689 lines
23 KiB
C++
689 lines
23 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.8 2008/05/14 10:03:29 ganovelli
|
|
Point3f->Coordtype
|
|
|
|
Revision 1.7 2008/04/23 16:37:15 onnis
|
|
VertexCurvature method added.
|
|
|
|
Revision 1.6 2008/04/04 10:26:12 cignoni
|
|
Cleaned up names, now Kg() gives back Gaussian Curvature (k1*k2), while Kh() gives back Mean Curvature 1/2(k1+k2)
|
|
|
|
Revision 1.5 2008/03/25 11:00:56 ganovelli
|
|
fixed bugs sign of principal direction and mean curvature value
|
|
|
|
Revision 1.4 2008/03/17 11:29:59 ganovelli
|
|
taubin and desbrun estimates added (-> see vcg/simplex/vertex/component.h [component_ocf.h|component_occ.h ]
|
|
|
|
Revision 1.3 2006/02/27 18:02:57 ponchio
|
|
Area -> doublearea/2
|
|
|
|
added some typename
|
|
|
|
Revision 1.2 2005/10/25 09:17:41 spinelli
|
|
correct IsBorder
|
|
|
|
Revision 1.1 2005/02/22 16:40:29 ganovelli
|
|
created. This version writes the gaussian curvature on the Q() member of
|
|
the vertex
|
|
|
|
****************************************************************************/
|
|
|
|
#ifndef VCGLIB_UPDATE_CURVATURE_
|
|
#define VCGLIB_UPDATE_CURVATURE_
|
|
|
|
#include <vcg/space/index/grid_static_ptr.h>
|
|
#include <vcg/math/base.h>
|
|
#include <vcg/math/matrix.h>
|
|
#include <vcg/simplex/face/topology.h>
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <vcg/simplex/face/jumping_pos.h>
|
|
#include <vcg/container/simple_temporary_data.h>
|
|
#include <vcg/complex/algorithms/update/normal.h>
|
|
#include <vcg/complex/algorithms/point_sampling.h>
|
|
#include <vcg/complex/append.h>
|
|
#include <vcg/complex/algorithms/intersection.h>
|
|
#include <vcg/complex/algorithms/inertia.h>
|
|
#include <vcg/math/matrix33.h>
|
|
|
|
|
|
namespace vcg {
|
|
namespace tri {
|
|
|
|
/// \ingroup trimesh
|
|
|
|
/// \headerfile curvature.h vcg/complex/algorithms/update/curvature.h
|
|
|
|
/// \brief Management, updating and computation of per-vertex and per-face normals.
|
|
/**
|
|
This class is used to compute or update the normals that can be stored in the vertex or face component of a mesh.
|
|
*/
|
|
|
|
template <class MeshType>
|
|
class UpdateCurvature
|
|
{
|
|
|
|
public:
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::VertContainer VertContainer;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef vcg::face::VFIterator<FaceType> VFIteratorType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename CoordType::ScalarType ScalarType;
|
|
|
|
|
|
private:
|
|
struct AdjVertex {
|
|
VertexType * vert;
|
|
float doubleArea;
|
|
bool isBorder;
|
|
};
|
|
|
|
|
|
public:
|
|
/// \brief Compute principal direction and magniuto of curvature.
|
|
|
|
/*
|
|
Compute principal direction and magniuto of curvature as describe in the paper:
|
|
@InProceedings{bb33922,
|
|
author = "G. Taubin",
|
|
title = "Estimating the Tensor of Curvature of a Surface from a
|
|
Polyhedral Approximation",
|
|
booktitle = "International Conference on Computer Vision",
|
|
year = "1995",
|
|
pages = "902--907",
|
|
URL = "http://dx.doi.org/10.1109/ICCV.1995.466840",
|
|
bibsource = "http://www.visionbib.com/bibliography/describe440.html#TT32253",
|
|
*/
|
|
static void PrincipalDirections(MeshType &m) {
|
|
|
|
assert(m.HasVFTopology());
|
|
|
|
vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
|
|
|
|
VertexIterator vi;
|
|
for (vi =m.vert.begin(); vi !=m.vert.end(); ++vi) {
|
|
if ( ! (*vi).IsD() && (*vi).VFp() != NULL) {
|
|
|
|
VertexType * central_vertex = &(*vi);
|
|
|
|
std::vector<float> weights;
|
|
std::vector<AdjVertex> vertices;
|
|
|
|
vcg::face::JumpingPos<FaceType> pos((*vi).VFp(), central_vertex);
|
|
|
|
// firstV is the first vertex of the 1ring neighboorhood
|
|
VertexType* firstV = pos.VFlip();
|
|
VertexType* tempV;
|
|
float totalDoubleAreaSize = 0.0f;
|
|
|
|
// compute the area of each triangle around the central vertex as well as their total area
|
|
do
|
|
{
|
|
// this bring the pos to the next triangle counterclock-wise
|
|
pos.FlipF();
|
|
pos.FlipE();
|
|
|
|
// tempV takes the next vertex in the 1ring neighborhood
|
|
tempV = pos.VFlip();
|
|
assert(tempV!=central_vertex);
|
|
AdjVertex v;
|
|
|
|
v.isBorder = pos.IsBorder();
|
|
v.vert = tempV;
|
|
v.doubleArea = vcg::DoubleArea(*pos.F());
|
|
totalDoubleAreaSize += v.doubleArea;
|
|
|
|
vertices.push_back(v);
|
|
}
|
|
while(tempV != firstV);
|
|
|
|
// compute the weights for the formula computing matrix M
|
|
for (size_t i = 0; i < vertices.size(); ++i) {
|
|
if (vertices[i].isBorder) {
|
|
weights.push_back(vertices[i].doubleArea / totalDoubleAreaSize);
|
|
} else {
|
|
weights.push_back(0.5f * (vertices[i].doubleArea + vertices[(i-1)%vertices.size()].doubleArea) / totalDoubleAreaSize);
|
|
}
|
|
assert(weights.back() < 1.0f);
|
|
}
|
|
|
|
// compute I-NN^t to be used for computing the T_i's
|
|
Matrix33<ScalarType> Tp;
|
|
for (int i = 0; i < 3; ++i)
|
|
Tp[i][i] = 1.0f - powf(central_vertex->cN()[i],2);
|
|
Tp[0][1] = Tp[1][0] = -1.0f * (central_vertex->N()[0] * central_vertex->cN()[1]);
|
|
Tp[1][2] = Tp[2][1] = -1.0f * (central_vertex->cN()[1] * central_vertex->cN()[2]);
|
|
Tp[0][2] = Tp[2][0] = -1.0f * (central_vertex->cN()[0] * central_vertex->cN()[2]);
|
|
|
|
// for all neighbors vi compute the directional curvatures k_i and the T_i
|
|
// compute M by summing all w_i k_i T_i T_i^t
|
|
Matrix33<ScalarType> tempMatrix;
|
|
Matrix33<ScalarType> M;
|
|
M.SetZero();
|
|
for (size_t i = 0; i < vertices.size(); ++i) {
|
|
CoordType edge = (central_vertex->cP() - vertices[i].vert->cP());
|
|
float curvature = (2.0f * (central_vertex->cN().dot(edge)) ) / edge.SquaredNorm();
|
|
CoordType T = (Tp*edge).normalized();
|
|
tempMatrix.ExternalProduct(T,T);
|
|
M += tempMatrix * weights[i] * curvature ;
|
|
}
|
|
|
|
// compute vector W for the Householder matrix
|
|
CoordType W;
|
|
CoordType e1(1.0f,0.0f,0.0f);
|
|
if ((e1 - central_vertex->cN()).SquaredNorm() > (e1 + central_vertex->cN()).SquaredNorm())
|
|
W = e1 - central_vertex->cN();
|
|
else
|
|
W = e1 + central_vertex->cN();
|
|
W.Normalize();
|
|
|
|
// compute the Householder matrix I - 2WW^t
|
|
Matrix33<ScalarType> Q;
|
|
Q.SetIdentity();
|
|
tempMatrix.ExternalProduct(W,W);
|
|
Q -= tempMatrix * 2.0f;
|
|
|
|
// compute matrix Q^t M Q
|
|
Matrix33<ScalarType> QtMQ = (Q.transpose() * M * Q);
|
|
|
|
CoordType bl = Q.GetColumn(0);
|
|
CoordType T1 = Q.GetColumn(1);
|
|
CoordType T2 = Q.GetColumn(2);
|
|
|
|
// find sin and cos for the Givens rotation
|
|
float s,c;
|
|
// Gabriel Taubin hint and Valentino Fiorin impementation
|
|
float alpha = QtMQ[1][1]-QtMQ[2][2];
|
|
float beta = QtMQ[2][1];
|
|
|
|
float h[2];
|
|
float delta = sqrtf(4.0f*powf(alpha, 2) +16.0f*powf(beta, 2));
|
|
h[0] = (2.0f*alpha + delta) / (2.0f*beta);
|
|
h[1] = (2.0f*alpha - delta) / (2.0f*beta);
|
|
|
|
float t[2];
|
|
float best_c, best_s;
|
|
float min_error = std::numeric_limits<ScalarType>::infinity();
|
|
for (int i=0; i<2; i++)
|
|
{
|
|
delta = sqrtf(powf(h[i], 2) + 4.0f);
|
|
t[0] = (h[i]+delta) / 2.0f;
|
|
t[1] = (h[i]-delta) / 2.0f;
|
|
|
|
for (int j=0; j<2; j++)
|
|
{
|
|
float squared_t = powf(t[j], 2);
|
|
float denominator = 1.0f + squared_t;
|
|
s = (2.0f*t[j]) / denominator;
|
|
c = (1-squared_t) / denominator;
|
|
|
|
float approximation = c*s*alpha + (powf(c, 2) - powf(s, 2))*beta;
|
|
float angle_similarity = fabs(acosf(c)/asinf(s));
|
|
float error = fabs(1.0f-angle_similarity)+fabs(approximation);
|
|
if (error<min_error)
|
|
{
|
|
min_error = error;
|
|
best_c = c;
|
|
best_s = s;
|
|
}
|
|
}
|
|
}
|
|
c = best_c;
|
|
s = best_s;
|
|
|
|
vcg::ndim::MatrixMNf minor2x2 (2,2);
|
|
vcg::ndim::MatrixMNf S (2,2);
|
|
|
|
|
|
// diagonalize M
|
|
minor2x2[0][0] = QtMQ[1][1];
|
|
minor2x2[0][1] = QtMQ[1][2];
|
|
minor2x2[1][0] = QtMQ[2][1];
|
|
minor2x2[1][1] = QtMQ[2][2];
|
|
|
|
S[0][0] = S[1][1] = c;
|
|
S[0][1] = s;
|
|
S[1][0] = -1.0f * s;
|
|
|
|
vcg::ndim::MatrixMNf StMS(S.transpose() * minor2x2 * S);
|
|
|
|
// compute curvatures and curvature directions
|
|
float Principal_Curvature1 = (3.0f * StMS[0][0]) - StMS[1][1];
|
|
float Principal_Curvature2 = (3.0f * StMS[1][1]) - StMS[0][0];
|
|
|
|
CoordType Principal_Direction1 = T1 * c - T2 * s;
|
|
CoordType Principal_Direction2 = T1 * s + T2 * c;
|
|
|
|
(*vi).PD1() = Principal_Direction1;
|
|
(*vi).PD2() = Principal_Direction2;
|
|
(*vi).K1() = Principal_Curvature1;
|
|
(*vi).K2() = Principal_Curvature2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
class AreaData
|
|
{
|
|
public:
|
|
float A;
|
|
};
|
|
|
|
/** Curvature meseaure as described in the paper:
|
|
Robust principal curvatures on Multiple Scales, Yong-Liang Yang, Yu-Kun Lai, Shi-Min Hu Helmut Pottmann
|
|
SGP 2004
|
|
If pointVSfaceInt==true the covariance is computed by montecarlo sampling on the mesh (faster)
|
|
If pointVSfaceInt==false the covariance is computed by (analytic)integration over the surface (slower)
|
|
*/
|
|
|
|
typedef vcg::GridStaticPtr <FaceType, ScalarType > MeshGridType;
|
|
typedef vcg::GridStaticPtr <VertexType, ScalarType > PointsGridType;
|
|
|
|
static void PrincipalDirectionsPCA(MeshType &m, ScalarType r, bool pointVSfaceInt = true,vcg::CallBackPos * cb = NULL) {
|
|
std::vector<VertexType*> closests;
|
|
std::vector<ScalarType> distances;
|
|
std::vector<CoordType> points;
|
|
VertexIterator vi;
|
|
ScalarType area;
|
|
MeshType tmpM;
|
|
typename std::vector<CoordType>::iterator ii;
|
|
vcg::tri::TrivialSampler<MeshType> vs;
|
|
|
|
MeshGridType mGrid;
|
|
PointsGridType pGrid;
|
|
|
|
// Fill the grid used
|
|
if(pointVSfaceInt){
|
|
area = Stat<MeshType>::ComputeMeshArea(m);
|
|
vcg::tri::SurfaceSampling<MeshType,vcg::tri::TrivialSampler<MeshType> >::Montecarlo(m,vs,1000 * area / (2*M_PI*r*r ));
|
|
vi = vcg::tri::Allocator<MeshType>::AddVertices(tmpM,m.vert.size());
|
|
for(size_t y = 0; y < m.vert.size(); ++y,++vi) (*vi).P() = m.vert[y].P();
|
|
pGrid.Set(tmpM.vert.begin(),tmpM.vert.end());
|
|
} else{ mGrid.Set(m.face.begin(),m.face.end()); }
|
|
int jj = 0;
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi){
|
|
vcg::Matrix33<ScalarType> A,eigenvectors;
|
|
vcg::Point3<ScalarType> bp,eigenvalues;
|
|
int nrot;
|
|
|
|
// sample the neighborhood
|
|
if(pointVSfaceInt)
|
|
{
|
|
vcg::tri::GetInSphereVertex<
|
|
MeshType,
|
|
PointsGridType,std::vector<VertexType*>,
|
|
std::vector<ScalarType>,
|
|
std::vector<CoordType> >(tmpM,pGrid, (*vi).cP(),r ,closests,distances,points);
|
|
|
|
A.Covariance(points,bp);
|
|
A*=area*area/1000;
|
|
}
|
|
else{
|
|
IntersectionBallMesh<MeshType,ScalarType>( m ,vcg::Sphere3<ScalarType>((*vi).cP(),r),tmpM );
|
|
vcg::Point3<ScalarType> _bary;
|
|
vcg::tri::Inertia<MeshType>::Covariance(tmpM,_bary,A);
|
|
}
|
|
|
|
Jacobi(A, eigenvalues , eigenvectors, nrot);
|
|
|
|
// get the estimate of curvatures from eigenvalues and eigenvectors
|
|
// find the 2 most tangent eigenvectors (by finding the one closest to the normal)
|
|
int best = 0; ScalarType bestv = fabs( (*vi).cN().dot(eigenvectors.GetColumn(0).normalized()) );
|
|
for(int i = 1 ; i < 3; ++i){
|
|
ScalarType prod = fabs((*vi).cN().dot(eigenvectors.GetColumn(i).normalized()));
|
|
if( prod > bestv){bestv = prod; best = i;}
|
|
}
|
|
|
|
(*vi).PD1() = eigenvectors.GetColumn( (best+1)%3).normalized();
|
|
(*vi).PD2() = eigenvectors.GetColumn( (best+2)%3).normalized();
|
|
|
|
// project them to the plane identified by the normal
|
|
vcg::Matrix33<ScalarType> rot;
|
|
ScalarType angle = acos((*vi).PD1().dot((*vi).N()));
|
|
rot.SetRotateRad( - (M_PI*0.5 - angle),(*vi).PD1()^(*vi).N());
|
|
(*vi).PD1() = rot*(*vi).PD1();
|
|
angle = acos((*vi).PD2().dot((*vi).N()));
|
|
rot.SetRotateRad( - (M_PI*0.5 - angle),(*vi).PD2()^(*vi).N());
|
|
(*vi).PD2() = rot*(*vi).PD2();
|
|
|
|
|
|
// copmutes the curvature values
|
|
const ScalarType r5 = r*r*r*r*r;
|
|
const ScalarType r6 = r*r5;
|
|
(*vi).K1() = (2.0/5.0) * (4.0*M_PI*r5 + 15*eigenvalues[(best+2)%3]-45.0*eigenvalues[(best+1)%3])/(M_PI*r6);
|
|
(*vi).K2() = (2.0/5.0) * (4.0*M_PI*r5 + 15*eigenvalues[(best+1)%3]-45.0*eigenvalues[(best+2)%3])/(M_PI*r6);
|
|
if((*vi).K1() < (*vi).K2()) { std::swap((*vi).K1(),(*vi).K2());
|
|
std::swap((*vi).PD1(),(*vi).PD2());
|
|
if (cb)
|
|
{
|
|
(*cb)(int(100.0f * (float)jj / (float)m.vn),"Vertices Analysis");
|
|
++jj;
|
|
} }
|
|
}
|
|
|
|
|
|
}
|
|
/// \brief Computes the discrete gaussian curvature.
|
|
|
|
/** For further details, please, refer to: \n
|
|
|
|
- <em> Discrete Differential-Geometry Operators for Triangulated 2-Manifolds Mark Meyer,
|
|
Mathieu Desbrun, Peter Schroder, Alan H. Barr VisMath '02, Berlin </em>
|
|
*/
|
|
static void MeanAndGaussian(MeshType & m)
|
|
{
|
|
assert(HasFFAdjacency(m));
|
|
float area0, area1, area2, angle0, angle1, angle2;
|
|
FaceIterator fi;
|
|
VertexIterator vi;
|
|
typename MeshType::CoordType e01v ,e12v ,e20v;
|
|
|
|
SimpleTempData<VertContainer, AreaData> TDAreaPtr(m.vert);
|
|
SimpleTempData<VertContainer, typename MeshType::CoordType> TDContr(m.vert);
|
|
|
|
vcg::tri::UpdateNormals<MeshType>::PerVertexNormalized(m);
|
|
//Compute AreaMix in H (vale anche per K)
|
|
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD())
|
|
{
|
|
(TDAreaPtr)[*vi].A = 0.0;
|
|
(TDContr)[*vi] =typename MeshType::CoordType(0.0,0.0,0.0);
|
|
(*vi).Kh() = 0.0;
|
|
(*vi).Kg() = (float)(2.0 * M_PI);
|
|
}
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi) if( !(*fi).IsD())
|
|
{
|
|
// angles
|
|
angle0 = math::Abs(Angle( (*fi).P(1)-(*fi).P(0),(*fi).P(2)-(*fi).P(0) ));
|
|
angle1 = math::Abs(Angle( (*fi).P(0)-(*fi).P(1),(*fi).P(2)-(*fi).P(1) ));
|
|
angle2 = M_PI-(angle0+angle1);
|
|
|
|
if((angle0 < M_PI/2) && (angle1 < M_PI/2) && (angle2 < M_PI/2)) // triangolo non ottuso
|
|
{
|
|
float e01 = SquaredDistance( (*fi).V(1)->cP() , (*fi).V(0)->cP() );
|
|
float e12 = SquaredDistance( (*fi).V(2)->cP() , (*fi).V(1)->cP() );
|
|
float e20 = SquaredDistance( (*fi).V(0)->cP() , (*fi).V(2)->cP() );
|
|
|
|
area0 = ( e20*(1.0/tan(angle1)) + e01*(1.0/tan(angle2)) ) / 8.0;
|
|
area1 = ( e01*(1.0/tan(angle2)) + e12*(1.0/tan(angle0)) ) / 8.0;
|
|
area2 = ( e12*(1.0/tan(angle0)) + e20*(1.0/tan(angle1)) ) / 8.0;
|
|
|
|
(TDAreaPtr)[(*fi).V(0)].A += area0;
|
|
(TDAreaPtr)[(*fi).V(1)].A += area1;
|
|
(TDAreaPtr)[(*fi).V(2)].A += area2;
|
|
|
|
}
|
|
else // obtuse
|
|
{
|
|
if(angle0 >= M_PI/2)
|
|
{
|
|
(TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 4.0;
|
|
(TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
|
|
(TDAreaPtr)[(*fi).V(2)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
|
|
}
|
|
else if(angle1 >= M_PI/2)
|
|
{
|
|
(TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
|
|
(TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 4.0;
|
|
(TDAreaPtr)[(*fi).V(2)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
|
|
}
|
|
else
|
|
{
|
|
(TDAreaPtr)[(*fi).V(0)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
|
|
(TDAreaPtr)[(*fi).V(1)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 8.0;
|
|
(TDAreaPtr)[(*fi).V(2)].A += vcg::DoubleArea<typename MeshType::FaceType>((*fi)) / 4.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi) if( !(*fi).IsD() )
|
|
{
|
|
angle0 = math::Abs(Angle( (*fi).P(1)-(*fi).P(0),(*fi).P(2)-(*fi).P(0) ));
|
|
angle1 = math::Abs(Angle( (*fi).P(0)-(*fi).P(1),(*fi).P(2)-(*fi).P(1) ));
|
|
angle2 = M_PI-(angle0+angle1);
|
|
|
|
// Skip degenerate triangles.
|
|
if(angle0==0 || angle1==0 || angle1==0) continue;
|
|
|
|
e01v = ( (*fi).V(1)->cP() - (*fi).V(0)->cP() ) ;
|
|
e12v = ( (*fi).V(2)->cP() - (*fi).V(1)->cP() ) ;
|
|
e20v = ( (*fi).V(0)->cP() - (*fi).V(2)->cP() ) ;
|
|
|
|
TDContr[(*fi).V(0)] += ( e20v * (1.0/tan(angle1)) - e01v * (1.0/tan(angle2)) ) / 4.0;
|
|
TDContr[(*fi).V(1)] += ( e01v * (1.0/tan(angle2)) - e12v * (1.0/tan(angle0)) ) / 4.0;
|
|
TDContr[(*fi).V(2)] += ( e12v * (1.0/tan(angle0)) - e20v * (1.0/tan(angle1)) ) / 4.0;
|
|
|
|
(*fi).V(0)->Kg() -= angle0;
|
|
(*fi).V(1)->Kg() -= angle1;
|
|
(*fi).V(2)->Kg() -= angle2;
|
|
|
|
|
|
for(int i=0;i<3;i++)
|
|
{
|
|
if(vcg::face::IsBorder((*fi), i))
|
|
{
|
|
CoordType e1,e2;
|
|
vcg::face::Pos<FaceType> hp(&*fi, i, (*fi).V(i));
|
|
vcg::face::Pos<FaceType> hp1=hp;
|
|
|
|
hp1.FlipV();
|
|
e1=hp1.v->cP() - hp.v->cP();
|
|
hp1.FlipV();
|
|
hp1.NextB();
|
|
e2=hp1.v->cP() - hp.v->cP();
|
|
(*fi).V(i)->Kg() -= math::Abs(Angle(e1,e2));
|
|
}
|
|
}
|
|
}
|
|
|
|
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi) if(!(*vi).IsD() /*&& !(*vi).IsB()*/)
|
|
{
|
|
if((TDAreaPtr)[*vi].A<=std::numeric_limits<ScalarType>::epsilon())
|
|
{
|
|
(*vi).Kh() = 0;
|
|
(*vi).Kg() = 0;
|
|
}
|
|
else
|
|
{
|
|
(*vi).Kh() = (((TDContr)[*vi].dot((*vi).cN())>0)?1.0:-1.0)*((TDContr)[*vi] / (TDAreaPtr) [*vi].A).Norm();
|
|
(*vi).Kg() /= (TDAreaPtr)[*vi].A;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// \brief Update the mean and the gaussian curvature of a vertex.
|
|
|
|
/**
|
|
The function uses the VF adiacency to walk around the vertex.
|
|
\return It will return the voronoi area around the vertex. If (norm == true) the mean and the gaussian curvature are normalized.
|
|
Based on the paper <a href="http://www2.in.tu-clausthal.de/~hormann/papers/Dyn.2001.OTU.pdf"> <em> "Optimizing 3d triangulations using discrete curvature analysis" </em> </a>
|
|
*/
|
|
|
|
static float VertexCurvature(VertexPointer v, bool norm = true)
|
|
{
|
|
// VFAdjacency required!
|
|
assert(FaceType::HasVFAdjacency());
|
|
assert(VertexType::HasVFAdjacency());
|
|
|
|
VFIteratorType vfi(v);
|
|
float A = 0;
|
|
|
|
v->Kh() = 0;
|
|
v->Kg() = 2 * M_PI;
|
|
|
|
while (!vfi.End()) {
|
|
if (!vfi.F()->IsD()) {
|
|
FacePointer f = vfi.F();
|
|
int i = vfi.I();
|
|
VertexPointer v0 = f->V0(i), v1 = f->V1(i), v2 = f->V2(i);
|
|
|
|
float ang0 = math::Abs(Angle(v1->P() - v0->P(), v2->P() - v0->P() ));
|
|
float ang1 = math::Abs(Angle(v0->P() - v1->P(), v2->P() - v1->P() ));
|
|
float ang2 = M_PI - ang0 - ang1;
|
|
|
|
float s01 = SquaredDistance(v1->P(), v0->P());
|
|
float s02 = SquaredDistance(v2->P(), v0->P());
|
|
|
|
// voronoi cell of current vertex
|
|
if (ang0 >= M_PI/2)
|
|
A += (0.5f * DoubleArea(*f) - (s01 * tan(ang1) + s02 * tan(ang2)) / 8.0 );
|
|
else if (ang1 >= M_PI/2)
|
|
A += (s01 * tan(ang0)) / 8.0;
|
|
else if (ang2 >= M_PI/2)
|
|
A += (s02 * tan(ang0)) / 8.0;
|
|
else // non obctuse triangle
|
|
A += ((s02 / tan(ang1)) + (s01 / tan(ang2))) / 8.0;
|
|
|
|
// gaussian curvature update
|
|
v->Kg() -= ang0;
|
|
|
|
// mean curvature update
|
|
ang1 = math::Abs(Angle(f->N(), v1->N()));
|
|
ang2 = math::Abs(Angle(f->N(), v2->N()));
|
|
v->Kh() += ( (math::Sqrt(s01) / 2.0) * ang1 +
|
|
(math::Sqrt(s02) / 2.0) * ang2 );
|
|
}
|
|
|
|
++vfi;
|
|
}
|
|
|
|
v->Kh() /= 4.0f;
|
|
|
|
if(norm) {
|
|
if(A <= std::numeric_limits<float>::epsilon()) {
|
|
v->Kh() = 0;
|
|
v->Kg() = 0;
|
|
}
|
|
else {
|
|
v->Kh() /= A;
|
|
v->Kg() /= A;
|
|
}
|
|
}
|
|
|
|
return A;
|
|
}
|
|
|
|
static void VertexCurvature(MeshType & m){
|
|
|
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
VertexCurvature(&*vi,false);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Compute principal curvature directions and value with normal cycle:
|
|
@inproceedings{CohMor03,
|
|
author = {Cohen-Steiner, David and Morvan, Jean-Marie },
|
|
booktitle = {SCG '03: Proceedings of the nineteenth annual symposium on Computational geometry},
|
|
title - {Restricted delaunay triangulations and normal cycle}
|
|
year = {2003}
|
|
}
|
|
*/
|
|
|
|
static void PrincipalDirectionsNormalCycles(MeshType & m){
|
|
assert(VertexType::HasVFAdjacency());
|
|
assert(FaceType::HasFFAdjacency());
|
|
assert(FaceType::HasFaceNormal());
|
|
|
|
|
|
typename MeshType::VertexIterator vi;
|
|
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if(!((*vi).IsD())){
|
|
vcg::Matrix33<ScalarType> m33;m33.SetZero();
|
|
face::JumpingPos<typename MeshType::FaceType> p((*vi).VFp(),&(*vi));
|
|
p.FlipE();
|
|
typename MeshType::VertexType * firstv = p.VFlip();
|
|
assert(p.F()->V(p.VInd())==&(*vi));
|
|
|
|
|
|
do{
|
|
if( p.F() != p.FFlip()){
|
|
Point3<ScalarType> normalized_edge = p.F()->V(p.F()->Next(p.VInd()))->cP() - (*vi).P();
|
|
ScalarType edge_length = normalized_edge.Norm();
|
|
normalized_edge/=edge_length;
|
|
Point3<ScalarType> n1 = p.F()->cN();n1.Normalize();
|
|
Point3<ScalarType> n2 = p.FFlip()->cN();n2.Normalize();
|
|
ScalarType n1n2 = (n1 ^ n2).dot(normalized_edge);
|
|
n1n2 = std::max(std::min( ScalarType(1.0),n1n2),ScalarType(-1.0));
|
|
ScalarType beta = math::Asin(n1n2);
|
|
m33[0][0] += beta*edge_length*normalized_edge[0]*normalized_edge[0];
|
|
m33[0][1] += beta*edge_length*normalized_edge[1]*normalized_edge[0];
|
|
m33[1][1] += beta*edge_length*normalized_edge[1]*normalized_edge[1];
|
|
m33[0][2] += beta*edge_length*normalized_edge[2]*normalized_edge[0];
|
|
m33[1][2] += beta*edge_length*normalized_edge[2]*normalized_edge[1];
|
|
m33[2][2] += beta*edge_length*normalized_edge[2]*normalized_edge[2];
|
|
}
|
|
p.NextFE();
|
|
}while(firstv != p.VFlip());
|
|
|
|
if(m33.Determinant()==0.0){ // degenerate case
|
|
(*vi).K1() = (*vi).K2() = 0.0; continue;}
|
|
|
|
m33[1][0] = m33[0][1];
|
|
m33[2][0] = m33[0][2];
|
|
m33[2][1] = m33[1][2];
|
|
|
|
Point3<ScalarType> lambda;
|
|
Matrix33<ScalarType> vect;
|
|
int n_rot;
|
|
Jacobi(m33,lambda, vect,n_rot);
|
|
|
|
vect.transposeInPlace();
|
|
ScalarType normal = std::numeric_limits<ScalarType>::min();
|
|
int normI = 0;
|
|
for(int i = 0; i < 3; ++i)
|
|
if( fabs((*vi).N().Normalize().dot(vect.GetRow(i))) > normal )
|
|
{
|
|
normal= fabs((*vi).N().Normalize().dot(vect.GetRow(i)));
|
|
normI = i;
|
|
}
|
|
int maxI = (normI+2)%3;
|
|
int minI = (normI+1)%3;
|
|
if(fabs(lambda[maxI]) < fabs(lambda[minI])) std::swap(maxI,minI);
|
|
|
|
(*vi).PD1() = *(Point3<ScalarType>*)(& vect[maxI][0]);
|
|
(*vi).PD2() = *(Point3<ScalarType>*)(& vect[minI][0]);
|
|
(*vi).K1() = lambda[maxI];
|
|
(*vi).K2() = lambda[minI];
|
|
}
|
|
}
|
|
};
|
|
|
|
}
|
|
}
|
|
#endif
|