vcglib/vcg/complex/trimesh/closest.h

203 lines
6.6 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.6 2004/05/14 00:34:36 ganovelli
header added
****************************************************************************/
#ifndef __VCG_CLOSEST
#define __VCG_CLOSEST
#include <math.h>
#include <vcg/space/point3.h>
#include <vcg/space/box3.h>
#include <vcg/space/point4.h>
#include <vcg/math/base.h>
#include <vcg/space/index/grid_static_ptr.h>
using namespace vcg;
/*
aka MetroCore
data una mesh m e una ug sulle sue facce trova il punto di m piu' vicino ad
un punto dato.
*/
// input: mesh, punto, griglia, distanza limite
// output: normale alla faccia e punto piu' vicino su di essa
// Nota che il parametro template GRID non ci dovrebbe essere, visto che deve essere
// UGrid<MESH::FaceContainer >, ma non sono riuscito a definirlo implicitamente
template <class MESH, class GRID, class SCALAR>
void Closest( MESH & mesh, const Point3<SCALAR> & p, GRID & gr, SCALAR & mdist,
Point3<SCALAR> & normf, Point3<SCALAR> & bestq, typename MESH::FaceType * &f, Point3<SCALAR> &ip)
{
typedef SCALAR scalar;
typedef Point3<scalar> Point3x;
typedef Box3<SCALAR> Box3x;
if(!gr.bbox.IsIn(p)) return;
typedef typename GridStaticPtr<typename MESH::FaceContainer>::Link A2UGridLink;
scalar ax = p[0] - gr.bbox.min[0]; // Real coodinate of point refer to
scalar ay = p[1] - gr.bbox.min[1];
scalar az = p[2] - gr.bbox.min[2];
int gx = int( ax/gr.voxel[0] ); // Integer coordinate of the point
int gy = int( ay/gr.voxel[1] ); // voxel
int gz = int( az/gr.voxel[2] );
scalar vx = gr.bbox.min[0]+gx*gr.voxel[0]; // Real world coordinate of the Voxel
scalar vy = gr.bbox.min[1]+gy*gr.voxel[1]; // origin
scalar vz = gr.bbox.min[2]+gz*gr.voxel[2];
scalar dx = math::Min(p[0] - vx, vx+gr.voxel[0]-p[0]); // Dist from the voxel
scalar dy = math::Min(p[1] - vy, vy+gr.voxel[1]-p[1]);
scalar dz = math::Min(p[2] - vz, vz+gr.voxel[2]-p[2]);
scalar vdist,vstep;
if(dx<dy && dx<dz)
{
vdist = dx;
vstep = gr.voxel[0];
}
else if(dy<dz)
{
vdist = dy;
vstep = gr.voxel[1];
}
else
{
vdist = dz;
vstep = gr.voxel[2];
}
//scalar error = gr.bbox.SquaredDiag();
//scalar error = gr.bbox.Diag();
scalar error = mdist;
Point3x q;
typename MESH::FaceIterator bestf = (typename MESH::FaceIterator)0;
mesh.UnMarkAll();
int mxsd = gr.siz[0];
if(mxsd<gr.siz[1]) mxsd = gr.siz[1];
if(mxsd<gr.siz[2]) mxsd = gr.siz[2];
for(int s=0;s<mxsd;++s)
{
if(s==0)
{
A2UGridLink *first, *last, *l;
gr.Grid( gx, gy, gz, first, last );
for(l=first;l!=last;++l)
if( ! mesh.IsMarked( &*(l->Elem())) )
{
if( Dist((*(l->Elem())), p, error, q) )
{
bestq = q;
bestf = l->Elem();
typename MESH::ScalarType alfa=1, beta=1, gamma=1;
//bestf->InterpolationParameters(q, alfa, beta);
//calcolo normale con interpolazione trilineare
/*normf = (1-(alfa+beta))*(bestf->V(0)->Normal())+
(alfa*(bestf->V(1)->Normal()))+
(beta*(bestf->V(2)->Normal()));*/
bestf->InterpolationParameters(q, alfa, beta, gamma);
//assert(ret);
normf = (bestf->V(0)->cN())*alfa+
(bestf->V(1)->cN())*beta+
(bestf->V(2)->cN())*gamma;
normf.Normalize();
ip[0]=alfa;ip[1]=beta;ip[2]=gamma;
}
mesh.Mark( &*(l->Elem()) );
}
}
else
{
for(int ix=gx-s;ix<=gx+s;++ix)
if( ix>=0 && ix<gr.siz[0] )
{
for(int iy=gy-s;iy<=gy+s;++iy)
if( iy>=0 && iy<gr.siz[1] )
{
int sz = ( ix==gx-s || ix==gx+s ||
iy==gy-s || iy==gy+s )?1:2*s;
for(int iz=gz-s;iz<=gz+s;iz+=sz)
if( iz>=0 && iz<gr.siz[2] )
{
A2UGridLink *first, *last, *l;
gr.Grid( ix, iy, iz, first, last );
for(l=first;l!=last;++l)
if( ! mesh.IsMarked( &*(l->Elem())) )
{
if( Dist((*(l->Elem())), p, error, q) )
{
bestq = q;
bestf = l->Elem();
typename MESH::ScalarType alfa, beta, gamma;
//bestf->InterpolationParameters(q, alfa, beta);
//calcolo normale con interpolazione trilineare
bestf->InterpolationParameters(q, alfa, beta, gamma);
normf = (bestf->V(0)->cN())*alfa+
(bestf->V(1)->cN())*beta+
(bestf->V(2)->cN())*gamma ;
ip[0]=alfa;ip[1]=beta;ip[2]=gamma;
//normf.Normalize(); inutile si assume le normali ai vertici benfatte
}
mesh.Mark(&*l->Elem());
}
}
}
}
}
if( fabs(error)<vdist )
break;
vdist += vstep;
}
f=&*bestf;
mdist = scalar(fabs(error));
}
template <class MESH, class GRID, class SCALAR>
void MinDistPoint( MESH & mesh, const Point3<SCALAR> & p, GRID & gr, SCALAR & mdist,
Point3<SCALAR> & normf, Point3<SCALAR> & bestq, typename MESH::face_type * &f)
{
Point3<SCALAR> ip;
MinDistPoint(mesh,p,gr,mdist,normf,bestq,f,ip);
}
#endif