vcglib/vcg/simplex/tetrahedronplus/component.h

268 lines
12 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.1 2007/05/09 10:31:53 ganovelli
added
****************************************************************************/
#ifndef __VCG_TETRAHEDRON_PLUS_COMPONENT
#define __VCG_TETRAHEDRON_PLUS_COMPONENT
#include <vector>
#include <vcg/space/tetra3.h>
namespace vcg {
namespace tetra {
/*
Some naming Rules
All the Components that can be added to a vertex should be defined in the namespace vert:
*/
/*-------------------------- VERTEX ----------------------------------------*/
template <class T> class EmptyVertexRef: public T {
public:
// typedef typename T::VertexType VertexType;
// typedef typename T::CoordType CoordType;
inline typename T::VertexType * & V( const int j ) { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::VertexType * const & V( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::VertexType * const cV( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::CoordType & P( const int j ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
inline const typename T::CoordType & P( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
inline const typename T::CoordType &cP( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
static bool HasVertexRef() { return false; }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class VertexRef: public T {
public:
VertexRef(){
v[0]=0;
v[1]=0;
v[2]=0;
}
inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<4); return v[j]; }
inline typename T::VertexType * const & V( const int j ) const { assert(j>=0 && j<4); return v[j]; }
inline typename T::VertexType * const cV( const int j ) const { assert(j>=0 && j<4); return v[j]; }
// Shortcut per accedere ai punti delle facce
inline typename T::CoordType & P( const int j ) { assert(j>=0 && j<4); return v[j]->P(); }
inline const typename T::CoordType & P( const int j ) const { assert(j>=0 && j<4); return v[j]->cP(); }
inline const typename T::CoordType &cP( const int j ) const { assert(j>=0 && j<4); return v[j]->cP(); }
/** Return the pointer to the ((j+1)%3)-th vertex of the face.
@param j Index of the face vertex.
*/
inline typename T::VertexType * & V0( const int j ) { return V(j);}
inline typename T::VertexType * & V1( const int j ) { return V((j+1)%4);}
inline typename T::VertexType * & V2( const int j ) { return V((j+2)%4);}
inline const typename T::VertexType * const & V0( const int j ) const { return V(j);}
inline const typename T::VertexType * const & V1( const int j ) const { return V((j+1)%4);}
inline const typename T::VertexType * const & V2( const int j ) const { return V((j+2)%4);}
inline const typename T::VertexType * const & cV0( const int j ) const { return cV(j);}
inline const typename T::VertexType * const & cV1( const int j ) const { return cV((j+1)%4);}
inline const typename T::VertexType * const & cV2( const int j ) const { return cV((j+2)%4);}
/// Shortcut to get vertex values
inline typename T::CoordType & P0( const int j ) { return V(j)->P();}
inline typename T::CoordType & P1( const int j ) { return V((j+1)%4)->P();}
inline typename T::CoordType & P2( const int j ) { return V((j+2)%4)->P();}
inline const typename T::CoordType & P0( const int j ) const { return V(j)->P();}
inline const typename T::CoordType & P1( const int j ) const { return V((j+1)%4)->P();}
inline const typename T::CoordType & P2( const int j ) const { return V((j+2)%4)->P();}
inline const typename T::CoordType & cP0( const int j ) const { return cV(j)->P();}
inline const typename T::CoordType & cP1( const int j ) const { return cV((j+1)%4)->P();}
inline const typename T::CoordType & cP2( const int j ) const { return cV((j+2)%4)->P();}
inline typename T::VertexType * & UberV( const int j ) { assert(j>=0 && j<4); return v[j]; }
inline const typename T::VertexType * const & UberV( const int j ) const { assert(j>=0 && j<4); return v[j]; }
static bool HasVertexRef() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("VertexRef"));T::Name(name);}
private:
typename T::VertexType *v[4];
};
/*------------------------- FACE NORMAL -----------------------------------------*/
template <class A, class T> class EmptyFaceNormal: public T {
public:
typedef ::vcg::Point3<A> NormalType;
/// Return the vector of Flags(), senza effettuare controlli sui bit
NormalType N(const int & ){ static int dummynormal(0); return dummynormal; }
const NormalType cN(const int & ) const { return 0; }
static bool HasFaceNormal() { return false; }
static bool HasFaceNormalOcc() { return false; }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class A, class T> class FaceNormal: public T {
public:
typedef ::vcg::Point3<A> NormalType;
NormalType N(const int & i){ assert((i>=0)&&(i < 4)); return _facenormals[i]; }
const NormalType cN(const int & i) const { assert((i>=0)&&(i < 4)); return _facenormals[i]; }
static bool HasFaceNormals() { return true; }
static bool HasFaceNormalOcc() { return false; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("FaceNormal"));T::Name(name);}
private:
NormalType _facenormals[4];
};
template <class T> class FaceNormal3f: public FaceNormal<float,T>{
public:static void Name(std::vector<std::string> & name){name.push_back(std::string("FaceNormal3f"));T::Name(name);} };
template <class T> class FaceNormal3d: public FaceNormal<double,T>{
public:static void Name(std::vector<std::string> & name){name.push_back(std::string("FaceNormal3d"));T::Name(name);} };
/*------------------------- FLAGS -----------------------------------------*/
template <class T> class EmptyBitFlags: public T {
public:
/// Return the vector of Flags(), senza effettuare controlli sui bit
int &Flags() { static int dummyflags(0); return dummyflags; }
const int Flags() const { return 0; }
static bool HasFlags() { return false; }
static bool HasFlagsOcc() { return false; }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class BitFlags: public T {
public:
BitFlags(){_flags=0;}
int &Flags() {return _flags; }
const int Flags() const {return _flags; }
static bool HasFlags() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("BitFlags"));T::Name(name);}
private:
int _flags;
};
/*-------------------------- INCREMENTAL MARK ----------------------------------------*/
template <class T> class EmptyMark: public T {
public:
typedef int MarkType;
static bool HasMark() { return false; }
static bool HasMarkOcc() { return false; }
inline void InitIMark() { }
inline int & IMark() { assert(0); static int tmp=-1; return tmp;}
inline const int IMark() const {return 0;}
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class Mark: public T {
public:
static bool HasMark() { return true; }
static bool HasMarkOcc() { return true; }
inline void InitIMark() { _imark = 0; }
inline int & IMark() { return _imark;}
inline const int & IMark() const {return _imark;}
static void Name(std::vector<std::string> & name){name.push_back(std::string("Mark"));T::Name(name);}
private:
int _imark;
};
/*----------------------------- VTADJ ------------------------------*/
template <class T> class EmptyAdj: public T {
public:
typedef int VFAdjType;
typename T::TetraPointer & VTp( const int ) { static typename T::TetraPointer tp=0; return tp; }
typename T::TetraPointer const cVTp( const int ) const { static typename T::TetraPointer const tp=0; return tp; }
typename T::TetraPointer & TTp( const int ) { static typename T::TetraPointer tp=0; return tp; }
typename T::TetraPointer const cTTp( const int ) const { static typename T::TetraPointer const tp=0; return tp; }
char & VTi( const int j ) { static char z=0; return z; }
char & TTi( const int j ) { static char z=0; return z; }
static bool HasVTAdjacency() { return false; }
static bool HasTTAdjacency() { return false; }
static bool HasTTAdjacencyOcc() { return false; }
static bool HasVTAdjacencyOcc() { return false; }
static void Name( std::vector< std::string > & name ){ T::Name(name); }
};
template <class T> class VTAdj: public T {
public:
VTAdj() { _vtp[0]=0; _vtp[1]=0; _vtp[2]=0; _vtp[3]=0; }
typename T::TetraPointer & VTp( const int j ) { assert( j >= 0 && j < 4 ); return _vtp[j]; }
typename T::TetraPointer const VTp( const int j ) const { assert( j >= 0 && j < 4 ); return _vtp[j]; }
typename T::TetraPointer const cVTp( const int j ) const { assert( j >= 0 && j < 4 ); return _vtp[j]; }
char & VTi( const int j ) { return _vti[j]; }
const char & cVTi( const int j ) const { return _vti[j]; }
static bool HasVTAdjacency() { return true; }
static bool HasVTAdjacencyOcc() { return false; }
static void Name( std::vector< std::string > & name ) { name.push_back( std::string("VTAdj") ); T::Name(name); }
private:
typename T::TetraPointer _vtp[4];
char _vti[4];
};
/*----------------------------- TTADJ ------------------------------*/
template <class T> class TTAdj: public T {
public:
TTAdj(){
_ttp[0]=0;
_ttp[1]=0;
_ttp[2]=0;
_ttp[3]=0;
}
typename T::TetraPointer &TTp(const int j) { assert(j>=0 && j<4); return _ttp[j]; }
typename T::TetraPointer const TTp(const int j) const { assert(j>=0 && j<4); return _ttp[j]; }
typename T::TetraPointer const cTTp(const int j) const { assert(j>=0 && j<4); return _ttp[j]; }
char &TTi(const int j) { return _tti[j]; }
const char &cTTi(const int j) const { return _tti[j]; }
typename T::TetraPointer &TTp1( const int j ) { return TTp((j+1)%4);}
typename T::TetraPointer &TTp2( const int j ) { return TTp((j+2)%4);}
typename T::TetraPointer const TTp1( const int j ) const { return TTp((j+1)%4);}
typename T::TetraPointer const TTp2( const int j ) const { return TTp((j+2)%4);}
bool IsBorderF(const int & i) const { assert( (i>=0) && (i < 4)); { return TTp(i) == this;}}
static bool HasTTAdjacency() { return true; }
static bool HasTTAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("TTAdj"));T::Name(name);}
private:
typename T::TetraPointer _ttp[4] ;
char _tti[4] ;
};
} // end namespace vert
}// end namespace vcg
#endif