633 lines
21 KiB
C++
633 lines
21 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/*! \file refine_loop.h
|
|
*
|
|
* \brief This file contain code for Loop's subdivision scheme for triangular
|
|
* mesh and some similar method.
|
|
*
|
|
*/
|
|
|
|
#ifndef __VCGLIB_REFINE_LOOP
|
|
#define __VCGLIB_REFINE_LOOP
|
|
|
|
#include <cmath>
|
|
#include <vcg/space/point3.h>
|
|
#include <vcg/complex/complex.h>
|
|
#include <vcg/complex/algorithms/refine.h>
|
|
#include <vcg/complex/algorithms/update/color.h>
|
|
|
|
|
|
namespace vcg{
|
|
namespace tri{
|
|
|
|
/*
|
|
Metodo di Loop dalla documentazione "Siggraph 2000 course on subdivision"
|
|
|
|
d4------d3 d4------d3
|
|
/ \ / \ / \ / \ u
|
|
/ \ / \ / e4--e3 \ / \
|
|
/ \/ \ / / \/ \ \ / \
|
|
d5------d1------d2 -> d5--e5--d1--e2--d2 l--M--r
|
|
\ /\ / \ \ /\ / / \ /
|
|
\ / \ / \ e6--e7 / \ /
|
|
\ / \ / \ / \ / d
|
|
d6------d7 d6------d7
|
|
|
|
*******************************************************
|
|
|
|
*/
|
|
|
|
/*!
|
|
* \brief Weight class for classical Loop's scheme.
|
|
*
|
|
* See Zorin, D. & Schröeder, P.: Subdivision for modeling and animation. Proc. ACM SIGGRAPH [Courses], 2000
|
|
*/
|
|
template<class SCALAR_TYPE>
|
|
struct LoopWeight {
|
|
inline SCALAR_TYPE beta(int k) {
|
|
return (k>3)?(5.0/8.0 - std::pow((3.0/8.0 + std::cos(2.0*M_PI/SCALAR_TYPE(k))/4.0),2))/SCALAR_TYPE(k):3.0/16.0;
|
|
}
|
|
|
|
inline SCALAR_TYPE incidentRegular(int) {
|
|
return 3.0/8.0;
|
|
}
|
|
inline SCALAR_TYPE incidentIrregular(int) {
|
|
return 3.0/8.0;
|
|
}
|
|
inline SCALAR_TYPE opposite(int) {
|
|
return 1.0/8.0;
|
|
}
|
|
};
|
|
|
|
/*!
|
|
* \brief Modified Loop's weight to optimise continuity.
|
|
*
|
|
* See Barthe, L. & Kobbelt, L.: Subdivision scheme tuning around extraordinary vertices. Computer Aided Geometric Design, 2004, 21, 561-583
|
|
*/
|
|
template<class SCALAR_TYPE>
|
|
struct RegularLoopWeight {
|
|
inline SCALAR_TYPE beta(int k) {
|
|
static SCALAR_TYPE bkPolar[] = {
|
|
.32517,
|
|
.49954,
|
|
.59549,
|
|
.625,
|
|
.63873,
|
|
.64643,
|
|
.65127,
|
|
.67358,
|
|
.68678,
|
|
.69908
|
|
};
|
|
|
|
return (k<=12)?(1.0-bkPolar[k-3])/k:LoopWeight<SCALAR_TYPE>().beta(k);
|
|
}
|
|
|
|
inline SCALAR_TYPE incidentRegular(int k) {
|
|
return 1.0 - incidentIrregular(k) - opposite(k)*2;
|
|
}
|
|
inline SCALAR_TYPE incidentIrregular(int k) {
|
|
static SCALAR_TYPE bkPolar[] = {
|
|
.15658,
|
|
.25029,
|
|
.34547,
|
|
.375,
|
|
.38877,
|
|
.39644,
|
|
.40132,
|
|
.42198,
|
|
.43423,
|
|
.44579
|
|
};
|
|
|
|
return (k<=12)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().incidentIrregular(k);
|
|
}
|
|
inline SCALAR_TYPE opposite(int k) {
|
|
static SCALAR_TYPE bkPolar[] = {
|
|
.14427,
|
|
.12524,
|
|
.11182,
|
|
.125,
|
|
.14771,
|
|
.1768,
|
|
.21092,
|
|
.20354,
|
|
.20505,
|
|
.19828
|
|
};
|
|
|
|
return (k<=12)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().opposite(k);
|
|
}
|
|
};
|
|
|
|
template<class SCALAR_TYPE>
|
|
struct ContinuityLoopWeight {
|
|
inline SCALAR_TYPE beta(int k) {
|
|
static SCALAR_TYPE bkPolar[] = {
|
|
.32517,
|
|
.50033,
|
|
.59464,
|
|
.625,
|
|
.63903,
|
|
.67821,
|
|
.6866,
|
|
.69248,
|
|
.69678,
|
|
.70014
|
|
};
|
|
|
|
return (k<=12)?(1.0-bkPolar[k-3])/k:LoopWeight<SCALAR_TYPE>().beta(k);
|
|
}
|
|
|
|
inline SCALAR_TYPE incidentRegular(int k) {
|
|
return 1.0 - incidentIrregular(k) - opposite(k)*2;
|
|
}
|
|
inline SCALAR_TYPE incidentIrregular(int k) {
|
|
static SCALAR_TYPE bkPolar[] = {
|
|
.15658,
|
|
.26721,
|
|
.33539,
|
|
.375,
|
|
.36909,
|
|
.25579,
|
|
.2521,
|
|
.24926,
|
|
.24706,
|
|
.2452
|
|
};
|
|
|
|
return (k<=12)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().incidentIrregular(k);
|
|
}
|
|
inline SCALAR_TYPE opposite(int k) {
|
|
static SCALAR_TYPE bkPolar[] = {
|
|
.14427,
|
|
.12495,
|
|
.11252,
|
|
.125,
|
|
.14673,
|
|
.16074,
|
|
.18939,
|
|
.2222,
|
|
.25894,
|
|
.29934
|
|
};
|
|
|
|
return (k<=12)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().opposite(k);
|
|
}
|
|
};
|
|
|
|
// Centroid and LS3Projection classes may be pettre placed in an other file. (which one ?)
|
|
|
|
/*!
|
|
* \brief Allow to compute classical Loop subdivision surface with the same code than LS3.
|
|
*/
|
|
template<class MESH_TYPE, class LSCALAR_TYPE = typename MESH_TYPE::ScalarType>
|
|
struct Centroid {
|
|
typedef typename MESH_TYPE::ScalarType Scalar;
|
|
typedef typename MESH_TYPE::CoordType CoordType;
|
|
typedef LSCALAR_TYPE LScalar;
|
|
typedef vcg::Point3<LScalar> LVector;
|
|
|
|
LVector sumP;
|
|
LScalar sumW;
|
|
|
|
Centroid() { reset(); }
|
|
inline void reset() {
|
|
sumP.SetZero();
|
|
sumW = 0.;
|
|
}
|
|
inline void addVertex(const typename MESH_TYPE::VertexType &v, LScalar w) {
|
|
LVector p(v.cP().X(), v.cP().Y(), v.cP().Z());
|
|
sumP += p * w;
|
|
sumW += w;
|
|
}
|
|
inline void project(std::pair<CoordType,CoordType> &nv) const {
|
|
LVector position = sumP / sumW;
|
|
nv.first = CoordType(position.X(), position.Y(), position.Z());
|
|
}
|
|
};
|
|
|
|
/*! Implementation of the APSS projection for the LS3 scheme.
|
|
*
|
|
* See Gael Guennebaud and Marcel Germann and Markus Gross
|
|
* Dynamic sampling and rendering of algebraic point set surfaces.
|
|
* Computer Graphics Forum (Proceedings of Eurographics 2008), 2008, 27, 653-662
|
|
* and Simon Boye and Gael Guennebaud and Christophe Schlick
|
|
* Least squares subdivision surfaces
|
|
* Computer Graphics Forum, 2010
|
|
*/
|
|
template<class MESH_TYPE, class LSCALAR_TYPE = typename MESH_TYPE::ScalarType>
|
|
struct LS3Projection {
|
|
typedef typename MESH_TYPE::ScalarType Scalar;
|
|
typedef typename MESH_TYPE::CoordType CoordType;
|
|
typedef LSCALAR_TYPE LScalar;
|
|
typedef vcg::Point3<LScalar> LVector;
|
|
|
|
Scalar beta;
|
|
|
|
LVector sumP;
|
|
LVector sumN;
|
|
LScalar sumDotPN;
|
|
LScalar sumDotPP;
|
|
LScalar sumW;
|
|
|
|
inline LS3Projection(Scalar beta = 1.0) : beta(beta) { reset(); }
|
|
inline void reset() {
|
|
sumP.SetZero();
|
|
sumN.SetZero();
|
|
sumDotPN = 0.;
|
|
sumDotPP = 0.;
|
|
sumW = 0.;
|
|
}
|
|
inline void addVertex(const typename MESH_TYPE::VertexType &v, LScalar w) {
|
|
LVector p(v.cP().X(), v.cP().Y(), v.cP().Z());
|
|
LVector n(v.cN().X(), v.cN().Y(), v.cN().Z());
|
|
|
|
sumP += p * w;
|
|
sumN += n * w;
|
|
sumDotPN += w * n.dot(p);
|
|
sumDotPP += w * vcg::SquaredNorm(p);
|
|
sumW += w;
|
|
}
|
|
void project(std::pair<CoordType,CoordType> &nv) const {
|
|
LScalar invSumW = Scalar(1)/sumW;
|
|
LScalar aux4 = beta * LScalar(0.5) *
|
|
(sumDotPN - invSumW*sumP.dot(sumN))
|
|
/(sumDotPP - invSumW*vcg::SquaredNorm(sumP));
|
|
LVector uLinear = (sumN-sumP*(Scalar(2)*aux4))*invSumW;
|
|
LScalar uConstant = -invSumW*(uLinear.dot(sumP) + sumDotPP*aux4);
|
|
LScalar uQuad = aux4;
|
|
LVector orig = sumP*invSumW;
|
|
|
|
// finalize
|
|
LVector position;
|
|
LVector normal;
|
|
if (fabs(uQuad)>1e-7)
|
|
{
|
|
LScalar b = 1./uQuad;
|
|
LVector center = uLinear*(-0.5*b);
|
|
LScalar radius = sqrt( vcg::SquaredNorm(center) - b*uConstant );
|
|
|
|
normal = orig - center;
|
|
normal.Normalize();
|
|
position = center + normal * radius;
|
|
|
|
normal = uLinear + position * (LScalar(2) * uQuad);
|
|
normal.Normalize();
|
|
}
|
|
else if (uQuad==0.)
|
|
{
|
|
LScalar s = LScalar(1)/vcg::Norm(uLinear);
|
|
assert(!vcg::math::IsNAN(s) && "normal should not have zero len!");
|
|
uLinear *= s;
|
|
uConstant *= s;
|
|
|
|
normal = uLinear;
|
|
position = orig - uLinear * (orig.dot(uLinear) + uConstant);
|
|
}
|
|
else
|
|
{
|
|
// normalize the gradient
|
|
LScalar f = 1./sqrt(vcg::SquaredNorm(uLinear) - Scalar(4)*uConstant*uQuad);
|
|
uConstant *= f;
|
|
uLinear *= f;
|
|
uQuad *= f;
|
|
|
|
// Newton iterations
|
|
LVector grad;
|
|
LVector dir = uLinear+orig*(2.*uQuad);
|
|
LScalar ilg = 1./vcg::Norm(dir);
|
|
dir *= ilg;
|
|
LScalar ad = uConstant + uLinear.dot(orig) + uQuad * vcg::SquaredNorm(orig);
|
|
LScalar delta = -ad*std::min<Scalar>(ilg,1.);
|
|
LVector p = orig + dir*delta;
|
|
for (int i=0 ; i<2 ; ++i)
|
|
{
|
|
grad = uLinear+p*(2.*uQuad);
|
|
ilg = 1./vcg::Norm(grad);
|
|
delta = -(uConstant + uLinear.dot(p) + uQuad * vcg::SquaredNorm(p))*std::min<Scalar>(ilg,1.);
|
|
p += dir*delta;
|
|
}
|
|
position = p;
|
|
|
|
normal = uLinear + position * (Scalar(2) * uQuad);
|
|
normal.Normalize();
|
|
}
|
|
|
|
nv.first = CoordType(position.X(), position.Y(), position.Z());
|
|
nv.second = CoordType(normal.X(), normal.Y(), normal.Z());
|
|
}
|
|
};
|
|
|
|
template<class MESH_TYPE, class METHOD_TYPE=Centroid<MESH_TYPE>, class WEIGHT_TYPE=LoopWeight<typename MESH_TYPE::ScalarType> >
|
|
struct OddPointLoopGeneric : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::VertexType>
|
|
{
|
|
typedef METHOD_TYPE Projection;
|
|
typedef WEIGHT_TYPE Weight;
|
|
typedef typename MESH_TYPE::template PerVertexAttributeHandle<int> ValenceAttr;
|
|
typedef typename MESH_TYPE::CoordType CoordType;
|
|
|
|
MESH_TYPE &m;
|
|
Projection proj;
|
|
Weight weight;
|
|
ValenceAttr *valence;
|
|
|
|
inline OddPointLoopGeneric(MESH_TYPE &_m, Projection proj = Projection(), Weight weight = Weight()) :
|
|
m(_m), proj(proj), weight(weight), valence(0) {}
|
|
|
|
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep) {
|
|
proj.reset();
|
|
|
|
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
|
|
typename MESH_TYPE::VertexType *l,*r,*u,*d;
|
|
l = he.v;
|
|
he.FlipV();
|
|
r = he.v;
|
|
|
|
if( tri::HasPerVertexColor(m))
|
|
nv.C().lerp(ep.f->V(ep.z)->C(),ep.f->V1(ep.z)->C(),.5f);
|
|
|
|
if (he.IsBorder()) {
|
|
proj.addVertex(*l, 0.5);
|
|
proj.addVertex(*r, 0.5);
|
|
std::pair<CoordType,CoordType>pp;
|
|
proj.project(pp);
|
|
nv.P()=pp.first;
|
|
nv.N()=pp.second;
|
|
}
|
|
else {
|
|
he.FlipE(); he.FlipV();
|
|
u = he.v;
|
|
he.FlipV(); he.FlipE();
|
|
assert(he.v == r); // back to r
|
|
he.FlipF(); he.FlipE(); he.FlipV();
|
|
d = he.v;
|
|
|
|
if(valence && ((*valence)[l]==6 || (*valence)[r]==6)) {
|
|
int extra = ((*valence)[l]==6)?(*valence)[r]:(*valence)[l];
|
|
proj.addVertex(*l, ((*valence)[l]==6)?weight.incidentRegular(extra):weight.incidentIrregular(extra));
|
|
proj.addVertex(*r, ((*valence)[r]==6)?weight.incidentRegular(extra):weight.incidentIrregular(extra));
|
|
proj.addVertex(*u, weight.opposite(extra));
|
|
proj.addVertex(*d, weight.opposite(extra));
|
|
}
|
|
// unhandled case that append only at first subdivision step: use Loop's weights
|
|
else {
|
|
proj.addVertex(*l, 3.0/8.0);
|
|
proj.addVertex(*r, 3.0/8.0);
|
|
proj.addVertex(*u, 1.0/8.0);
|
|
proj.addVertex(*d, 1.0/8.0);
|
|
}
|
|
std::pair<CoordType,CoordType>pp;
|
|
proj.project(pp);
|
|
nv.P()=pp.first;
|
|
nv.N()=pp.second;
|
|
// proj.project(nv);
|
|
}
|
|
|
|
}
|
|
|
|
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
|
|
{
|
|
Color4<typename MESH_TYPE::ScalarType> cc;
|
|
return cc.lerp(c0,c1,0.5f);
|
|
}
|
|
|
|
template<class FL_TYPE>
|
|
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
|
|
{
|
|
TexCoord2<FL_TYPE,1> tmp;
|
|
tmp.n()=t0.n();
|
|
tmp.t()=(t0.t()+t1.t())/2.0;
|
|
return tmp;
|
|
}
|
|
|
|
inline void setValenceAttr(ValenceAttr *valence) {
|
|
this->valence = valence;
|
|
}
|
|
};
|
|
|
|
template<class MESH_TYPE, class METHOD_TYPE=Centroid<MESH_TYPE>, class WEIGHT_TYPE=LoopWeight<typename MESH_TYPE::ScalarType> >
|
|
struct EvenPointLoopGeneric : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::VertexType>
|
|
{
|
|
typedef METHOD_TYPE Projection;
|
|
typedef WEIGHT_TYPE Weight;
|
|
typedef typename MESH_TYPE::template PerVertexAttributeHandle<int> ValenceAttr;
|
|
typedef typename MESH_TYPE::CoordType CoordType;
|
|
|
|
Projection proj;
|
|
Weight weight;
|
|
ValenceAttr *valence;
|
|
|
|
inline EvenPointLoopGeneric(Projection proj = Projection(), Weight weight = Weight()) :
|
|
proj(proj), weight(weight), valence(0) {}
|
|
|
|
void operator()(std::pair<CoordType,CoordType> &nv, face::Pos<typename MESH_TYPE::FaceType> ep) {
|
|
proj.reset();
|
|
|
|
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
|
|
typename MESH_TYPE::VertexType *r, *l, *curr;
|
|
curr = he.v;
|
|
face::Pos<typename MESH_TYPE::FaceType> heStart = he;
|
|
|
|
// compute valence of this vertex or find a border
|
|
int k = 0;
|
|
do {
|
|
he.NextE();
|
|
k++;
|
|
} while(!he.IsBorder() && he != heStart);
|
|
|
|
if (he.IsBorder()) { // Border rule
|
|
// consider valence of borders as if they are half+1 of an inner vertex. not perfect, but better than nothing.
|
|
if(valence) {
|
|
k = 0;
|
|
do {
|
|
he.NextE();
|
|
k++;
|
|
} while(!he.IsBorder());
|
|
(*valence)[he.V()] = std::max(2*(k-1), 3);
|
|
// (*valence)[he.V()] = 6;
|
|
}
|
|
|
|
he.FlipV();
|
|
r = he.v;
|
|
he.FlipV();
|
|
he.NextB();
|
|
l = he.v;
|
|
|
|
proj.addVertex(*curr, 3.0/4.0);
|
|
proj.addVertex(*l, 1.0/8.0);
|
|
proj.addVertex(*r, 1.0/8.0);
|
|
// std::pair<Point3f,Point3f>pp;
|
|
proj.project(nv);
|
|
// nv.P()=pp.first;
|
|
// nv.N()=pp.second;
|
|
// proj.project(nv);
|
|
}
|
|
else { // Inner rule
|
|
// assert(!he.v->IsB()); border flag no longer updated (useless)
|
|
if(valence)
|
|
(*valence)[he.V()] = k;
|
|
|
|
typename MESH_TYPE::ScalarType beta = weight.beta(k);
|
|
|
|
proj.addVertex(*curr, 1.0 - (typename MESH_TYPE::ScalarType)(k) * beta);
|
|
do {
|
|
proj.addVertex(*he.VFlip(), beta);
|
|
he.NextE();
|
|
} while(he != heStart);
|
|
|
|
proj.project(nv);
|
|
}
|
|
} // end of operator()
|
|
|
|
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
|
|
{
|
|
Color4<typename MESH_TYPE::ScalarType> cc;
|
|
return cc.lerp(c0,c1,0.5f);
|
|
}
|
|
Color4b WedgeInterp(Color4b &c0, Color4b &c1)
|
|
{
|
|
Color4b cc;
|
|
cc.lerp(c0,c1,0.5f);
|
|
return cc;
|
|
}
|
|
|
|
template<class FL_TYPE>
|
|
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
|
|
{
|
|
TexCoord2<FL_TYPE,1> tmp;
|
|
// assert(t0.n()== t1.n());
|
|
tmp.n()=t0.n();
|
|
tmp.t()=(t0.t()+t1.t())/2.0;
|
|
return tmp;
|
|
}
|
|
|
|
inline void setValenceAttr(ValenceAttr *valence) {
|
|
this->valence = valence;
|
|
}
|
|
};
|
|
|
|
template<class MESH_TYPE>
|
|
struct OddPointLoop : OddPointLoopGeneric<MESH_TYPE, Centroid<MESH_TYPE> >
|
|
{
|
|
OddPointLoop(MESH_TYPE &_m):OddPointLoopGeneric<MESH_TYPE, Centroid<MESH_TYPE> >(_m){}
|
|
};
|
|
|
|
template<class MESH_TYPE>
|
|
struct EvenPointLoop : EvenPointLoopGeneric<MESH_TYPE, Centroid<MESH_TYPE> >
|
|
{
|
|
};
|
|
|
|
template<class MESH_TYPE,class ODD_VERT, class EVEN_VERT>
|
|
bool RefineOddEven(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even,float length,
|
|
bool RefineSelected=false, CallBackPos *cbOdd = 0, CallBackPos *cbEven = 0)
|
|
{
|
|
EdgeLen <MESH_TYPE, typename MESH_TYPE::ScalarType> ep(length);
|
|
return RefineOddEvenE(m, odd, even, ep, RefineSelected, cbOdd, cbEven);
|
|
}
|
|
|
|
/*!
|
|
* \brief Perform diadic subdivision using given rules for odd and even vertices.
|
|
*/
|
|
template<class MESH_TYPE, class ODD_VERT, class EVEN_VERT, class PREDICATE>
|
|
bool RefineOddEvenE(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even, PREDICATE edgePred,
|
|
bool RefineSelected=false, CallBackPos *cbOdd = 0, CallBackPos *cbEven = 0)
|
|
{
|
|
typedef typename MESH_TYPE::template PerVertexAttributeHandle<int> ValenceAttr;
|
|
|
|
// momentaneamente le callback sono identiche, almeno cbOdd deve essere passata
|
|
cbEven = cbOdd;
|
|
|
|
// to mark visited vertices
|
|
int evenFlag = MESH_TYPE::VertexType::NewBitFlag();
|
|
for (int i = 0; i < m.vn ; i++ ) {
|
|
m.vert[i].ClearUserBit(evenFlag);
|
|
}
|
|
|
|
int j = 0;
|
|
// di texture per wedge (uno per ogni edge)
|
|
|
|
ValenceAttr valence = vcg::tri::Allocator<MESH_TYPE>:: template AddPerVertexAttribute<int>(m);
|
|
odd.setValenceAttr(&valence);
|
|
even.setValenceAttr(&valence);
|
|
|
|
// store updated vertices
|
|
std::vector<bool> updatedList(m.vn, false);
|
|
//std::vector<typename MESH_TYPE::VertexType> newEven(m.vn);
|
|
std::vector<std::pair<typename MESH_TYPE::CoordType, typename MESH_TYPE::CoordType> > newEven(m.vn);
|
|
|
|
typename MESH_TYPE::VertexIterator vi;
|
|
typename MESH_TYPE::FaceIterator fi;
|
|
for (fi = m.face.begin(); fi != m.face.end(); fi++) if(!(*fi).IsD() && (!RefineSelected || (*fi).IsS())){ //itero facce
|
|
for (int i = 0; i < 3; i++) { //itero vert
|
|
if ( !(*fi).V(i)->IsUserBit(evenFlag) && ! (*fi).V(i)->IsD() ) {
|
|
(*fi).V(i)->SetUserBit(evenFlag);
|
|
// use face selection, not vertex selection, to be coherent with RefineE
|
|
//if (RefineSelected && !(*fi).V(i)->IsS() )
|
|
// break;
|
|
face::Pos<typename MESH_TYPE::FaceType>aux (&(*fi),i);
|
|
if( tri::HasPerVertexColor(m) ) {
|
|
(*fi).V(i)->C().lerp((*fi).V0(i)->C() , (*fi).V1(i)->C(),0.5f);
|
|
}
|
|
|
|
if (cbEven) {
|
|
(*cbEven)(int(100.0f * (float)j / (float)m.fn),"Refining");
|
|
j++;
|
|
}
|
|
int index = tri::Index(m, (*fi).V(i));
|
|
updatedList[index] = true;
|
|
even(newEven[index], aux);
|
|
}
|
|
}
|
|
}
|
|
|
|
MESH_TYPE::VertexType::DeleteBitFlag(evenFlag);
|
|
|
|
// Now apply the stored normal and position to the initial vertex set (note that newEven is << m.vert)
|
|
RefineE< MESH_TYPE, ODD_VERT > (m, odd, edgePred, RefineSelected, cbOdd);
|
|
for(size_t i=0;i<newEven.size();++i) {
|
|
if(updatedList[i]) {
|
|
m.vert[i].P()=newEven[i].first;
|
|
m.vert[i].N()=newEven[i].second;
|
|
}
|
|
}
|
|
|
|
odd.setValenceAttr(0);
|
|
even.setValenceAttr(0);
|
|
|
|
vcg::tri::Allocator<MESH_TYPE>::DeletePerVertexAttribute(m, valence);
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace tri
|
|
} // namespace vcg
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|