790 lines
24 KiB
C++
790 lines
24 KiB
C++
#include <vcg/complex/algorithms/bitquad_support.h>
|
|
#include <vcg/complex/allocate.h>
|
|
|
|
/** BIT-QUAD creation support:
|
|
a collection of methods that,
|
|
starting from a triangular mesh, will create your quad-pure or quad-domainant mesh.
|
|
|
|
They all require:
|
|
- per face Q, and FF connectivity, 2-manyfold meshes,
|
|
- and tri- or quad- meshes (no penta, etc) (if in need, use MakeBitTriOnly)
|
|
|
|
|
|
[ list of available methods: ]
|
|
|
|
void MakePureByRefine(Mesh &m)
|
|
- adds a vertex for each tri or quad present
|
|
- thus, miminal complexity increase is the mesh is quad-dominant already
|
|
- old non-border edges are made faux
|
|
- never fails
|
|
|
|
void MakePureByCatmullClark(MeshType &m)
|
|
- adds a vertex in each (non-faux) edge.
|
|
- twice complexity increase w.r.t. "ByRefine" method.
|
|
- preserves edges: old edges are still edges
|
|
- never fails
|
|
|
|
bool MakePureByFlip(MeshType &m [, int maxdist] )
|
|
- does not increase # vertices, just flips edges
|
|
- call in a loop until it returns true (temporary hack)
|
|
- fails if number of triangle is odd (only happens in open meshes)
|
|
- add "StepByStep" to method name if you want it to make a single step (debugging purposes)
|
|
|
|
bool MakeTriEvenBySplit(MeshType& m)
|
|
bool MakeTriEvenByDelete(MeshType& m)
|
|
- two simple variants that either delete or split *at most one* border face
|
|
so that the number of tris will be made even. Return true if it did it.
|
|
- useful to use the previous method, when mesh is still all triangle
|
|
|
|
void MakeDominant(MeshType &m, int level)
|
|
- just merges traingle pairs into quads, trying its best
|
|
- various heuristic available, see descr. for parameter "level"
|
|
- provides good starting point for make-Quad-Only methods
|
|
- uses an ad-hoc measure for "quad quality" (which is hard-wired, for now)
|
|
|
|
void MakeBitTriOnly(MeshType &m)
|
|
- inverse process: returns to tri-only mesh
|
|
|
|
|
|
(more info in comments before each method)
|
|
|
|
*/
|
|
#ifndef VCG_BITQUAD_CRE
|
|
#define VCG_BITQUAD_CRE
|
|
|
|
namespace vcg{namespace tri{
|
|
|
|
template <class _MeshType,
|
|
class Interpolator = GeometricInterpolator<typename _MeshType::VertexType> >
|
|
class BitQuadCreation{
|
|
|
|
public:
|
|
|
|
typedef _MeshType MeshType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FaceType* FaceTypeP;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
|
|
typedef BitQuad<MeshType> BQ; // static class to make basic quad operations
|
|
|
|
|
|
// helper function:
|
|
// given a triangle, merge it with its best neightboord to form a quad
|
|
template <bool override>
|
|
static void selectBestDiag(FaceType *fi){
|
|
|
|
if (!override) {
|
|
if (fi->IsAnyF()) return;
|
|
}
|
|
|
|
// select which edge to make faux (if any)...
|
|
int whichEdge = -1;
|
|
ScalarType bestScore = fi->Q();
|
|
|
|
whichEdge=-1;
|
|
|
|
for (int k=0; k<3; k++){
|
|
|
|
// todo: check creases? (continue if edge k is a crease)
|
|
|
|
if (!override) {
|
|
if (fi->FFp(k)->IsAnyF()) continue;
|
|
}
|
|
if (fi->FFp(k)==fi) continue; // never make a border faux
|
|
|
|
ScalarType score = BQ::quadQuality( &*fi, k );
|
|
if (override) {
|
|
// don't override anyway iff other face has a better match
|
|
if (score < fi->FFp(k)->Q()) continue;
|
|
}
|
|
if (score>bestScore) {
|
|
bestScore = score;
|
|
whichEdge = k;
|
|
}
|
|
}
|
|
|
|
// ...and make it faux
|
|
if (whichEdge>=0) {
|
|
//if (override && fi->FFp(whichEdge)->IsAnyF()) {
|
|
// new score is the average of both scores
|
|
// fi->Q() = fi->FFp(whichEdge)->Q() = ( bestScore + fi->FFp(whichEdge)->Q() ) /2;
|
|
//} else {
|
|
//}
|
|
|
|
if (override) {
|
|
// clear any faux edge of the other face
|
|
for (int k=0; k<3; k++)
|
|
if (fi->FFp(whichEdge)->IsF(k)) {
|
|
fi->FFp(whichEdge)->ClearF(k);
|
|
fi->FFp(whichEdge)->FFp(k)->ClearF( fi->FFp(whichEdge)->FFi(k) );
|
|
fi->FFp(whichEdge)->FFp(k)->Q()=0.0; // other face's ex-buddy is now single and sad :(
|
|
}
|
|
|
|
// clear all faux edges of this face...
|
|
for (int k=0; k<3; k++)
|
|
if (fi->IsF(k)) {
|
|
fi->ClearF(k);
|
|
fi->FFp(k)->ClearF( fi->FFi(k) );
|
|
fi->FFp(k)->Q()= 0.0; // my ex-buddy is now sad
|
|
}
|
|
}
|
|
// set (new?) quad
|
|
fi->SetF(whichEdge);
|
|
fi->FFp(whichEdge)->SetF( fi->FFi(whichEdge) );
|
|
fi->Q() = fi->FFp(whichEdge)->Q() = bestScore;
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// helper funcion:
|
|
// a pass though all triangles to merge triangle pairs into quads
|
|
template <bool override> // override previous decisions?
|
|
static void MakeDominantPass(MeshType &m){
|
|
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
|
selectBestDiag<override>(&(*fi));
|
|
}
|
|
|
|
}
|
|
/**
|
|
* This function split a face along the specified border edge it does not compute any property of the new vertex. It only do the topological work.
|
|
* @param edge Index of the edge
|
|
*/
|
|
// sideF
|
|
// sideF V2(e) ------------- v2
|
|
// V0 -------------V2 V2(e) \ /
|
|
// | / | \ \ newF /
|
|
// | / | \ \ / e
|
|
// | f / | \ \ /
|
|
// | / e | f V1(e)=newV =
|
|
// | / | /
|
|
// | / | /
|
|
// | / | /
|
|
// V1 V0(e)
|
|
//
|
|
|
|
static std::pair<typename MeshType::FaceType *, typename MeshType::VertexType *> FaceSplitBorderEdge(MeshType &m, typename MeshType::FaceType &f, int edge, typename MeshType::FaceType *newFace, typename MeshType::VertexType *newVert )
|
|
{
|
|
|
|
typename MeshType::FaceType *sideFFp;
|
|
int sideFFi;
|
|
|
|
assert(tri::HasFFAdjacency(m));
|
|
assert(face::IsBorder(f,edge));
|
|
//qDebug("OldFacePRE %i %i %i",tri::Index(m,f.V(0)),tri::Index(m,f.V(1)),tri::Index(m,f.V(2)));
|
|
if(newFace==0) newFace=&*tri::Allocator<MeshType>::AddFaces(m,1);
|
|
if(newVert==0) {
|
|
newVert=&*tri::Allocator<MeshType>::AddVertices(m,1);
|
|
newVert->P()=(f.P0(edge)+f.P1(edge))/2.0;
|
|
}
|
|
newFace->V0(edge)=newVert;
|
|
newFace->V1(edge)=f.V1(edge);
|
|
newFace->V2(edge)=f.V2(edge);
|
|
|
|
f.V1(edge)=newVert;
|
|
|
|
//qDebug("NewFace %i %i %i",tri::Index(m,newFace->V(0)),tri::Index(m,newFace->V(1)),tri::Index(m,newFace->V(2)));
|
|
//qDebug("OldFace %i %i %i",tri::Index(m,f.V(0)),tri::Index(m,f.V(1)),tri::Index(m,f.V(2)));
|
|
|
|
// Topology
|
|
|
|
newFace->FFp((edge+2)%3) = &f;
|
|
newFace->FFi((edge+2)%3) = (edge+1)%3;
|
|
|
|
newFace->FFp((edge+0)%3) = newFace;
|
|
newFace->FFi((edge+0)%3) = (edge+0)%3;
|
|
|
|
newFace->FFp((edge+1)%3) = f.FFp((edge+1)%3);
|
|
newFace->FFi((edge+1)%3) = f.FFi((edge+1)%3);
|
|
|
|
sideFFp = f.FFp((edge+1)%3);
|
|
sideFFi = f.FFi((edge+1)%3);
|
|
|
|
f.FFp((edge+1)%3) = newFace;
|
|
f.FFi((edge+1)%3) = (edge+2)%3;
|
|
|
|
sideFFp->FFp(sideFFi)=newFace;
|
|
sideFFp->FFi(sideFFi)=(edge+1)%3;
|
|
|
|
assert(face::IsBorder(f,edge));
|
|
assert(face::IsBorder(*newFace,edge));
|
|
|
|
return std::make_pair(newFace,newVert);
|
|
}
|
|
// make tri count even by splitting a single triangle...
|
|
//
|
|
// V0 -------V2 V0 --------V2
|
|
// | / | \ Fnew /
|
|
// | / | Vnew
|
|
// | / | /
|
|
// | / | /
|
|
// V1 V1
|
|
//
|
|
|
|
static bool MakeTriEvenBySplit(MeshType& m){
|
|
if (m.fn%2==0) return false; // it's already Even
|
|
// Search for a triangle on the border
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++)
|
|
{
|
|
if(!(*fi).IsD())
|
|
{
|
|
for (int k=0; k<3; k++) {
|
|
if (face::IsBorder(*fi,k)){
|
|
// We have found a face with a border
|
|
int index=tri::Index(m,*fi);
|
|
VertexIterator vnew=tri::Allocator<MeshType>::AddVertices(m,1);
|
|
(*vnew).P()=((*fi).P0(k)+(*fi).P1(k))/2.0;
|
|
|
|
FaceIterator fnew=tri::Allocator<MeshType>::AddFaces(m,1);
|
|
|
|
FaceSplitBorderEdge(m,m.face[index],k,&*fnew,&*vnew);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// make tri count even by delete...
|
|
static bool MakeTriEvenByDelete(MeshType& m)
|
|
{
|
|
if (m.fn%2==0) return false; // it's already Even
|
|
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
|
for (int k=0; k<3; k++) {
|
|
if (face::IsBorder(*fi,k) ) {
|
|
FFDetachManifold(*fi,(k+1)%3);
|
|
FFDetachManifold(*fi,(k+2)%3);
|
|
Allocator<MeshType>::DeleteFace(m,*fi);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
assert(0); // no border face found? then how could the number of tri be Odd?
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
Given a mesh, makes it bit trianglular (makes all edges NOT faux)
|
|
*/
|
|
static void MakeBitTriOnly(MeshType &m){
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
|
fi->ClearAllF();
|
|
}
|
|
}
|
|
|
|
/** given a quad-and-tree mesh, enforces the "faux edge is 2nd edge" convention.
|
|
* Requires (and updates): FV and FF structure
|
|
* Updates: faux flags
|
|
* Updates: per wedge attributes, if any
|
|
* Other connectivity structures, and per edge and per wedge flags are ignored
|
|
*/
|
|
static bool MakeBitTriQuadConventional(MeshType &m){
|
|
assert(0); // todo
|
|
return false;
|
|
}
|
|
|
|
/* returns true if mesh is a "conventional" quad mesh.
|
|
I.e. if it is all quads, with third edge faux fora all triangles*/
|
|
static bool IsBitTriQuadConventional(MeshType &m){
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
|
if (fi->IsAnyF())
|
|
if ( (fi->Flags() & FaceType::FAUX012 ) != FaceType::FAUX2 ) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
static void CopyTopology(FaceType *fnew, FaceType * fold)
|
|
{
|
|
fnew->FFp(0)=fold->FFp(0); fnew->FFi(0)=fold->FFi(0);
|
|
fnew->FFp(1)=fold->FFp(1); fnew->FFi(1)=fold->FFi(1);
|
|
fnew->FFp(2)=fold->FFp(2); fnew->FFi(2)=fold->FFi(2);
|
|
fnew->V(0) = fold->V(0);
|
|
fnew->V(1) = fold->V(1);
|
|
fnew->V(2) = fold->V(2);
|
|
}
|
|
/**
|
|
makes any mesh quad only by refining it so that a quad is created over all
|
|
previous diags
|
|
requires that the mesh is made only of quads and tris.
|
|
*/
|
|
static void MakePureByRefine(MeshType &m){
|
|
|
|
// todo: update VF connectivity if present
|
|
|
|
|
|
int ev = 0; // EXTRA vertices (times 2)
|
|
int ef = 0; // EXTRA faces
|
|
|
|
// first pass: count triangles to be added
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
|
int k=0;
|
|
if (face::IsBorder(*fi,0)) k++;
|
|
if (face::IsBorder(*fi,1)) k++;
|
|
if (face::IsBorder(*fi,2)) k++;
|
|
if (!fi->IsAnyF()) {
|
|
// it's a triangle
|
|
if (k==0) // add a vertex in the center of the face, splitting it in 3
|
|
{ ev+=2; ef+=2; }
|
|
if (k==1) // add a vertex in the border edge, splitting it in 2
|
|
{ }
|
|
if (k==2) // do nothing, just mark the non border edge as faux
|
|
{ }
|
|
if (k==3) // disconnected single triangle (all borders): make one edge as faus
|
|
{ }
|
|
}
|
|
else {
|
|
// assuming is a quad (not a penta, etc), i.e. only one faux
|
|
// add a vertex in the center of the faux edge, splitting the face in 2
|
|
ev+=1; ef+=1;
|
|
assert(k!=3);
|
|
}
|
|
}
|
|
assert(ev%2==0); // should be even by now
|
|
ev/=2; // I was counting each of them twice
|
|
|
|
//int originalFaceNum = m.fn;
|
|
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,ef);
|
|
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,ev);
|
|
|
|
tri::UpdateFlags<MeshType>::FaceClearV(m);
|
|
|
|
// second pass: add faces and vertices
|
|
int nsplit=0; // spits to be done on border in the third pass
|
|
for (FaceIterator fi = m.face.begin(), fend = nfi; fi!=fend; fi++) if (!fi->IsD() && !fi->IsV() ) {
|
|
|
|
fi->SetV();
|
|
|
|
if (!fi->IsAnyF()) {
|
|
// it's a triangle
|
|
|
|
int k=0; // number of borders
|
|
if (face::IsBorder(*fi,0)) k++;
|
|
if (face::IsBorder(*fi,1)) k++;
|
|
if (face::IsBorder(*fi,2)) k++;
|
|
|
|
if (k==0) // add a vertex in the center of the face, splitting it in 3
|
|
{
|
|
assert(nvi!=m.vert.end());
|
|
VertexType *nv = &*nvi; nvi++;
|
|
//*nv = *fi->V0( 0 ); // lazy: copy everything from the old vertex
|
|
nv->ImportData(*(fi->V0( 0 ))); // lazy: copy everything from the old vertex
|
|
|
|
nv->P() = ( fi->V(0)->P() + fi->V(1)->P() + fi->V(2)->P() ) /3.0;
|
|
FaceType *fa = &*fi;
|
|
FaceType *fb = &*nfi; nfi++;
|
|
FaceType *fc = &*nfi; nfi++;
|
|
|
|
fb->ImportData(*fa); CopyTopology(fb,fa);
|
|
fc->ImportData(*fa); CopyTopology(fc,fa);
|
|
|
|
fa->V(0) = nv;
|
|
fb->V(1) = nv;
|
|
fc->V(2) = nv;
|
|
|
|
fb->FFp(2)=fa->FFp(2); fb->FFi(2)=fa->FFi(2);
|
|
fc->FFp(0)=fa->FFp(0); fc->FFi(0)=fa->FFi(0);
|
|
|
|
assert( fa->FFp(1)->FFp(fa->FFi(1)) == fa );
|
|
/* */fb->FFp(2)->FFp(fb->FFi(2)) = fb;
|
|
/* */fc->FFp(0)->FFp(fc->FFi(0)) = fc;
|
|
|
|
fa->FFp(0) = fc; fa->FFp(2) = fb; fa->FFi(0) = fa->FFi(2) = 1;
|
|
fb->FFp(1) = fa; fb->FFp(0) = fc; fb->FFi(0) = fb->FFi(1) = 2;
|
|
fc->FFp(1) = fa; fc->FFp(2) = fb; fc->FFi(1) = fc->FFi(2) = 0;
|
|
|
|
if (fb->FFp(2)==fa) fb->FFp(2)=fb; // recover border status
|
|
if (fc->FFp(0)==fa) fc->FFp(0)=fc;
|
|
|
|
fa->ClearAllF();
|
|
fb->ClearAllF();
|
|
fc->ClearAllF();
|
|
fa->SetF(1);
|
|
fb->SetF(2);
|
|
fc->SetF(0);
|
|
|
|
fa->SetV();fb->SetV();fc->SetV();
|
|
}
|
|
if (k==1) { // make a border face faux, anf other two as well
|
|
fi->SetF(0);
|
|
fi->SetF(1);
|
|
fi->SetF(2);
|
|
nsplit++;
|
|
}
|
|
if (k==2) // do nothing, just mark the non border edge as faux
|
|
{
|
|
fi->ClearAllF();
|
|
for (int w=0; w<3; w++) if (fi->FFp(w) != &*fi) fi->SetF(w);
|
|
}
|
|
if (k==3) // disconnected single triangle (all borders): use catmull-clark (tree vertices, split it in 6
|
|
{
|
|
fi->ClearAllF();
|
|
fi->SetF(2);
|
|
nsplit++;
|
|
}
|
|
}
|
|
else {
|
|
// assuming is a part of quad (not a penta, etc), i.e. only one faux
|
|
FaceType *fa = &*fi;
|
|
int ea2 = BQ::FauxIndex(fa); // index of the only faux edge
|
|
FaceType *fb = fa->FFp(ea2);
|
|
int eb2 = fa->FFi(ea2);
|
|
assert(fb->FFp(eb2)==fa) ;
|
|
assert(fa->IsF(ea2));
|
|
//assert(fb->IsF(eb2)); // reciprocal faux edge
|
|
|
|
int ea0 = (ea2+1) %3;
|
|
int ea1 = (ea2+2) %3;
|
|
int eb0 = (eb2+1) %3;
|
|
int eb1 = (eb2+2) %3;
|
|
|
|
// create new vert in center of faux edge
|
|
assert(nvi!=m.vert.end());
|
|
VertexType *nv = &*nvi; nvi++;
|
|
// *nv = * fa->V0( ea2 );
|
|
nv->ImportData(*(fa->V0( ea2 ) )); // lazy: copy everything from the old vertex
|
|
//nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
|
|
Interpolator::Apply(*(fa->V(ea2)),*(fa->V(ea0)),0.5,*nv);
|
|
// split faces: add 2 faces (one per side)
|
|
assert(nfi!=m.face.end());
|
|
FaceType *fc = &*nfi; nfi++;
|
|
assert(nfi!=m.face.end());
|
|
FaceType *fd = &*nfi; nfi++;
|
|
|
|
fc->ImportData(*fa ); CopyTopology(fc,fa); // lazy: copy everything from the old vertex
|
|
fd->ImportData(*fb ); CopyTopology(fd,fb);// lazy: copy everything from the old vertex
|
|
|
|
fa->V(ea2) = fc->V(ea0) =
|
|
fb->V(eb2) = fd->V(eb0) = nv ;
|
|
|
|
fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc;
|
|
fb->FFp(eb1)->FFp( fb->FFi(eb1) ) = fd;
|
|
|
|
fa->FFp(ea1) = fc ; fa->FFp(ea2) = fd;
|
|
fa->FFi(ea1) = ea0; fa->FFi(ea2) = eb2;
|
|
fb->FFp(eb1) = fd ; fb->FFp(eb2) = fc;
|
|
fb->FFi(eb1) = eb0; fb->FFi(eb2) = ea2;
|
|
fc->FFp(ea0) = fa ; fc->FFp(ea2) = fb;
|
|
fc->FFi(ea0) = ea1; fc->FFi(ea2) = eb2;
|
|
fd->FFp(eb0) = fb ; fd->FFp(eb2) = fa;
|
|
fd->FFi(eb0) = eb1; fd->FFi(eb2) = ea2;
|
|
|
|
// detect boundaries
|
|
bool ba = fa->FFp(ea0)==fa;
|
|
bool bc = fc->FFp(ea1)==fa;
|
|
bool bb = fb->FFp(eb0)==fb;
|
|
bool bd = fd->FFp(eb1)==fb;
|
|
|
|
if (bc) fc->FFp(ea1)=fc; // repristinate boundary status
|
|
if (bd) fd->FFp(eb1)=fd; // of new faces
|
|
|
|
fa->SetV();
|
|
fb->SetV();
|
|
fc->SetV();
|
|
fd->SetV();
|
|
|
|
fa->ClearAllF();
|
|
fb->ClearAllF();
|
|
fc->ClearAllF();
|
|
fd->ClearAllF();
|
|
|
|
fa->SetF( ea0 );
|
|
fb->SetF( eb0 );
|
|
fc->SetF( ea1 );
|
|
fd->SetF( eb1 );
|
|
|
|
// fix faux mesh boundary... if two any consecutive, merge it in a quad
|
|
if (ba&&bc) {
|
|
fa->ClearAllF(); fa->SetF(ea1);
|
|
fc->ClearAllF(); fc->SetF(ea0);
|
|
ba = bc = false;
|
|
}
|
|
if (bc&&bb) {
|
|
fc->ClearAllF(); fc->SetF(ea2);
|
|
fb->ClearAllF(); fb->SetF(eb2);
|
|
bc = bb = false;
|
|
}
|
|
if (bb&&bd) {
|
|
fb->ClearAllF(); fb->SetF(eb1);
|
|
fd->ClearAllF(); fd->SetF(eb0);
|
|
bb = bd = false;
|
|
}
|
|
if (bd&&ba) {
|
|
fd->ClearAllF(); fd->SetF(eb2);
|
|
fa->ClearAllF(); fa->SetF(ea2);
|
|
bd = ba = false;
|
|
}
|
|
// remaninig boudaries will be fixed by splitting in the last pass
|
|
if (ba) nsplit++;
|
|
if (bb) nsplit++;
|
|
if (bc) nsplit++;
|
|
if (bd) nsplit++;
|
|
}
|
|
}
|
|
assert(nfi==m.face.end());
|
|
assert(nvi==m.vert.end());
|
|
|
|
// now and there are no tris left, but there can be faces with ONE edge border & faux ()
|
|
|
|
|
|
// last pass: add vertex on faux border faces... (if any)
|
|
if (nsplit>0) {
|
|
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,nsplit);
|
|
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,nsplit);
|
|
for (FaceIterator fi = m.face.begin(), fend = nfi; fi!=fend; fi++) if (!fi->IsD()) {
|
|
FaceType* fa = &*fi;
|
|
int ea2 = -1; // border and faux face (if any)
|
|
if (fa->FFp(0)==fa && fa->IsF(0) ) ea2=0;
|
|
if (fa->FFp(1)==fa && fa->IsF(1) ) ea2=1;
|
|
if (fa->FFp(2)==fa && fa->IsF(2) ) ea2=2;
|
|
|
|
if (ea2 != -1) { // ea2 edge is naughty (border AND faux)
|
|
|
|
int ea0 = (ea2+1) %3;
|
|
int ea1 = (ea2+2) %3;
|
|
|
|
// create new vert in center of faux edge
|
|
VertexType *nv = &*nvi; nvi++;
|
|
//*nv = * fa->V0( ea2 );
|
|
nv->ImportData(*(fa->V0( ea2 ) )); // lazy: copy everything from the old vertex
|
|
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
|
|
Interpolator::Apply(*(fa->V(ea2)),*(fa->V(ea0)),0.5,*nv);
|
|
// split face: add 1 face
|
|
FaceType *fc = &*nfi; nfi++;
|
|
|
|
fc->ImportData(*fa);CopyTopology(fc,fa); // lazy: copy everything from the old vertex
|
|
|
|
fa->V(ea2) = fc->V(ea0) = nv ;
|
|
|
|
fc->FFp(ea2) = fc;
|
|
|
|
fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc;
|
|
|
|
fa->FFp(ea1) = fc ;
|
|
fa->FFi(ea1) = ea0;
|
|
fc->FFp(ea0) = fa ; fc->FFp(ea2) = fc;
|
|
fc->FFi(ea0) = ea1;
|
|
|
|
if (fc->FFp(ea1)==fa) fc->FFp(ea1)=fc; // recover border status
|
|
|
|
assert(fa->IsF(ea0) == fa->IsF(ea1) );
|
|
bool b = fa->IsF(ea1);
|
|
|
|
fa->ClearAllF();
|
|
fc->ClearAllF();
|
|
|
|
if (b) {
|
|
fa->SetF( ea0 );
|
|
fc->SetF( ea1 );
|
|
} else {
|
|
fa->SetF( ea1 );
|
|
fc->SetF( ea0 );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
// uses Catmull Clark to enforce quad only meshes
|
|
// each old edge (but not faux) is split in two.
|
|
static void MakePureByCatmullClark(MeshType &m){
|
|
MakePureByRefine(m);
|
|
MakePureByRefine(m);
|
|
// done
|
|
}
|
|
|
|
// Helper funcion:
|
|
// marks edge distance froma a given face.
|
|
// Stops at maxDist or at the distance when a triangle is found
|
|
static FaceType * MarkEdgeDistance(MeshType &m, FaceType *startF, int maxDist){
|
|
assert(tri::HasPerFaceQuality(m));
|
|
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
|
fi->Q()=maxDist;
|
|
}
|
|
|
|
FaceType * firstTriangleFound = NULL;
|
|
|
|
startF->Q() = 0;
|
|
std::vector<FaceType*> stack;
|
|
int stackPos=0;
|
|
stack.push_back(startF);
|
|
|
|
while ( stackPos<int(stack.size())) {
|
|
FaceType *f = stack[stackPos++];
|
|
for (int k=0; k<3; k++) {
|
|
assert(FFCorrectness(*f,k));
|
|
FaceType *fk = f->FFp(k);
|
|
int fq = int(f->Q()) + ( ! f->IsF(k) );
|
|
if (fk->Q()> fq && fq <= maxDist) {
|
|
if (!fk->IsAnyF()) { firstTriangleFound = fk; maxDist = fq;}
|
|
fk->Q() = fq;
|
|
stack.push_back(fk);
|
|
}
|
|
}
|
|
}
|
|
return firstTriangleFound;
|
|
}
|
|
|
|
|
|
/*
|
|
given a tri-quad mesh,
|
|
uses edge rotates to make a tri move toward another tri and to merges them into a quad.
|
|
|
|
Retunrs number of surviving triangles (0, or 1), or -1 if not done yet.
|
|
StepbyStep: makes just one step!
|
|
use it in a loop as long as it returns 0 or 1.
|
|
|
|
maxdist is the maximal edge distance where to look for a companion triangle
|
|
*/
|
|
static int MakePureByFlipStepByStep(MeshType &m, int maxdist=10000, int restart=false){
|
|
|
|
static FaceType *ta, *tb; // faces to be matched into a quad
|
|
|
|
static int step = 0; // hack
|
|
|
|
if (restart) { step=0; return false; }
|
|
if (step==0) {
|
|
|
|
// find a triangular face ta
|
|
ta = NULL;
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
|
if (!fi->IsAnyF()) { ta=&*fi; break; }
|
|
}
|
|
if (!ta) return 0; // success: no triangle left (done?)
|
|
|
|
|
|
tb = MarkEdgeDistance(m,ta,maxdist);
|
|
if (!tb) return 1; // fail: no matching triagle found (increase maxdist?)
|
|
|
|
step=1;
|
|
|
|
} else {
|
|
int marriageEdge=-1;
|
|
bool done = false;
|
|
while (!done) {
|
|
|
|
int bestScore = int(tb->Q());
|
|
int edge = -1;
|
|
bool mustDoFlip;
|
|
|
|
// select which edge to use
|
|
for (int k=0; k<3; k++) {
|
|
if (tb->FFp(k) == tb) continue; // border
|
|
|
|
FaceType* tbk = tb->FFp(k);
|
|
|
|
if (!tbk->IsAnyF()) {done=true; marriageEdge=k; break; } // found my match
|
|
|
|
int back = tb->FFi(k);
|
|
int faux = BQ::FauxIndex(tbk);
|
|
int other = 3-back-faux;
|
|
|
|
int scoreA = int(tbk->FFp(other)->Q());
|
|
|
|
FaceType* tbh = tbk->FFp(faux);
|
|
int fauxh = BQ::FauxIndex(tbh);
|
|
|
|
int scoreB = int(tbh->FFp( (fauxh+1)%3 )->Q());
|
|
int scoreC = int(tbh->FFp( (fauxh+2)%3 )->Q());
|
|
|
|
int scoreABC = std::min( scoreC, std::min( scoreA, scoreB ) );
|
|
if (scoreABC<bestScore) {
|
|
bestScore = scoreABC;
|
|
edge = k;
|
|
mustDoFlip = !(scoreB == scoreABC || scoreC == scoreABC);
|
|
}
|
|
}
|
|
|
|
if (done) break;
|
|
|
|
// use that edge to proceed
|
|
if (mustDoFlip) {
|
|
BQ::FlipDiag( *(tb->FFp(edge)) );
|
|
}
|
|
|
|
FaceType* next = tb->FFp(edge)->FFp( BQ::FauxIndex(tb->FFp(edge)) );
|
|
|
|
// create new edge
|
|
next->ClearAllF();
|
|
tb->FFp(edge)->ClearAllF();
|
|
|
|
// dissolve old edge
|
|
tb->SetF(edge);
|
|
tb->FFp(edge)->SetF( tb->FFi(edge) );
|
|
tb->FFp(edge)->Q() = tb->Q();
|
|
|
|
tb = next;
|
|
break;
|
|
}
|
|
|
|
if (marriageEdge!=-1) {
|
|
// consume the marriage (two tris = one quad)
|
|
assert(!(tb->IsAnyF()));
|
|
assert(!(tb->FFp(marriageEdge)->IsAnyF()));
|
|
tb->SetF(marriageEdge);
|
|
tb->FFp(marriageEdge)->SetF(tb->FFi(marriageEdge));
|
|
|
|
step=0;
|
|
}
|
|
}
|
|
return -1; // not done yet
|
|
}
|
|
|
|
/*
|
|
given a tri-quad mesh,
|
|
uses edge rotates to make a tri move toward another tri and to merges them into a quad.
|
|
- maxdist is the maximal edge distance where to look for a companion triangle
|
|
- retunrs true if all triangles are merged (always, unless they are odd, or maxdist not enough).
|
|
*/
|
|
static bool MakePureByFlip(MeshType &m, int maxdist=10000)
|
|
{
|
|
MakePureByFlipStepByStep(m, maxdist, true); // restart
|
|
int res=-1;
|
|
while (res==-1) res = MakePureByFlipStepByStep(m, maxdist);
|
|
return res==0;
|
|
}
|
|
|
|
/**
|
|
given a triangle mesh, makes it quad dominant by merging triangle pairs into quads
|
|
various euristics:
|
|
level = 0: maximally greedy. Leaves fewest triangles
|
|
level = 1: smarter: leaves more triangles, but makes better quality quads
|
|
level = 2: even more so (marginally)
|
|
*/
|
|
static void MakeDominant(MeshType &m, int level){
|
|
|
|
assert(MeshType::HasPerFaceQuality());
|
|
assert(MeshType::HasPerFaceFlags());
|
|
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
|
fi->ClearAllF();
|
|
fi->Q() = 0;
|
|
}
|
|
|
|
|
|
MakeDominantPass<false> (m);
|
|
if (level>0) MakeDominantPass<true> (m);
|
|
if (level>1) MakeDominantPass<true> (m);
|
|
if (level>0) MakeDominantPass<false> (m);
|
|
}
|
|
|
|
};
|
|
}} // end namespace vcg::tri
|
|
#endif
|