
return (ret);
}
};
} // end namespace face
} // end namespace vcg
#endif