vcglib/vcg/simplex/edge/base.h

901 lines
20 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
****************************************************************************/
#include <vcg/space/box3.h>
#include <vcg/space/tcoord2.h>
namespace vcg {
/**
\ingroup segment
@name segment
Class Edge.
This is the base class for definition of a face of the mesh.
@param SVTYPE (Templete Parameter) Specifies the vertex class type.
*/
template <class SVTYPE, class TCTYPE = TCoord2<float,1> > class EDGE_TYPE
{
public:
/// The base type of the segment
typedef EDGE_TYPE BaseEdgeType;
/// The vertex type
typedef SVTYPE VertexType;
/// The type of the scalar field of the vertex coordinate
typedef typename VertexType::ScalarType ScalarType;
/// The type of the the vertex coordinate
typedef Point3< ScalarType > CoordType;
typedef Point3< ScalarType > NormalType;
typedef typename SVTYPE::EdgeType EdgeFromVertType;
/// The bounding box type
typedef Box3<ScalarType> BoxType;
/// Default Empty Costructor
inline EDGE_TYPE(){}
/// This are the _flags of face, the default value is 0
int _flags;
/***********************************************/
/** @name Vertex Pointer
blah
blah
**/
//@{
protected:
/// Vector of vertex pointer incident in the face
VertexType *v[2];
public:
/** Return the pointer to the j-th vertex of the face.
@param j Index of the face vertex.
*/
inline SVTYPE * & V( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j >= 0);
assert(j < 2);
return v[j];
}
inline const SVTYPE * const & V( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<2);
return v[j];
}
inline const SVTYPE * const & cV( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<2);
return v[j];
}
// Shortcut per accedere ai punti delle facce
inline CoordType & P( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<2);
return v[j]->P();
}
inline const CoordType & P( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<2);
return v[j]->cP();
}
inline const CoordType & cP( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<2);
return v[j]->cP();
}
/** Return the pointer to the ((j+1)%3)-th vertex of the face.
@param j Index of the face vertex.
*/
inline SVTYPE * & V0( const int j ) { return V(j);}
inline SVTYPE * & V1( const int j ) { return V((j+1)%2);}
inline const SVTYPE * const & V0( const int j ) const { return V(j);}
inline const SVTYPE * const & V1( const int j ) const { return V((j+1)%3);}
inline const SVTYPE * const & cV0( const int j ) const { return cV(j);}
inline const SVTYPE * const & cV1( const int j ) const { return cV((j+1)%3);}
/// Shortcut per accedere ai punti delle facce
inline CoordType & P0( const int j ) { return V(j)->P();}
inline CoordType & P1( const int j ) { return V((j+1)%3)->P();}
inline const CoordType & P0( const int j ) const { return V(j)->P();}
inline const CoordType & P1( const int j ) const { return V((j+1)%3)->P();}
inline const CoordType & cP0( const int j ) const { return cV(j)->P();}
inline const CoordType & cP1( const int j ) const { return cV((j+1)%3)->P();}
inline SVTYPE * & UberV( const int j )
{
assert(j>=0);
assert(j<2);
return v[j];
}
inline const SVTYPE * const & UberV( const int j ) const
{
assert(j>=0);
assert(j<2);
return v[j];
}
//@}
/***********************************************/
/** @name Normal
blah
blah
**/
//@{
#ifdef __VCGLIB_EDGE_FN
/// This vector indicates the normal of the face (defines if FACE_N is defined)
protected:
CoordType _n;
public:
#endif
/// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined).
inline CoordType & N()
{
#ifdef __VCGLIB_EDGE_FN
return _n;
#else
assert(0);
return *(CoordType *)0;
#endif
}
/// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined).
inline const CoordType & N() const
{
#ifdef __VCGLIB_EDGE_FN
return _n;
#else
return *(CoordType *)0;
#endif
}
/// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined).
inline const CoordType cN() const
{
#ifdef __VCGLIB_EDGE_FN
return _n;
#else
return *(CoordType *)0;
#endif
}
//@}
/***********************************************/
/** @name Quality
blah
blah
**/
//@{
#ifdef __VCGLIB_EDGE_FQ
protected:
float _q;
#endif
public:
float & Q()
{
#ifdef __VCGLIB_EDGE_FQ
return _q;
#else
assert(0);
return *(float*)(&_flags);
#endif
}
const float & Q() const
{
#ifdef __VCGLIB_EDGE_FQ
return _q;
#else
assert(0);
return *(float*)(&_flags);
#endif
}
//@}
/***********************************************/
/** @name Texture
blah
blah
**/
//@{
// Per Wedge Texture Coords
protected:
#ifdef __VCGLIB_EDGE_WT
TCTYPE _wt[3];
#endif
public:
TCTYPE & WT(const int i)
{
#ifdef __VCGLIB_EDGE_WT
return _wt[i];
#else
assert(0);
return *(TCTYPE*)(&_flags);
#endif
}
const TCTYPE & WT(const int i) const
{
#ifdef __VCGLIB_EDGE_WT
return _wt[i];
#else
assert(0);
return *(TCTYPE*)(&_flags);
#endif
}
//@}
/***********************************************/
/** @name Colors
blah
blah
**/
//@{
protected:
#ifdef __VCGLIB_EDGE_FC
Color4b _c;
#endif
public:
Color4b & C()
{
#ifdef __VCGLIB_EDGE_FC
return _c;
#else
assert(0);
return *(Color4b*)(&_flags);
#endif
}
const Color4b C() const
{
#ifdef __VCGLIB_EDGE_FC
return _c;
#else
return Color4b(Color4b::White);
#endif
}
protected:
#ifdef __VCGLIB_EDGE_WC
Color4b _wc[3];
#endif
public:
Color4b & WC(const int i)
{
#ifdef __VCGLIB_EDGE_WC
return _wc[i];
#else
assert(0);
return *(Color4b*)(&_flags);
#endif
}
const Color4b WC(const int i) const
{
#ifdef __VCGLIB_EDGE_WC
return _wc[i];
#else
assert(0);
return Color4b(Color4b::White);
#endif
}
//@}
/***********************************************/
/** @name Adjacency
blah
blah
**/
//@{
#if (defined(__VCGLIB_EDGE_EA) && defined(__VCGLIB_EDGE_EA))
#error Error: You cannot specify face-to-face and shared topology together
#endif
#if (defined(__VCGLIB_EDGE_VA) && defined(__VCGLIB_EDGE_EA))
#error Error: You cannot specify vertex-face and shared topology together
#endif
protected:
#if defined(__VCGLIB_EDGE_EA)
/// Vector of face pointer, it's used to indicate the adjacency relations (defines if FACE_A is defined)
EDGE_TYPE *ss[3]; // Facce adiacenti
/// Index of the face in the arrival face
char zs[4];
#endif
#ifdef __VCGLIB_EDGE_VA
///Vettore di puntatori a faccia, utilizzato per indicare le adiacenze vertice faccia
EDGE_TYPE *sv[3];
char zv[3];
#endif
#ifdef __VCGLIB_EDGE_EA
///Vettore di puntatori a faccia, utilizzato per indicare le adiacenze vertice faccia
EDGE_TYPE *ses[3];
char zs[3];
#endif
public:
/** Return the pointer to the j-th adjacent face.
@param j Index of the edge.
*/
inline EDGE_TYPE * & S( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<2);
#if defined(__VCGLIB_EDGE_EA)
return ss[j];
#elif defined(__VCGLIB_EDGE_EA)
return ses[j];
#else
assert(0);
static EDGE_TYPE *dum=0;
return dum;
#endif
}
inline const EDGE_TYPE * const & S( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<2);
#if defined(__VCGLIB_EDGE_EA)
return ss[j];
#elif defined(__VCGLIB_EDGE_EA)
return ses[j];
#else
assert(0);
return (EDGE_TYPE *)this;
#endif
}
inline EDGE_TYPE * & S1( const int j ) { return F((j+1)%2);}
inline const EDGE_TYPE * const& S1( const int j ) const { return F((j+1)%2);}
/** Return the pointer to the j-th adjacent face.
@param j Index of the edge.
*/
inline EDGE_TYPE * & UberF( const int j )
{
assert(j>=0);
assert(j<2);
#if defined(__VCGLIB_EDGE_EA)
return ss[j];
#elif defined(__VCGLIB_EDGE_EA)
return ses[j];
#else
assert(0); // if you stop here you are probably trying to use FF topology in a face without it
return *((EDGE_TYPE **)(_flags));
#endif
}
inline const EDGE_TYPE * const & UberF( const int j ) const
{
assert(j>=0);
assert(j<2);
#if defined(__VCGLIB_EDGE_EA)
return ss[j];
#elif defined(__VCGLIB_EDGE_EA)
return ses[j];
#else
assert(0); // if you stop here you are probably trying to use FF topology in a face without it
return *((EDGE_TYPE **)(_flags));
#endif
}
inline EDGE_TYPE * & Fv( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<2);
#ifdef __VCGLIB_EDGE_VA
return sv[j];
#elif defined(__VCGLIB_EDGE_EA)
return ses[j];
#else
assert(0); // you are probably trying to use VF topology in a vertex without it
return *((EDGE_TYPE **)(_flags));
#endif
}
inline const EDGE_TYPE * const & Fv( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<2);
#ifdef __VCGLIB_EDGE_VA
return sv[j];
#elif defined(__VCGLIB_EDGE_EA)
return ses[j];
#else
assert(0);
return (EDGE_TYPE *)this;
#endif
}
/** Return the index that the face have in the j-th adjacent face.
@param j Index of the edge.
*/
inline char & Z( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<2);
#if defined(__VCGLIB_EDGE_EA)
return zs[j];
#elif defined(__VCGLIB_EDGE_EA)
return zs[j];
#else
assert(0);
return *(char *)&_flags; // tanto per farlo compilare...
#endif
}
inline const char & Z( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<2);
#if defined(__VCGLIB_EDGE_EA)
return zs[j];
#elif defined(__VCGLIB_EDGE_EA)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
/** Return the index that the face have in the j-th adjacent face.
@param j Index of the edge.
*/
inline char & UberZ( const int j )
{
assert(j>=0);
assert(j<2);
#if defined(__VCGLIB_EDGE_EA)
return zs[j];
#elif defined(__VCGLIB_EDGE_EA)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
inline const char & UberZ( const int j ) const
{
assert(j>=0);
assert(j<2);
#if defined(__VCGLIB_EDGE_EA)
return zs[j];
#elif defined(__VCGLIB_EDGE_EA)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
inline char & Zv( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<2);
#ifdef __VCGLIB_EDGE_VA
return zv[j];
#elif defined(__VCGLIB_EDGE_EA)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
inline const char & Zv( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<2);
#ifdef __VCGLIB_EDGE_VA
return zv[j];
#elif defined(__VCGLIB_EDGE_EA)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
//@}
/***********************************************/
/** @name Mark
blah
blah
**/
//@{
#ifdef __VCGLIB_EDGE_FM
/// Incremental mark (defines if FACE_I is defined)
int imark;
#endif // Mark
#ifdef __VCGLIB_EDGE_M
inline int & IMark()
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
return imark;
}
inline const int & IMark() const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return imark;
}
#endif // Mark
/// Initialize the imark system of the face
inline void InitIMark()
{
#ifdef __VCGLIB_EDGE_M
imark = 0;
#endif
}
//@}
/***********************************************/
/** @name Flags
blah
blah
**/
//@{
enum {
// This bit indicate that the face is deleted from the mesh
DELETED = 0x00000001, // cancellato
// This bit indicate that the face of the mesh is not readable
NOTREAD = 0x00000002, // non leggibile (ma forse modificabile)
// This bit indicate that the face is not modifiable
NOTWRITE = 0x00000004, // non modificabile (ma forse leggibile)
// This bit indicate that the face is modified
SELECTED = 0x00000020, // Selection _flags
// Border _flags, it is assumed that BORDERi = BORDER0<<i
BORDER0 = 0x00000040,
BORDER1 = 0x00000080,
// First user bit
USER0 = 0x00040000
};
public:
static int &LastBitFlag()
{
static int b =USER0;
return b;
}
static inline int NewBitFlag()
{
LastBitFlag()=LastBitFlag()<<1;
return LastBitFlag();
}
static inline bool DeleteBitFlag(int bitval)
{
if(LastBitFlag()==bitval) {
LastBitFlag()= LastBitFlag()>>1;
return true;
}
assert(0);
return false;
}
void ClearFlags() {_flags=0;}
/// Return the _flags.
inline int & Flags ()
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return _flags;
}
inline const int & Flags () const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return _flags;
}
/// Ritorna il _flags senza effettuare alcun controllo sui relativi bit
inline int & UberFlags()
{
return _flags;
}
inline const int UberFlags() const
{
return _flags;
}
/// This function checks if the face is deleted
bool IsD() const {return (_flags & DELETED) != 0;}
/// This function mark the face as deleted
void SetD() {_flags |=DELETED;}
/// This function mark the face as not deleted
void ClearD() {_flags &= (~DELETED);}
/// This function checks if the face is deleted
bool IsDeleted() const {return IsD();}
/// This function checks if the face is readable
bool IsR() const {return (_flags & NOTREAD) == 0;}
/// This function marks the face as readable
void SetR() {_flags &= (~NOTREAD);}
/// This function marks the face as not readable
void ClearR() {_flags |=NOTREAD;}
/// This function checks if the face is readable
bool IsW() const {return (_flags & NOTWRITE)== 0;}
/// This function marks the vertex as not writable
void SetW() {_flags &=(~NOTWRITE);}
/// This function marks the face as not writable
void ClearW() {_flags |=NOTWRITE;}
/// This funcion checks whether the face is both readable and modifiable
bool IsRW() const {return (_flags & (NOTREAD | NOTWRITE)) == 0;}
/// This function checks if the face is selected
bool IsS() const {return (_flags & SELECTED) != 0;}
/// This function select the face
void SetS() {_flags |=SELECTED;}
/// This funcion execute the inverse operation of SetS()
void ClearS() {_flags &= (~SELECTED);}
/// This function checks if the face is selected
bool IsB(int i) const {return (_flags & (BORDER0<<i)) != 0;}
/// This function select the face
void SetB(int i) {_flags |=(BORDER0<<i);}
/// This funcion execute the inverse operation of SetS()
void ClearB(int i) {_flags &= (~(BORDER0<<i));}
/// This function checks if the face is Crease on side i
bool IsEE(int i) const {return (_flags & (FEATURE0<<i)) != 0;}
/// This function select the face flag
void SetEE(int i) {_flags |=(FEATURE0<<i);}
/// This funcion execute the inverse operation of Set()
void ClearEE(int i) {_flags &= (~(FEATURE0<<i));}
/// This function checks if the given user bit is true
bool IsUserBit(int userBit){return (_flags & userBit) != 0;}
/// This function set the given user bit
void SetUserBit(int userBit){_flags |=userBit;}
/// This function clear the given user bit
void ClearUserBit(int userBit){_flags &= (~userBit);}
//@}
/*#*******************
* Bounding box *
**********************/
void GetBBox( BoxType & bb )
{
bb.Set( v[0]->P() );
bb.Add( v[1]->P() );
}
/***********************************************/
/** @name Reflection Functions
Static functions that give information about the current vertex type.
Reflection is a mechanism making it possible to investigate yourself. Reflection is used to investigate format of objects at runtime, invoke methods and access fields of these objects. Here we provide static const functions that are resolved at compile time and they give information about the data (normal, color etc.) supported by the current vertex type.
**/
//@{
static bool HasEdgeNormal() {
#ifdef __VCGLIB_EDGE_FN
return true;
#else
return false;
#endif
}
static bool HasEdgeQuality() {
#ifdef __VCGLIB_EDGE_FQ
return true;
#else
return false;
#endif
}
static bool HasEdgeColor() {
#ifdef __VCGLIB_EDGE_FC
return true;
#else
return false;
#endif
}
static bool HasEEAdjacency() {
#if (defined(__VCGLIB_EDGE_EA) || defined(__VCGLIB_EDGE_EA))
return true;
#else
return false;
#endif
}
static bool HasVSAdjacency() {
#if (defined(__VCGLIB_EDGE_VA) || defined(__VCGLIB_EDGE_EA))
return true;
#else
return false;
#endif
}
static bool HasSharedAdjacency() {
#if defined(__VCGLIB_EDGE_EA)
return true;
#else
return false;
#endif
}
static bool HasEdgeMark() {
#ifdef __VCGLIB_EDGE_FC
return true;
#else
return false;
#endif
}
//@}
/// operator to compare two faces
inline bool operator == ( const EDGE_TYPE & f ) const {
for(int i=0; i<3; ++i)
if( (V(i) != f.V(0)) && (V(i) != f.V(1)) )
return false;
return true;
}
/** Calcola i coefficienti della combinazione convessa.
@param bq Punto appartenente alla faccia
@param a Valore di ritorno per il vertice V(0)
@param b Valore di ritorno per il vertice V(1)
@param _c Valore di ritorno per il vertice V(2)
@return true se bq appartiene alla faccia, false altrimenti
*/
bool InterpolationParameters(const CoordType & bq, ScalarType &a, ScalarType &_b) const
{
const ScalarType EPSILON = ScalarType(0.000001);
ScalarType l;
#define x1 (cV(0)->P().x())
#define y1 (cV(0)->P().y())
#define z1 (cV(0)->P().z())
#define x2 (cV(1)->P().x())
#define y2 (cV(1)->P().y())
#define z2 (cV(1)->P().z())
#define px (bq.x())
#define py (bq.y())
#define pz (bq.z())
a = (px-x1)/(x2-x1);
l = (py-y1)/(y2-y1);
if( ( l < a -EPSILON) || ( l > a +EPSILON))
return false;
l = (pz-z1)/(z2-z1);
if( ( l < a -EPSILON) || ( l > a +EPSILON))
return false;
_b = 1-a;
return true;
#undef x1
#undef y1
#undef z1
#undef x2
#undef y2
#undef z2
#undef px
#undef py
#undef pz
}
/// Return the DOUBLE of the area of the face
ScalarType Length() const
{
return Norm( (V(1)->P() - V(0)->P()).Norm());
}
CoordType Barycenter() const
{
return (V(0)->P()+V(1)->P())/ScalarType(2.0);
}
}; //end Class
} // end namespace