445 lines
16 KiB
C++
445 lines
16 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#include<vector>
|
|
#include <algorithm>
|
|
#include<vcg/space/point3.h>
|
|
#include<vcg/space/plane3.h>
|
|
#include<vcg/space/segment3.h>
|
|
#include<vcg/space/intersection3.h>
|
|
#include<vcg/complex/allocate.h>
|
|
#include<vcg/complex/algorithms/subset.h>
|
|
#include<vcg/complex/algorithms/closest.h>
|
|
#include<vcg/complex/algorithms/update/quality.h>
|
|
#include<vcg/complex/complex.h>
|
|
|
|
#ifndef __VCGLIB_INTERSECTION_TRI_MESH
|
|
#define __VCGLIB_INTERSECTION_TRI_MESH
|
|
|
|
namespace vcg{
|
|
|
|
// NAMING CONVENTION
|
|
// INTERSECTION<SIMPLEOBJECT,COMPLEXSTUFF>
|
|
// and it returns the portion of Complexstuff intersected by the simpleobject.
|
|
|
|
/** \addtogroup complex */
|
|
/*@{*/
|
|
/**
|
|
Function computing the intersection between a grid and a plane. It returns all the cells intersected
|
|
*/
|
|
template < typename GridType,typename ScalarType>
|
|
bool IntersectionPlaneGrid( GridType & grid, Plane3<ScalarType> plane, std::vector<typename GridType::Cell *> &cells)
|
|
{
|
|
cells.clear();
|
|
Point3d p,_d;
|
|
Plane3d pl;
|
|
_d.Import(plane.Direction());
|
|
pl.SetDirection(_d);
|
|
pl.SetOffset(plane.Offset());
|
|
for( int ax = 0; ax <3; ++ax)
|
|
{ int axis = ax;
|
|
int axis0 = (axis+1)%3;
|
|
int axis1 = (axis+2)%3;
|
|
int i,j;
|
|
Point3i pi;
|
|
|
|
Segment3<double> seg;
|
|
seg.P0().Import(grid.bbox.min);
|
|
seg.P1().Import(grid.bbox.min);
|
|
seg.P1()[axis] = grid.bbox.max[axis];
|
|
|
|
for(i = 0 ; i <= grid.siz[axis0]; ++i){
|
|
for(j = 0 ; j <= grid.siz[axis1]; ++j)
|
|
{
|
|
seg.P0()[axis0] = grid.bbox.min[axis0]+ (i+0.01) * grid.voxel[axis0] ;
|
|
seg.P1()[axis0] = grid.bbox.min[axis0]+ (i+0.01) * grid.voxel[axis0];
|
|
seg.P0()[axis1] = grid.bbox.min[axis1]+ (j+0.01) * grid.voxel[axis1];
|
|
seg.P1()[axis1] = grid.bbox.min[axis1]+ (j+0.01) * grid.voxel[axis1];
|
|
if ( IntersectionPlaneSegmentEpsilon(pl,seg,p))
|
|
{
|
|
pi[axis] = std::min(std::max(0,(int)floor((p[axis ]-grid.bbox.min[axis])/grid.voxel[axis])),grid.siz[axis]);
|
|
pi[axis0] = i;
|
|
pi[axis1] = j;
|
|
grid.Grid(pi,axis,cells);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sort(cells.begin(),cells.end());
|
|
cells.erase(unique(cells.begin(),cells.end()),cells.end());
|
|
|
|
return false;
|
|
}
|
|
|
|
/*@}*/
|
|
|
|
|
|
|
|
/** \addtogroup complex */
|
|
/*@{*/
|
|
/**
|
|
Basic Function computing the intersection between a trimesh and a plane. It returns an EdgeMesh without needing anything else.
|
|
Note: This version always returns a segment for each triangle of the mesh which intersects with the plane. In other
|
|
words there are 2*n vertices where n is the number of segments fo the mesh. You can run vcg::edge:Unify to unify
|
|
the vertices closer that a given value epsilon. Note that, due to subtraction error during triangle plane intersection,
|
|
it is not safe to put epsilon to 0.
|
|
// TODO si dovrebbe considerare la topologia face-face della trimesh per derivare quella della edge mesh..
|
|
*/
|
|
template < typename TriMeshType, typename EdgeMeshType, class ScalarType >
|
|
bool IntersectionPlaneMesh(TriMeshType & m,
|
|
Plane3<ScalarType> pl,
|
|
EdgeMeshType & em)
|
|
{
|
|
typename EdgeMeshType::VertexIterator vi;
|
|
typename TriMeshType::FaceIterator fi;
|
|
em.Clear();
|
|
Segment3<ScalarType> seg;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
if(vcg::IntersectionPlaneTriangle(pl,*fi,seg))// intersezione piano triangolo
|
|
{
|
|
vcg::tri::Allocator<EdgeMeshType>::AddEdges(em,1);
|
|
vi = vcg::tri::Allocator<EdgeMeshType>::AddVertices(em,2);
|
|
(*vi).P() = seg.P0();
|
|
em.edge.back().V(0) = &(*vi);
|
|
vi++;
|
|
(*vi).P() = seg.P1();
|
|
em.edge.back().V(1) = &(*vi);
|
|
}
|
|
}//end for
|
|
|
|
return true;
|
|
}
|
|
|
|
/** \addtogroup complex */
|
|
/*@{*/
|
|
/**
|
|
Basic Function computing the intersection between a trimesh and a plane. It returns an EdgeMesh without needing anything else.
|
|
Note: This version always returns a segment for each triangle of the mesh which intersects with the plane. In other
|
|
words there are 2*n vertices where n is the number of segments fo the mesh. You can run vcg::edge:Unify to unify
|
|
the vertices closer that a given value epsilon. Note that, due to subtraction error during triangle plane intersection,
|
|
it is not safe to put epsilon to 0.
|
|
// TODO si dovrebbe considerare la topologia face-face della trimesh per derivare quella della edge mesh..
|
|
*/
|
|
template < typename TriMeshType, typename EdgeMeshType, class ScalarType >
|
|
bool IntersectionPlaneMeshQuality(TriMeshType & m,
|
|
Plane3<ScalarType> pl,
|
|
EdgeMeshType & em)
|
|
{
|
|
std::vector<Point3f> ptVec;
|
|
tri::UpdateQuality<TriMeshType>::VertexFromPlane(m,pl);
|
|
for(size_t i=0;i<m.face.size();i++)
|
|
if(!m.face[i].IsD())
|
|
{
|
|
ptVec.clear();
|
|
for(int j=0;j<3;++j)
|
|
{
|
|
if((m.face[i].V0(j)->Q() * m.face[i].V1(j)->Q())<0)
|
|
{
|
|
const Point3f &p0 = m.face[i].V0(j)->cP();
|
|
const Point3f &p1 = m.face[i].V1(j)->cP();
|
|
// printf("Intersection ( %3.2f %3.2f %3.2f )-( %3.2f %3.2f %3.2f )\n",p0[0],p0[1],p0[2],p1[0],p1[1],p1[2]);
|
|
Point3f pp;
|
|
Segment3f seg(p0,p1);
|
|
IntersectionPlaneSegment(pl,seg,pp);
|
|
ptVec.push_back(pp);
|
|
}
|
|
if(m.face[i].V(j)->Q()==0) ptVec.push_back(m.face[i].V(j)->cP());
|
|
}
|
|
if(ptVec.size()>=2)
|
|
{
|
|
typename EdgeMeshType::VertexIterator vi;
|
|
vcg::tri::Allocator<EdgeMeshType>::AddEdges(em,1);
|
|
vi = vcg::tri::Allocator<EdgeMeshType>::AddVertices(em,2);
|
|
(*vi).P() = ptVec[0];
|
|
em.edge.back().V(0) = &(*vi);
|
|
vi++;
|
|
(*vi).P() = ptVec[1];
|
|
em.edge.back().V(1) = &(*vi);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/** \addtogroup complex */
|
|
/*@{*/
|
|
/**
|
|
Compute the intersection between a trimesh and a plane.
|
|
given a plane return the set of faces that are contained
|
|
into intersected cells.
|
|
*/
|
|
template < typename TriMeshType, class ScalarType, class IndexingType >
|
|
bool Intersection(Plane3<ScalarType> pl,
|
|
IndexingType *grid,
|
|
typename std::vector<typename TriMeshType::FaceType*> &v)
|
|
{
|
|
typedef typename TriMeshType::FaceContainer FaceContainer;
|
|
typedef IndexingType GridType;
|
|
typename TriMeshType::FaceIterator fi;
|
|
v.clear();
|
|
typename std::vector< typename GridType::Cell* > cells;
|
|
Intersect(*grid,pl,cells);
|
|
typename std::vector<typename GridType::Cell*>::iterator ic;
|
|
typename GridType::Cell fs,ls;
|
|
|
|
for(ic = cells.begin(); ic != cells.end();++ic)
|
|
{
|
|
grid->Grid(*ic,fs,ls);
|
|
typename GridType::Link * lk = fs;
|
|
while(lk != ls){
|
|
typename TriMeshType::FaceType & face = *(lk->Elem());
|
|
v.push_back(&face);
|
|
lk++;
|
|
}//end while
|
|
}//end for
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
Computes the intersection between a Ray and a Mesh. Returns a 3D Pointset.
|
|
*/
|
|
template < typename TriMeshType, class ScalarType>
|
|
bool IntersectionRayMesh(
|
|
/* Input Mesh */ TriMeshType * m,
|
|
/* Ray */ const Line3<ScalarType> & ray,
|
|
/* Intersect Point */ Point3<ScalarType> & hitPoint)
|
|
{
|
|
//typedef typename TriMeshType::FaceContainer FaceContainer;
|
|
typename TriMeshType::FaceIterator fi;
|
|
bool hit=false;
|
|
|
|
if(m==0) return false;
|
|
|
|
//TriMeshType::FaceIterator fi;
|
|
//std::vector<TriMeshType::FaceType*>::iterator fi;
|
|
|
|
ScalarType bar1,bar2,dist;
|
|
Point3<ScalarType> p1;
|
|
Point3<ScalarType> p2;
|
|
Point3<ScalarType> p3;
|
|
for(fi = m->face.begin(); fi != m->face.end(); ++fi)
|
|
{
|
|
p1=vcg::Point3<ScalarType>( (*fi).P(0).X() ,(*fi).P(0).Y(),(*fi).P(0).Z() );
|
|
p2=vcg::Point3<ScalarType>( (*fi).P(1).X() ,(*fi).P(1).Y(),(*fi).P(1).Z() );
|
|
p3=vcg::Point3<ScalarType>( (*fi).P(2).X() ,(*fi).P(2).Y(),(*fi).P(2).Z() );
|
|
if(IntersectionLineTriangle<ScalarType>(ray,p1,p2,p3,dist,bar1,bar2))
|
|
{
|
|
hitPoint= p1*(1-bar1-bar2) + p2*bar1 + p3*bar2;
|
|
hit=true;
|
|
}
|
|
}
|
|
|
|
return hit;
|
|
}
|
|
|
|
/**
|
|
Computes the intersection between a Ray and a Mesh. Returns a 3D Pointset, baricentric's coordinates
|
|
and a pointer of intersected face.
|
|
*/
|
|
template < typename TriMeshType, class ScalarType>
|
|
bool IntersectionRayMesh(
|
|
/* Input Mesh */ TriMeshType * m,
|
|
/* Ray */ const Line3<ScalarType> & ray,
|
|
/* Intersect Point */ Point3<ScalarType> & hitPoint,
|
|
/* Baricentric coord 1*/ ScalarType &bar1,
|
|
/* Baricentric coord 2*/ ScalarType &bar2,
|
|
/* Baricentric coord 3*/ ScalarType &bar3,
|
|
/* FacePointer */ typename TriMeshType::FacePointer fp
|
|
)
|
|
{
|
|
//typedef typename TriMeshType::FaceContainer FaceContainer;
|
|
typename TriMeshType::FaceIterator fi;
|
|
bool hit=false;
|
|
|
|
if(m==0) return false;
|
|
|
|
//TriMeshType::FaceIterator fi;
|
|
//std::vector<TriMeshType::FaceType*>::iterator fi;
|
|
|
|
ScalarType dist;
|
|
Point3<ScalarType> p1;
|
|
Point3<ScalarType> p2;
|
|
Point3<ScalarType> p3;
|
|
for(fi = m->face.begin(); fi != m->face.end(); ++fi)
|
|
{
|
|
p1=vcg::Point3<ScalarType>( (*fi).P(0).X() ,(*fi).P(0).Y(),(*fi).P(0).Z() );
|
|
p2=vcg::Point3<ScalarType>( (*fi).P(1).X() ,(*fi).P(1).Y(),(*fi).P(1).Z() );
|
|
p3=vcg::Point3<ScalarType>( (*fi).P(2).X() ,(*fi).P(2).Y(),(*fi).P(2).Z() );
|
|
if(IntersectionLineTriangle<ScalarType>(ray,p1,p2,p3,dist,bar1,bar2))
|
|
{
|
|
bar3 = (1-bar1-bar2);
|
|
hitPoint= p1*bar3 + p2*bar1 + p3*bar2;
|
|
fp = &(*fi);
|
|
hit=true;
|
|
}
|
|
}
|
|
|
|
return hit;
|
|
}
|
|
|
|
/**
|
|
Compute the intersection between a mesh and a ball.
|
|
given a mesh return a new mesh made by a copy of all the faces entirely includeded in the ball plus
|
|
new faces created by refining the ones intersected by the ball border.
|
|
It works by recursively splitting the triangles that cross the border, as long as their area is greater than
|
|
a given value tol. If no value is provided, 1/10^5*2*pi*radius is used
|
|
NOTE: the returned mesh is a triangle soup
|
|
*/
|
|
template < typename TriMeshType, class ScalarType>
|
|
void IntersectionBallMesh( TriMeshType & m, const vcg::Sphere3<ScalarType> &ball, TriMeshType & res,
|
|
float tol = 0){
|
|
|
|
typename TriMeshType::VertexIterator v0,v1,v2;
|
|
typename TriMeshType::FaceIterator fi;
|
|
std::vector<typename TriMeshType:: FaceType*> closests;
|
|
vcg::Point3<ScalarType> witness;
|
|
std::pair<ScalarType, ScalarType> info;
|
|
|
|
if(tol == 0) tol = M_PI * ball.Radius() * ball.Radius() / 100000;
|
|
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD() && IntersectionSphereTriangle<ScalarType>(ball ,(*fi), witness , &info))
|
|
closests.push_back(&(*fi));
|
|
|
|
res.Clear();
|
|
SubSet(res,closests);
|
|
int i =0;
|
|
while(i<res.fn){
|
|
bool allIn = ( ball.IsIn(res.face[i].P(0)) && ball.IsIn(res.face[i].P(1))&&ball.IsIn(res.face[i].P(2)));
|
|
if( IntersectionSphereTriangle<ScalarType>(ball ,res.face[i], witness , &info) && !allIn){
|
|
if(vcg::DoubleArea(res.face[i]) > tol)
|
|
{
|
|
// split the face res.face[i] in four, add the four new faces to the mesh and delete the face res.face[i]
|
|
v0 = vcg::tri::Allocator<TriMeshType>::AddVertices(res,3);
|
|
fi = vcg::tri::Allocator<TriMeshType>::AddFaces(res,4);
|
|
|
|
v1 = v0; ++v1;
|
|
v2 = v1; ++v2;
|
|
(*v0).P() = (res.face[i].P(0) + res.face[i].P(1))*0.5;
|
|
(*v1).P() = (res.face[i].P(1) + res.face[i].P(2))*0.5;
|
|
(*v2).P() = (res.face[i].P(2) + res.face[i].P(0))*0.5;
|
|
|
|
(*fi).V(0) = res.face[i].V(0);
|
|
(*fi).V(1) = &(*v0);
|
|
(*fi).V(2) = &(*v2);
|
|
++fi;
|
|
|
|
(*fi).V(0) = res.face[i].V(1);
|
|
(*fi).V(1) = &(*v1);
|
|
(*fi).V(2) = &(*v0);
|
|
++fi;
|
|
|
|
(*fi).V(0) = &(*v0);
|
|
(*fi).V(1) = &(*v1);
|
|
(*fi).V(2) = &(*v2);
|
|
++fi;
|
|
|
|
(*fi).V(0) = &(*v2);
|
|
(*fi).V(1) = &(*v1);
|
|
(*fi).V(2) = res.face[i].V(2) ;
|
|
|
|
vcg::tri::Allocator<TriMeshType>::DeleteFace(res,res.face[i]);
|
|
}
|
|
}// there was no intersection with the boundary
|
|
|
|
if(info.first > 0.0) // closest point - radius. If >0 is outside
|
|
vcg::tri::Allocator<TriMeshType>::DeleteFace(res,res.face[i]);
|
|
++i;
|
|
}
|
|
}
|
|
|
|
|
|
template < typename TriMeshType, class ScalarType, class IndexingType>
|
|
void IntersectionBallMesh( IndexingType * grid, TriMeshType & m, const vcg::Sphere3<ScalarType> &ball, TriMeshType & res,
|
|
float tol = 0){
|
|
|
|
typename TriMeshType::VertexIterator v0,v1,v2;
|
|
typename std::vector<typename TriMeshType::FacePointer >::iterator cfi;
|
|
typename TriMeshType::FaceIterator fi;
|
|
std::vector<typename TriMeshType:: FaceType*> closestsF,closests;
|
|
vcg::Point3<ScalarType> witness;
|
|
std::vector<vcg::Point3<ScalarType> > witnesses;
|
|
std::vector<ScalarType> distances;
|
|
std::pair<ScalarType, ScalarType> info;
|
|
|
|
if(tol == 0) tol = M_PI * ball.Radius() * ball.Radius() / 100000;
|
|
|
|
vcg::tri::GetInSphereFace(m,*grid, ball.Center(), ball.Radius(),closestsF,distances,witnesses);
|
|
for(cfi =closestsF.begin(); cfi != closestsF.end(); ++cfi)
|
|
if(!(**cfi).IsD() && IntersectionSphereTriangle<ScalarType>(ball ,(**cfi), witness , &info))
|
|
closests.push_back(&(**cfi));
|
|
|
|
res.Clear();
|
|
SubSet(res,closests);
|
|
int i =0;
|
|
while(i<res.fn){
|
|
bool allIn = ( ball.IsIn(res.face[i].P(0)) && ball.IsIn(res.face[i].P(1))&&ball.IsIn(res.face[i].P(2)));
|
|
if( IntersectionSphereTriangle<ScalarType>(ball ,res.face[i], witness , &info) && !allIn){
|
|
if(vcg::DoubleArea(res.face[i]) > tol)
|
|
{
|
|
// split the face res.face[i] in four, add the four new faces to the mesh and delete the face res.face[i]
|
|
v0 = vcg::tri::Allocator<TriMeshType>::AddVertices(res,3);
|
|
fi = vcg::tri::Allocator<TriMeshType>::AddFaces(res,4);
|
|
|
|
v1 = v0; ++v1;
|
|
v2 = v1; ++v2;
|
|
(*v0).P() = (res.face[i].P(0) + res.face[i].P(1))*0.5;
|
|
(*v1).P() = (res.face[i].P(1) + res.face[i].P(2))*0.5;
|
|
(*v2).P() = (res.face[i].P(2) + res.face[i].P(0))*0.5;
|
|
|
|
(*fi).V(0) = res.face[i].V(0);
|
|
(*fi).V(1) = &(*v0);
|
|
(*fi).V(2) = &(*v2);
|
|
++fi;
|
|
|
|
(*fi).V(0) = res.face[i].V(1);
|
|
(*fi).V(1) = &(*v1);
|
|
(*fi).V(2) = &(*v0);
|
|
++fi;
|
|
|
|
(*fi).V(0) = &(*v0);
|
|
(*fi).V(1) = &(*v1);
|
|
(*fi).V(2) = &(*v2);
|
|
++fi;
|
|
|
|
(*fi).V(0) = &(*v2);
|
|
(*fi).V(1) = &(*v1);
|
|
(*fi).V(2) = res.face[i].V(2) ;
|
|
|
|
vcg::tri::Allocator<TriMeshType>::DeleteFace(res,res.face[i]);
|
|
}
|
|
}// there was no intersection with the boundary
|
|
|
|
if(info.first > 0.0) // closest point - radius. If >0 is outside
|
|
vcg::tri::Allocator<TriMeshType>::DeleteFace(res,res.face[i]);
|
|
++i;
|
|
}
|
|
}
|
|
|
|
/*@}*/
|
|
} // end namespace vcg
|
|
#endif
|