447 lines
12 KiB
C++
447 lines
12 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.21 2006/09/25 09:57:49 cignoni
|
|
Better comment on usage of VF iterators
|
|
|
|
Revision 1.20 2005/12/15 11:57:48 corsini
|
|
Replace Pos<FaceType> with PosType
|
|
|
|
Revision 1.19 2005/12/15 11:19:00 corsini
|
|
Fix operators
|
|
|
|
Revision 1.18 2005/12/15 10:53:16 corsini
|
|
Add constructor which takes as input a face and a vertex
|
|
|
|
Revision 1.17 2005/10/16 23:30:39 ponchio
|
|
IsBorder(...) declaration needed.
|
|
|
|
Revision 1.16 2005/10/13 09:29:10 cignoni
|
|
Removed the reference to Deprecated f->IsBorder(i) now everyone should use IsBorder(*f,i);
|
|
|
|
Revision 1.15 2005/01/03 11:22:31 cignoni
|
|
Added better documentation (with an example and the V0 V1 V2 access members
|
|
|
|
Revision 1.14 2004/10/28 00:50:48 cignoni
|
|
Better Doxygen documentation
|
|
|
|
Revision 1.13 2004/10/18 17:14:42 ganovelli
|
|
error FFP -> FFp
|
|
|
|
Revision 1.12 2004/09/14 19:46:10 ganovelli
|
|
constructor added
|
|
|
|
Revision 1.11 2004/08/25 15:15:27 ganovelli
|
|
minor changes to comply gcc compiler (typename's and stuff)
|
|
|
|
Revision 1.10 2004/07/27 09:47:49 cignoni
|
|
Added V() access function instead of V(0)
|
|
|
|
Revision 1.9 2004/07/18 07:45:30 cignoni
|
|
Removed two const modifiers from the VFIterator
|
|
|
|
Revision 1.8 2004/07/15 12:03:07 ganovelli
|
|
minor changes
|
|
|
|
Revision 1.7 2004/07/15 11:28:44 ganovelli
|
|
basefacetype to facetype
|
|
|
|
Revision 1.6 2004/07/06 06:25:44 cignoni
|
|
changed the VFIterator ++ to return a facepointer instead of a bool
|
|
|
|
Revision 1.5 2004/06/02 16:25:45 ganovelli
|
|
changed F(.. to FFp
|
|
changed Z( to FFi(
|
|
|
|
Revision 1.4 2004/05/10 15:21:47 cignoni
|
|
Added a constructor without vertex pointer
|
|
|
|
Revision 1.3 2004/05/10 13:41:57 cignoni
|
|
Added VFIterator
|
|
|
|
Revision 1.2 2004/03/12 15:22:28 cignoni
|
|
Written some documentation and added to the trimes doxygen module
|
|
|
|
Revision 1.1 2004/03/10 08:32:30 cignoni
|
|
Initial commit
|
|
|
|
|
|
****************************************************************************/
|
|
|
|
/** \file face/pos.h
|
|
* Definition of vcg:face::Pos class.
|
|
* This file contain the definition of vcg::face::Pos class and the derived vcg::face::PosN class.
|
|
*/
|
|
|
|
#ifndef __VCG_FACE_POS
|
|
#define __VCG_FACE_POS
|
|
|
|
namespace vcg {
|
|
namespace face {
|
|
|
|
/** \addtogroup face */
|
|
/*@{*/
|
|
|
|
/** Templated over the class face, it stores a \em position over a face in a mesh.
|
|
It contain a pointer to the current face,
|
|
the index of one edge and a edge's incident vertex.
|
|
*/
|
|
|
|
template <class FaceType>
|
|
bool IsBorder(FaceType const & f, const int j );
|
|
|
|
template <class FaceType>
|
|
class Pos
|
|
{
|
|
public:
|
|
|
|
/// The vertex type
|
|
typedef typename FaceType::VertexType VertexType;
|
|
///The HEdgePos type
|
|
typedef Pos<FaceType> PosType;
|
|
/// The vector type
|
|
typedef typename VertexType::CoordType CoordType;
|
|
/// The scalar type
|
|
typedef typename VertexType::ScalarType ScalarType;
|
|
|
|
/// Pointer to the face of the half-edge
|
|
typename FaceType::FaceType *f;
|
|
/// Index of the edge
|
|
int z;
|
|
/// Pointer to the vertex
|
|
VertexType *v;
|
|
|
|
/// Default constructor
|
|
Pos(){}
|
|
/// Constructor which associates the half-edge element with a face, its edge and its vertex
|
|
Pos(FaceType * const fp, int const zp, VertexType * const vp){f=fp; z=zp; v=vp;}
|
|
Pos(FaceType * const fp, int const zp){f=fp; z=zp; v=f->V(zp);}
|
|
Pos(FaceType * const fp, VertexType * const vp)
|
|
{
|
|
f = fp;
|
|
v = vp;
|
|
if (f->V(0) == v)
|
|
z = 2;
|
|
else if (f->V(1) == v)
|
|
z = 0;
|
|
else if (f->V(2) == v)
|
|
z = 1;
|
|
}
|
|
|
|
// access functions
|
|
VertexType *& V(){return f->UberV(z);}
|
|
VertexType *& V(const int & i){assert( (i>=0) && (i<2)); return f->UberV( (z +i) %3);}
|
|
|
|
/// Operator to compare two half-edge
|
|
inline bool operator == ( PosType const & p ) const {
|
|
return (f==p.f && z==p.z && v==p.v);
|
|
}
|
|
|
|
/// Operator to compare two half-edge
|
|
inline bool operator != ( PosType const & p ) const {
|
|
return (f!=p.f || z!=p.z || v!=p.v);
|
|
}
|
|
/// Operator to order half-edge; it's compare at the first the face pointers, then the index of the edge and finally the vertex pointers
|
|
inline bool operator <= ( PosType const & p) const {
|
|
return (f!=p.f)?(f<f.p):
|
|
(z!=p.z)?(z<p.z):
|
|
(v<=p.v);
|
|
}
|
|
|
|
/// Assignment operator
|
|
inline FaceType & operator = ( const FaceType & h ){
|
|
f=h.f;
|
|
z=h.z;
|
|
v=h.v;
|
|
return *this;
|
|
}
|
|
/// Set to null the half-edge
|
|
void SetNull(){
|
|
f=0;
|
|
v=0;
|
|
z=-1;
|
|
}
|
|
/// Check if the half-edge is null
|
|
bool IsNull() const {
|
|
return f==0 || v==0 || z<0;
|
|
}
|
|
|
|
//Cambia Faccia lungo z
|
|
// e' uguale a FlipF solo che funziona anche per non manifold.
|
|
/// Change face via z
|
|
void NextF()
|
|
{
|
|
FaceType * t = f;
|
|
f = t->FFp(z);
|
|
z = t->FFi(z);
|
|
}
|
|
|
|
// Paolo Cignoni 19/6/99
|
|
// Si muove sulla faccia adiacente a f, lungo uno spigolo che
|
|
// NON e' j, e che e' adiacente a v
|
|
// in questo modo si scandiscono tutte le facce incidenti in un
|
|
// vertice f facendo Next() finche' non si ritorna all'inizio
|
|
// Nota che sul bordo rimbalza, cioe' se lo spigolo !=j e' di bordo
|
|
// restituisce sempre la faccia f ma con nj che e' il nuovo spigolo di bordo
|
|
// vecchi parametri: FaceType * & f, VertexType * v, int & j
|
|
|
|
/// It moves on the adjacent face incident to v, via a different edge that j
|
|
void NextE()
|
|
{
|
|
assert( f->V(z)==v || f->V((z+1)%3)==v ); // L'edge j deve contenere v
|
|
FlipE();
|
|
FlipF();
|
|
assert( f->V(z)==v || f->V((z+1)%3)==v );
|
|
}
|
|
// Cambia edge mantenendo la stessa faccia e lo stesso vertice
|
|
/// Changes edge maintaining the same face and the same vertex
|
|
void FlipE()
|
|
{
|
|
assert(f->V((z+2)%3)!=v && (f->V((z+1)%3)==v || f->V((z+0)%3)==v));
|
|
if(f->V((z+1)%3)==v) z=(z+1)%3;
|
|
else z=(z-1+3)%3;
|
|
assert(f->V((z+2)%3)!=v && (f->V((z+1)%3)==v || f->V((z+0)%3)==v));
|
|
}
|
|
|
|
// Cambia Faccia mantenendo lo stesso vertice e lo stesso edge
|
|
// Vale che he.flipf.flipf= he
|
|
// Se l'he e' di bordo he.flipf()==he
|
|
// Si puo' usare SOLO se l'edge e' 2manifold altrimenti
|
|
// si deve usare nextf
|
|
|
|
/// Changes face maintaining the same vertex and the same edge
|
|
void FlipF()
|
|
{
|
|
assert( f->FFp(z)->FFp(f->FFi(z))==f );
|
|
assert(f->V((z+2)%3)!=v && (f->V((z+1)%3)==v || f->V((z+0)%3)==v));
|
|
FaceType *nf=f->FFp(z);
|
|
int nz=f->FFi(z);
|
|
assert(nf->V((nz+2)%3)!=v && (nf->V((nz+1)%3)==v || nf->V((nz+0)%3)==v));
|
|
f=nf;
|
|
z=nz;
|
|
assert(f->V((z+2)%3)!=v && (f->V((z+1)%3)==v || f->V((z+0)%3)==v));
|
|
}
|
|
|
|
/// Changes vertex maintaining the same face and the same edge
|
|
void FlipV()
|
|
{
|
|
assert(f->V((z+2)%3)!=v && (f->V((z+1)%3)==v || f->V((z+0)%3)==v));
|
|
|
|
if(f->V((z+1)%3)==v)
|
|
v=f->V((z+0)%3);
|
|
else
|
|
v=f->V((z+1)%3);
|
|
|
|
assert(f->V((z+2)%3)!=v && (f->V((z+1)%3)==v || f->V((z+0)%3)==v));
|
|
}
|
|
|
|
// return the vertex that it should have if we make FlipV;
|
|
VertexType *VFlip()
|
|
{
|
|
assert(f->V((z+2)%3)!=v && (f->V((z+1)%3)==v || f->V((z+0)%3)==v));
|
|
if(f->V((z+1)%3)==v) return f->V((z+0)%3);
|
|
else return f->V((z+1)%3);
|
|
}
|
|
|
|
// Trova il prossimo half-edge di bordo (nhe)
|
|
// tale che
|
|
// --nhe.f adiacente per vertice a he.f
|
|
// --nhe.v adiacente per edge di bordo a he.v
|
|
// l'idea e' che se he e' un half edge di bordo
|
|
// si puo scorrere tutto un bordo facendo
|
|
//
|
|
// hei=he;
|
|
// do
|
|
// hei.Nextb()
|
|
// while(hei!=he);
|
|
|
|
/// Finds the next half-edge border
|
|
void NextB( )
|
|
{
|
|
assert(f->V((z+2)%3)!=v && (f->V((z+1)%3)==v || f->V((z+0)%3)==v));
|
|
assert(f->FFp(z)==f); // f is border along j
|
|
// Si deve cambiare faccia intorno allo stesso vertice v
|
|
//finche' non si trova una faccia di bordo.
|
|
do
|
|
NextE();
|
|
while(!IsBorder());
|
|
|
|
// L'edge j e' di bordo e deve contenere v
|
|
assert(IsBorder() &&( f->V(z)==v || f->V((z+1)%3)==v ));
|
|
|
|
FlipV();
|
|
assert(f->V((z+2)%3)!=v && (f->V((z+1)%3)==v || f->V((z+0)%3)==v));
|
|
assert(f->FFp(z)==f); // f is border along j
|
|
}
|
|
|
|
/// Checks if the half-edge is of border
|
|
bool IsBorder()
|
|
{
|
|
return face::IsBorder(*f,z);
|
|
}
|
|
|
|
/// Return the dimension of the star
|
|
int StarSize()
|
|
{
|
|
int n=0;
|
|
PosType ht = *this;
|
|
bool bf=false;
|
|
do
|
|
{
|
|
++n;
|
|
ht.NextE();
|
|
if(ht.IsBorder()) bf=true;
|
|
} while (ht != *this);
|
|
|
|
if(bf) return n/2;
|
|
else return n;
|
|
}
|
|
|
|
/** Function to inizialize an half-edge.
|
|
@param fp Puntatore alla faccia
|
|
@param zp Indice dell'edge
|
|
@param vp Puntatore al vertice
|
|
*/
|
|
void Set(FaceType * const fp, int const zp, VertexType * const vp)
|
|
{
|
|
f=fp;z=zp;v=vp;
|
|
assert(f->V((z+2)%3)!=v && (f->V((z+1)%3)==v || f->V((z+0)%3)==v));
|
|
}
|
|
|
|
void Assert()
|
|
#ifdef _DEBUG
|
|
{
|
|
FaceType ht=*this;
|
|
ht.FlipF();
|
|
ht.FlipF();
|
|
assert(ht==*this);
|
|
|
|
ht.FlipE();
|
|
ht.FlipE();
|
|
assert(ht==*this);
|
|
|
|
ht.FlipV();
|
|
ht.FlipV();
|
|
assert(ht==*this);
|
|
}
|
|
#else
|
|
{}
|
|
#endif
|
|
|
|
// Controlla la coerenza di orientamento di un hpos con la relativa faccia
|
|
/// Checks the orientation coherence of a half-edge with the face
|
|
inline bool Coerent() const
|
|
{
|
|
return v == f->V(z); // e^(ip)+1=0 ovvero E=mc^2
|
|
}
|
|
|
|
};
|
|
|
|
template <class FaceType>
|
|
/** Class PosN.
|
|
This structure is equivalent to a Pos, but it contains a normal.
|
|
@param FaceType (Template-Parameter) Specifies the type of the faces
|
|
*/
|
|
class PosN : public Pos<FaceType>
|
|
{
|
|
public:
|
|
typedef typename FaceType::CoordType CoordType;
|
|
//normale per visualizzazione creaseangle
|
|
CoordType normal;
|
|
};
|
|
|
|
|
|
/** Class VFIterator.
|
|
This class is used as an iterator over the VF adjacency.
|
|
It allow to easily traverse all the faces around a given vertex;
|
|
typical example:
|
|
|
|
vcg::face::VFIterator<FaceType> vfi(f,v[1]);
|
|
for (;!vfi.End();++vfi)
|
|
vfi.F()->ClearV();
|
|
|
|
// Alternative
|
|
|
|
vcg::face::VFIterator<FaceType> vfi(f, 1);
|
|
while (!vfi.End()){
|
|
vfi.F()->ClearV();
|
|
++vfi;
|
|
}
|
|
*/
|
|
|
|
template <typename FaceType>
|
|
class VFIterator
|
|
{
|
|
public:
|
|
|
|
/// The vertex type
|
|
typedef typename FaceType::VertexType VertexType;
|
|
/// The Base face type
|
|
typedef FaceType VFIFaceType;
|
|
/// The vector type
|
|
typedef typename VertexType::CoordType CoordType;
|
|
/// The scalar type
|
|
typedef typename VertexType::ScalarType ScalarType;
|
|
|
|
/// Pointer to the face of the half-edge
|
|
FaceType *f;
|
|
/// Index of the vertex
|
|
int z;
|
|
|
|
/// Default constructor
|
|
VFIterator(){}
|
|
/// Constructor which associates the half-edge elementet with a face and its vertex
|
|
VFIterator(FaceType * _f, const int & _z){f = _f; z = _z;}
|
|
|
|
/// Constructor which takes a pointer to vertex
|
|
VFIterator(VertexType * _v){f = _v->VFp(); z = _v->VFi();}
|
|
|
|
VFIFaceType *& F() { return f;}
|
|
int & I() { return z;}
|
|
|
|
// Access to the vertex. Having a VFIterator vfi, it corresponds to
|
|
// vfi.V() = vfi.F()->V(vfi.I())
|
|
inline VertexType *V() const { return f->V(z);}
|
|
|
|
inline VertexType * const & V0() const { return f->V0(z);}
|
|
inline VertexType * const & V1() const { return f->V1(z);}
|
|
inline VertexType * const & V2() const { return f->V2(z);}
|
|
|
|
bool End() const {return f==0;}
|
|
VFIFaceType *operator++() {
|
|
FaceType* t = f;
|
|
f = t->VFp(z);
|
|
z = t->VFi(z);
|
|
return f;
|
|
}
|
|
|
|
};
|
|
|
|
/*@}*/
|
|
} // end namespace
|
|
} // end namespace
|
|
#endif
|