vcglib/vcg/simplex/edge/base.h

871 lines
19 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.11 2006/10/07 10:02:16 cignoni
Added missing typename for interp.parameters
Revision 1.10 2005/11/30 14:05:04 ponchio
Fixed some UberZ fuynctions and non defined _flags
Revision 1.9 2005/10/14 12:34:55 cignoni
Added ordered constructor that build a edge with unique ordering
among vertices (useful for edge-collapse simplification)
Revision 1.8 2005/10/01 09:22:51 cignoni
Major rewriting of the whole class edge. Removed default flags and nonsense attibutes. Given consistent naming to defines.
Revision 1.7 2005/07/15 15:45:51 ganovelli
template parametere Scalar removed
Revision 1.6 2005/04/14 11:35:09 ponchio
*** empty log message ***
Revision 1.5 2004/10/25 16:25:12 ponchio
inline Set(...) -> inline void Set(...)
Revision 1.4 2004/10/25 08:21:17 ganovelli
added: constructor,Set and some minor changes.
Revision 1.3 2004/05/10 14:40:28 ganovelli
name of adhacency function updated
Revision 1.2 2004/05/10 14:02:29 ganovelli
created
Revision 1.1 2004/04/26 19:04:23 ganovelli
created
****************************************************************************/
#ifndef __VCGLIB__EDGE_TYPE_BASE
#define __VCGLIB__EDGE_TYPE_BASE
#include <vcg/space/box3.h>
#include <vcg/space/texcoord2.h>
namespace vcg {
/**
\ingroup segment
@name segment
Class Edge.
This is the base class for definition of a face of the mesh.
@param SVTYPE (Templete Parameter) Specifies the vertex class type.
*/
template <class EDGENAME, class SVTYPE, class TCTYPE = TexCoord2<float,1> > class EDGE_TYPE
{
public:
/// The base type of the segment
typedef EDGE_TYPE BaseEdgeType;
/// The scalar type derived from the vertex
typedef typename SVTYPE::ScalarType ScalarType;
/// The vertex type
typedef SVTYPE VertexType;
/// The type of the the vertex coordinate
typedef Point3< ScalarType > CoordType;
/// The bounding box type
typedef Box3<ScalarType> BoxType;
/// Default Empty Costructor
inline EDGE_TYPE(){}
inline EDGE_TYPE(VertexType* v0,VertexType* v1){v[0]=v0;v[1]=v1;}
static inline EDGE_TYPE OrderedEdge(VertexType* v0,VertexType* v1){
if(v0<v1) return EDGE_TYPE(v0,v1);
else return EDGE_TYPE(v1,v0);
}
/// Costructor
inline void Set(VertexType* v0,VertexType* v1){v[0]=v0;v[1]=v1;}
/***********************************************/
/** @name Vertex Pointer
blah
blah
**/
//@{
protected:
/// Vector of vertex pointer incident in the face
VertexType *v[2];
public:
/** Return the pointer to the j-th vertex of the face.
@param j Index of the face vertex.
*/
inline SVTYPE * & V( const int j )
{
assert( !IsD() );
assert(j >= 0 && j < 2);
return v[j];
}
inline const SVTYPE * const & V( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
return v[j];
}
inline const SVTYPE * const & cV( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
return v[j];
}
// Shortcut per accedere ai punti delle facce
inline CoordType & P( const int j )
{
assert( !IsD() );
assert(j>=0 && j<2);
return v[j]->P();
}
inline const CoordType & P( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
return v[j]->cP();
}
inline const CoordType & cP( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
return v[j]->cP();
}
/** Return the pointer to the ((j+1)%3)-th vertex of the face.
@param j Index of the face vertex.
*/
inline SVTYPE * & V0( const int j ) { return V(j);}
inline SVTYPE * & V1( const int j ) { return V((j+1)%2);}
inline const SVTYPE * const & V0( const int j ) const { return V(j);}
inline const SVTYPE * const & V1( const int j ) const { return V((j+1)%2);}
inline const SVTYPE * const & cV0( const int j ) const { return cV(j);}
inline const SVTYPE * const & cV1( const int j ) const { return cV((j+1)%2);}
/// Shortcut per accedere ai punti delle facce
inline CoordType & P0( const int j ) { return V(j)->P();}
inline CoordType & P1( const int j ) { return V((j+1)%2)->P();}
inline const CoordType & P0( const int j ) const { return V(j)->P();}
inline const CoordType & P1( const int j ) const { return V((j+1)%2)->P();}
inline const CoordType & cP0( const int j ) const { return cV(j)->P();}
inline const CoordType & cP1( const int j ) const { return cV((j+1)%2)->P();}
inline SVTYPE * & UberV( const int j )
{
assert(j>=0 && j<2);
return v[j];
}
inline const SVTYPE * const & UberV( const int j ) const
{
assert(j>=0 && j<2);
return v[j];
}
//@}
/***********************************************/
/** @name Normal
blah
blah
**/
//@{
#ifdef __VCGLIB_EDGE_EN
/// This vector indicates the normal of the face (defines if FACE_N is defined)
protected:
CoordType _n;
public:
#endif
/// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined).
inline CoordType & N()
{
#ifdef __VCGLIB_EDGE_EN
return _n;
#else
assert(0);
return *(CoordType *)0;
#endif
}
/// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined).
inline const CoordType & N() const
{
#ifdef __VCGLIB_EDGE_EN
return _n;
#else
return *(CoordType *)0;
#endif
}
/// Return the reference of the normal to the face (if __VCGLIB_EDGE_FN is defined).
inline const CoordType cN() const
{
#ifdef __VCGLIB_EDGE_EN
return _n;
#else
return *(CoordType *)0;
#endif
}
//@}
/***********************************************/
/** @name Quality
blah
blah
**/
//@{
#ifdef __VCGLIB_EDGE_EQ
protected:
float _q;
#endif
public:
float & Q()
{
#ifdef __VCGLIB_EDGE_EQ
return _q;
#else
assert(0);
return *(float*)(0);
#endif
}
const float & Q() const
{
#ifdef __VCGLIB_EDGE_EQ
return _q;
#else
assert(0);
return *(float*)(0);
#endif
}
//@}
/***********************************************/
/** @name Colors
blah
blah
**/
//@{
protected:
#ifdef __VCGLIB_EDGE_EC
Color4b _c;
#endif
public:
Color4b & C()
{
#ifdef __VCGLIB_EDGE_EC
return _c;
#else
assert(0);
return *(Color4b*)(0);
#endif
}
const Color4b C() const
{
#ifdef __VCGLIB_EDGE_EC
return _c;
#else
return Color4b(Color4b::White);
#endif
}
//@}
/***********************************************/
/** @name Adjacency
blah
blah
**/
//@{
protected:
#if defined(__VCGLIB_EDGE_AE)
/// Vector of face pointer, it's used to indicate the adjacency relations (defines if FACE_A is defined)
EDGENAME *ee[2]; // edge adiacenti
/// Index of the face in the arrival face
char zs[2];
#endif
#ifdef __VCGLIB_EDGE_AV
///Vettore di puntatori a edge, utilizzato per indicare le adiacenze vertice faccia
EDGENAME *ev[2];
char zv[2];
#endif
public:
/** Return the pointer to the j-th adjacent edge.
@param j Index of the edge.
*/
inline EDGENAME * & EEp( const int j )
{
assert( !IsD() );
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return ee[j];
#else
assert(0);
return *(EDGENAME **)(0);;
#endif
}
inline const EDGENAME * const & EEp( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return ee[j];
#else
assert(0);
return (EDGENAME *)0;
#endif
}
inline EDGENAME * & EEp1( const int j ) { return EEp((j+1)%2);}
inline const EDGENAME * const& EEp1( const int j ) const { return EEp((j+1)%2);}
/** Return the pointer to the j-th adjacent face.
@param j Index of the edge.
*/
inline EDGENAME * & UberEEp( const int j )
{
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return ee[j];
#else
assert(0); // if you stop here you are probably trying to use FF topology in a face without it
return *(EDGENAME **)(0);
#endif
}
inline const EDGENAME * const & UberEEp( const int j ) const
{
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return ee[j];
#else
assert(0); // if you stop here you are probably trying to use FF topology in a face without it
return *(EDGENAME **)(0);
#endif
}
inline EDGENAME * & VEp( const int j )
{
assert( !IsD() );
assert(j>=0 && j<2);
#ifdef __VCGLIB_EDGE_AV
return ev[j];
#else
assert(0); // you are probably trying to use VF topology in a vertex without it
return *(EDGENAME **)(0);
#endif
}
inline const EDGENAME * const & VEp( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
#ifdef __VCGLIB_EDGE_AV
return ev[j];
#else
assert(0);
return *(EDGENAME **)(0);
#endif
}
/** Return the index that the face have in the j-th adjacent face.
@param j Index of the edge.
*/
inline char & EEi( const int j )
{
assert( !IsD() );
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return zs[j];
#else
assert(0);
return *(char *)0; // tanto per farlo compilare...
#endif
}
inline const char & EEi( const int j ) const
{
assert( !IsD() );
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return zs[j];
#else
assert(0);
return *(char *)0;
#endif
}
/** Return the index that the face have in the j-th adjacent face.
@param j Index of the edge.
*/
inline char & UberZ( const int j )
{
assert(j>=0 && j<2);
#if defined(__VCGLIB_EDGE_AE)
return zs[j];
#elif defined(__VCGLIB_EDGE_SA)
return zs[j];
#else
assert(0);
static char dummy = 0;
return dummy;
#endif
}
inline const char & UberZ( const int j ) const
{
assert(j>=0 & j<2);
#if defined(__VCGLIB_EDGE_AE)
return zs[j];
#elif defined(__VCGLIB_EDGE_SA)
return zs[j];
#else
assert(0);
static int dummy = 0;
return dummy;
#endif
}
inline char & VEi( const int j )
{
assert( !IsD() );
assert(j>=0 & j<2);
#ifdef __VCGLIB_EDGE_VA
return zv[j];
#elif defined(__VCGLIB_EDGE_SA)
return zs[j];
#else
assert(0);
static char dummy = 0;
return dummy;
#endif
}
inline const char & VEi( const int j ) const
{
assert( !IsD() );
assert(j>=0 & j<2);
#ifdef __VCGLIB_EDGE_VA
return zv[j];
#elif defined(__VCGLIB_EDGE_SA)
return zs[j];
#else
assert(0);
static char dummy = 0;
return dummy;
#endif
}
//@}
/***********************************************/
/** @name Mark
blah
blah
**/
//@{
#ifdef __VCGLIB_EDGE_EM
/// Incremental mark (defines if FACE_I is defined)
int imark;
#endif // Mark
inline int & IMark()
{
#ifdef __VCGLIB_EDGE_EM
assert( !IsD() );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
return imark;
#else
return 0;
#endif // Mark
}
inline const int & IMark() const
{
assert( !IsD() );
#ifdef __VCGLIB_EDGE_EM
assert( (_flags & NOTREAD) == 0 );
return imark;
#else
static int dummy = 0;
return dummy;
#endif
}
/// Initialize the imark system of the face
inline void InitIMark()
{
#ifdef __VCGLIB_EDGE_EM
imark = 0;
#endif
}
//@}
/***********************************************/
/** @name Flags
blah
blah
**/
//@{
/// This are the _flags of face, the default value is 0
#ifdef __VCGLIB_EDGE_EF
int _flags;
#endif
enum {
// This bit indicate that the face is deleted from the mesh
DELETED = 0x00000001, // cancellato
// This bit indicate that the face of the mesh is not readable
NOTREAD = 0x00000002, // non leggibile (ma forse modificabile)
// This bit indicate that the face is not modifiable
NOTWRITE = 0x00000004, // non modificabile (ma forse leggibile)
// This bit indicate that the face is modified
SELECTED = 0x00000020, // Selection _flags
// Border _flags, it is assumed that BORDERi = BORDER0<<i
BORDER0 = 0x00000040,
BORDER1 = 0x00000080,
// First user bit
USER0 = 0x00040000
};
public:
static int &LastBitFlag()
{
static int b =USER0;
return b;
}
static inline int NewBitFlag()
{
LastBitFlag()=LastBitFlag()<<1;
return LastBitFlag();
}
static inline bool DeleteBitFlag(int bitval)
{
if(LastBitFlag()==bitval) {
LastBitFlag()= LastBitFlag()>>1;
return true;
}
assert(0);
return false;
}
void ClearFlags() {
#ifdef __VCGLIB_EDGE_EF
_flags=0;
#endif
}
/// Return the _flags.
inline int & Flags ()
{
#ifdef __VCGLIB_EDGE_EF
assert( !IsD() );
return _flags;
#else
return *(int *)0;
#endif
}
inline const int & Flags () const
{
#ifdef __VCGLIB_EDGE_EF
assert( !IsD() );
return _flags;
#else
return 0;
#endif
}
/// Ritorna il _flags senza effettuare alcun controllo sui relativi bit
inline int & UberFlags()
{
#ifdef __VCGLIB_EDGE_EF
return _flags;
#else
assert(0);
return *(int *)0;
#endif
}
inline const int UberFlags() const
{
#ifdef __VCGLIB_EDGE_EF
return _flags;
#else
return 0;
#endif
}
/// This function checks if the face is deleted
bool IsD() const {
#ifdef __VCGLIB_EDGE_EF
return (_flags & DELETED) != 0;
#else
return false;
#endif
}
/// This function mark the face as deleted
void SetD() {
#ifdef __VCGLIB_EDGE_EF
_flags |=DELETED;
#endif
}
/// This function mark the face as not deleted
void ClearD() {
#ifdef __VCGLIB_EDGE_EF
_flags &= (~DELETED);
#endif
}
/// This function checks if the face is selected
bool IsS() const {
#ifdef __VCGLIB_EDGE_EF
return (_flags & SELECTED) != 0;
#else
return false;
#endif
}
/// This function select the face
void SetS() {
#ifdef __VCGLIB_EDGE_EF
_flags |=SELECTED;
#endif
}
/// This funcion execute the inverse operation of SetS()
void ClearS() {
#ifdef __VCGLIB_EDGE_EF
_flags &= (~SELECTED);
#endif
}
/// This function checks if the edge is Border on a given side
bool IsB(int i) const {
#ifdef __VCGLIB_EDGE_EF
return (_flags & (BORDER0<<i)) != 0;
#else
return false;
#endif
}
/// This function set edge as Border on a given side
void SetB(int i) {
#ifdef __VCGLIB_EDGE_EF
_flags |=(BORDER0<<i);
#endif
}
/// This function clear edge as Border on a given side
void ClearB(int i) {
#ifdef __VCGLIB_EDGE_EF
_flags &= (~(BORDER0<<i));
#endif
}
/// This function checks if the given user bit is true
bool IsUserBit(int userBit){
#ifdef __VCGLIB_EDGE_EF
return (_flags & userBit) != 0;
#else
return false;
#endif
}
/// This function set the given user bit
void SetUserBit(int userBit){
#ifdef __VCGLIB_EDGE_EF
_flags |=userBit;
#endif
}
/// This function clear the given user bit
void ClearUserBit(int userBit){
#ifdef __VCGLIB_EDGE_EF
_flags &= (~userBit);
#endif
}
//@}
/*#*******************
* Bounding box *
**********************/
void GetBBox( BoxType & bb )
{
bb.Set( v[0]->P() );
bb.Add( v[1]->P() );
}
/***********************************************/
/** @name Reflection Functions
Static functions that give information about the current vertex type.
Reflection is a mechanism making it possible to investigate yourself. Reflection is used to investigate format of objects at runtime, invoke methods and access fields of these objects. Here we provide static const functions that are resolved at compile time and they give information about the data (normal, color etc.) supported by the current vertex type.
**/
//@{
static bool HasEdgeNormal() {
#ifdef __VCGLIB_EDGE_FN
return true;
#else
return false;
#endif
}
static bool HasEdgeQuality() {
#ifdef __VCGLIB_EDGE_FQ
return true;
#else
return false;
#endif
}
static bool HasEdgeColor() {
#ifdef __VCGLIB_EDGE_FC
return true;
#else
return false;
#endif
}
static bool HasEEAdjacency() {
#if (defined(__VCGLIB_EDGE_AE) )
return true;
#else
return false;
#endif
}
static bool HasVEAdjacency() {
#if (defined(__VCGLIB_EDGE_AV) )
return true;
#else
return false;
#endif
}
static bool HasEdgeMark() {
#ifdef __VCGLIB_EDGE_FC
return true;
#else
return false;
#endif
}
//@}
/// operator to compare two edges
inline bool operator == ( const EDGENAME & f ) const {
if( (V(0) != f.V(0)) && (V(0) != f.V(1)) ) return false;
if( (V(1) != f.V(0)) && (V(1) != f.V(1)) ) return false;
return true;
}
/** Calcola i coefficienti della combinazione convessa.
@param bq Punto appartenente alla faccia
@param a Valore di ritorno per il vertice V(0)
@param b Valore di ritorno per il vertice V(1)
@param _c Valore di ritorno per il vertice V(2)
@return true se bq appartiene alla faccia, false altrimenti
*/
bool InterpolationParameters(const CoordType & bq, typename VertexType::ScalarType &a, ScalarType &_b) const
{
typedef typename VertexType::ScalarType ScalarType;
const ScalarType EPSILON = ScalarType(0.000001);
ScalarType l;
#define x1 (cV(0)->P().x())
#define y1 (cV(0)->P().y())
#define z1 (cV(0)->P().z())
#define x2 (cV(1)->P().x())
#define y2 (cV(1)->P().y())
#define z2 (cV(1)->P().z())
#define px (bq.x())
#define py (bq.y())
#define pz (bq.z())
a = (px-x1)/(x2-x1);
l = (py-y1)/(y2-y1);
if( ( l < a -EPSILON) || ( l > a +EPSILON))
return false;
l = (pz-z1)/(z2-z1);
if( ( l < a -EPSILON) || ( l > a +EPSILON))
return false;
_b = 1-a;
return true;
#undef x1
#undef y1
#undef z1
#undef x2
#undef y2
#undef z2
#undef px
#undef py
#undef pz
}
/// Return the DOUBLE of the area of the face
ScalarType Length() const
{
return Norm( (V(1)->P() - V(0)->P()).Norm());
}
CoordType Barycenter() const
{
return (V(0)->P()+V(1)->P())/ScalarType(2.0);
}
}; //end Class
} // end namespace
#endif