489 lines
14 KiB
C++
489 lines
14 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef FITMAPS_H
|
|
#define FITMAPS_H
|
|
|
|
#include <vcg/math/histogram.h>
|
|
|
|
#include <vcg/simplex/face/jumping_pos.h>
|
|
#include <vcg/complex/allocate.h>
|
|
#include <vcg/complex/algorithms/update/flag.h>
|
|
#include <vector>
|
|
#include <set>
|
|
#include <vcg/complex/algorithms/update/normal.h>
|
|
#include <vcg/complex/algorithms/update/curvature.h>
|
|
#include <vcg/complex/algorithms/update/topology.h>
|
|
#include <vcg/complex/algorithms/update/bounding.h>
|
|
#include "vcg/complex/algorithms/update/curvature_fitting.h"
|
|
|
|
#include <eigenlib/Eigen/Core>
|
|
#include <eigenlib/Eigen/QR>
|
|
#include <eigenlib/Eigen/LU>
|
|
#include <eigenlib/Eigen/SVD>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <vcg/complex/algorithms/nring.h>
|
|
|
|
#include <vcg/complex/algorithms/smooth.h>
|
|
|
|
|
|
using namespace Eigen;
|
|
|
|
namespace vcg { namespace tri {
|
|
|
|
template<class MeshType>
|
|
class Fitmaps
|
|
{
|
|
public:
|
|
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
|
|
typedef vcg::tri::Nring<MeshType> RingWalker;
|
|
|
|
|
|
class Bicubic
|
|
{
|
|
public:
|
|
|
|
Bicubic() {};
|
|
|
|
Bicubic(vector<double>& input)
|
|
{
|
|
data = input;
|
|
if (input.size() != 16)
|
|
{
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
// (u3 u2 u 1) (v3 v2 v 1)
|
|
//
|
|
// a u3 v3
|
|
// b u3 v2
|
|
// c u3 v1
|
|
// d u3 1
|
|
// e u2 v3
|
|
// f u2 v2
|
|
// g u2 v1
|
|
// h u2 1
|
|
// i u1 v3
|
|
// l u1 v2
|
|
// m u1 v1
|
|
// n u1 1
|
|
// o 1 v3
|
|
// p 1 v2
|
|
// q 1 v1
|
|
// r 1 1
|
|
|
|
double& a() { return data[0];}
|
|
double& b() { return data[1];}
|
|
double& c() { return data[2];}
|
|
double& d() { return data[3];}
|
|
double& e() { return data[4];}
|
|
double& f() { return data[5];}
|
|
double& g() { return data[6];}
|
|
double& h() { return data[7];}
|
|
double& i() { return data[8];}
|
|
double& l() { return data[9];}
|
|
double& m() { return data[10];}
|
|
double& n() { return data[11];}
|
|
double& o() { return data[12];}
|
|
double& p() { return data[13];}
|
|
double& q() { return data[14];}
|
|
double& r() { return data[15];}
|
|
|
|
vector<double> data;
|
|
|
|
double evaluate(double u, double v)
|
|
{
|
|
|
|
return
|
|
a() * u*u*u * v*v*v +
|
|
b() * u*u*u * v*v +
|
|
c() * u*u*u * v +
|
|
d() * u*u*u +
|
|
e() * u*u * v*v*v +
|
|
f() * u*u * v*v +
|
|
g() * u*u * v +
|
|
h() * u*u +
|
|
i() * u * v*v*v +
|
|
l() * u * v*v +
|
|
m() * u * v +
|
|
n() * u +
|
|
o() * v*v*v +
|
|
p() * v*v +
|
|
q() * v +
|
|
r();
|
|
}
|
|
|
|
|
|
double distanceRMS(std::vector<CoordType>& VV)
|
|
{
|
|
double error = 0;
|
|
for(typename std::vector<CoordType>::iterator it = VV.begin(); it != VV.end(); ++it)
|
|
{
|
|
double u = it->X();
|
|
double v = it->Y();
|
|
double n = it->Z();
|
|
|
|
double temp = evaluate(u,v);
|
|
error += (n - temp)*(n - temp);
|
|
}
|
|
error /= (double) VV.size();
|
|
return sqrt(error);
|
|
}
|
|
|
|
static Bicubic fit(std::vector<CoordType> VV)
|
|
{
|
|
assert(VV.size() >= 16);
|
|
Eigen::MatrixXf A(VV.size(),16);
|
|
Eigen::MatrixXf b(VV.size(),1);
|
|
Eigen::MatrixXf sol(16,1);
|
|
|
|
for(unsigned int c=0; c < VV.size(); ++c)
|
|
{
|
|
double u = VV[c].X();
|
|
double v = VV[c].Y();
|
|
double n = VV[c].Z();
|
|
|
|
A(c,0) = u*u*u * v*v*v;
|
|
A(c,1) = u*u*u * v*v;
|
|
A(c,2) = u*u*u * v;
|
|
A(c,3) = u*u*u;
|
|
A(c,4) = u*u * v*v*v;
|
|
A(c,5) = u*u * v*v;
|
|
A(c,6) = u*u * v;
|
|
A(c,7) = u*u;
|
|
A(c,8) = u * v*v*v;
|
|
A(c,9) = u * v*v;
|
|
A(c,10) = u * v;
|
|
A(c,11) = u;
|
|
A(c,12) = v*v*v;
|
|
A(c,13) = v*v;
|
|
A(c,14) = v;
|
|
A(c,15) = 1;
|
|
|
|
|
|
b[c] = n;
|
|
}
|
|
|
|
A.svd().solve(b, &sol);
|
|
|
|
vector<double> r(16);
|
|
|
|
for (int i=0; i < 16; ++i)
|
|
r.at(i) = sol[i];
|
|
|
|
return Bicubic(r);
|
|
}
|
|
};
|
|
|
|
Fitmaps()
|
|
{}
|
|
|
|
class radSorter
|
|
{
|
|
public:
|
|
|
|
radSorter(VertexType* v)
|
|
{
|
|
origin = v;
|
|
}
|
|
|
|
VertexType* origin;
|
|
|
|
bool operator() (VertexType* v1, VertexType* v2)
|
|
{
|
|
return (v1->P() - origin->P()).SquaredNorm() < (v2->P() - origin->P()).SquaredNorm();
|
|
}
|
|
};
|
|
|
|
float getMeanCurvature(VertexType* vp)
|
|
{
|
|
return (vp->K1() + vp->K2())/2.0;
|
|
}
|
|
|
|
static bool fitBicubicPoints(VertexType* v, std::vector<CoordType>& ref, Bicubic& ret, std::vector<CoordType>& points, std::vector<VertexType*>& ring)
|
|
{
|
|
points.clear();
|
|
|
|
if (ring.size() < 16)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
typename std::vector<VertexType*>::iterator b = ring.begin();
|
|
typename std::vector<VertexType*>::iterator e = ring.end();
|
|
|
|
while(b != e)
|
|
{
|
|
CoordType vT = (*b)->P() - v->P();
|
|
|
|
double x = vT * ref[0];
|
|
double y = vT * ref[1];
|
|
double z = vT * ref[2];
|
|
|
|
points.push_back(CoordType(x,y,z));
|
|
++b;
|
|
}
|
|
ret = Bicubic::fit(points);
|
|
return true;
|
|
}
|
|
|
|
static double AverageEdgeLenght(MeshType& m)
|
|
{
|
|
double doubleA = 0;
|
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
|
doubleA+=vcg::DoubleArea(*fi);
|
|
}
|
|
int nquads = m.fn / 2;
|
|
return sqrt( doubleA/(2*nquads) );
|
|
}
|
|
|
|
static void computeMFitmap(MeshType& m, float perc, int ringMax = 50)
|
|
{
|
|
vcg::tri::UpdateCurvatureFitting<MeshType>::computeCurvature(m);
|
|
vcg::tri::UpdateNormals<MeshType>::PerVertexAngleWeighted(m);
|
|
|
|
vcg::tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
vcg::tri::UpdateTopology<MeshType>::VertexFace(m);
|
|
|
|
vcg::tri::UpdateBounding<MeshType>::Box(m);
|
|
|
|
int countTemp = 0;
|
|
|
|
RingWalker::clearFlags(&m);
|
|
|
|
for(VertexIterator it=m.vert.begin(); it!=m.vert.end();++it)
|
|
{
|
|
if ((countTemp++ % 100) == 0)
|
|
cerr << countTemp << "/" << m.vert.size() << endl;
|
|
|
|
RingWalker rw(&*it,&m);
|
|
|
|
CoordType nor = it->N();
|
|
|
|
float okfaces = 0;
|
|
float flipfaces = 0;
|
|
|
|
int count = 0;
|
|
do
|
|
{
|
|
count++;
|
|
rw.expand();
|
|
for(unsigned i=0; i<rw.lastF.size();++i)
|
|
{
|
|
CoordType vet1 = nor;
|
|
CoordType vet2 = rw.lastF[i]->N();
|
|
|
|
vet1.Normalize();
|
|
vet2.Normalize();
|
|
|
|
|
|
double scal = vet1 * vet2;
|
|
if ((scal) > 0)
|
|
okfaces += (vcg::DoubleArea(*rw.lastF[i]));
|
|
else
|
|
flipfaces += (vcg::DoubleArea(*rw.lastF[i]));
|
|
}
|
|
} while ((((flipfaces)/(okfaces + flipfaces))*100.0 < perc) && (count < ringMax));
|
|
|
|
std::sort(rw.lastV.begin(),rw.lastV.end(),radSorter(&*it));
|
|
|
|
it->Q() = ((*rw.lastV.begin())->P() - it->P()).Norm();
|
|
rw.clear();
|
|
|
|
}
|
|
|
|
vcg::tri::Smooth<MeshType>::VertexQualityLaplacian(m,2);
|
|
}
|
|
|
|
static vector<VertexType*> gatherNeighsSurface(VertexType* vt, float sigma, MeshType& m)
|
|
{
|
|
vector<VertexType*> current;
|
|
|
|
RingWalker rw(vt,&m);
|
|
|
|
bool exit = false;
|
|
|
|
do
|
|
{
|
|
rw.expand();
|
|
|
|
exit = true;
|
|
|
|
for(typename vector<VertexType*>::iterator it = rw.lastV.begin(); it != rw.lastV.end(); ++it)
|
|
{
|
|
if (((*it)->P() - vt->P()).Norm() < sigma)
|
|
{
|
|
current.push_back(*it);
|
|
exit = false;
|
|
}
|
|
}
|
|
|
|
} while (!exit);
|
|
|
|
rw.clear();
|
|
return current;
|
|
}
|
|
|
|
static void computeSFitmap(MeshType& m)//, float target = 1000)
|
|
{
|
|
|
|
vcg::tri::UpdateCurvatureFitting<MeshType>::computeCurvature(m);
|
|
vcg::tri::UpdateNormals<MeshType>::PerVertexAngleWeighted(m);
|
|
|
|
vcg::tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
vcg::tri::UpdateTopology<MeshType>::VertexFace(m);
|
|
|
|
// update bounding box
|
|
vcg::tri::UpdateBounding<MeshType>::Box(m);
|
|
|
|
int countTemp = 0;
|
|
|
|
double e = AverageEdgeLenght(m);
|
|
|
|
int iteraz = 5; //2.0 * sqrt(m.vert.size()/target);
|
|
|
|
for(VertexIterator it=m.vert.begin(); it!=m.vert.end();++it)
|
|
{
|
|
if ((countTemp++ % 100) == 0)
|
|
cerr << countTemp << "/" << m.vert.size() << endl;
|
|
|
|
vector<float> oneX;
|
|
|
|
|
|
for (int iteration = 0; iteration<iteraz; ++iteration)
|
|
{
|
|
oneX.push_back((iteration+1)*(e));
|
|
}
|
|
|
|
std::vector<CoordType> ref(3);
|
|
ref[0] = it->PD1();
|
|
ref[1] = it->PD2();
|
|
ref[2] = it->PD1() ^ it->PD2();
|
|
|
|
ref[0].Normalize();
|
|
ref[1].Normalize();
|
|
ref[2].Normalize();
|
|
|
|
Bicubic b;
|
|
|
|
RingWalker::clearFlags(&m);
|
|
|
|
std::vector<VertexType*> pointsGlobal = gatherNeighsSurface(&*it,oneX.at(iteraz-1),m);
|
|
|
|
vector<float> onedimensional;
|
|
|
|
for (int iteration = 0; iteration<iteraz; ++iteration)
|
|
{
|
|
std::vector<VertexType*> points; // solo quelli nel raggio
|
|
|
|
std::vector<CoordType> projected; // come sopra ma in coord locali
|
|
for (typename std::vector<VertexType*>::iterator it2 = pointsGlobal.begin(); it2 != pointsGlobal.end(); ++it2)
|
|
{
|
|
if (((*it).P() - (*it2)->P()).Norm() < oneX.at(iteration))
|
|
points.push_back(*it2);
|
|
}
|
|
|
|
std::vector<VertexType*>& pointsFitting = points;
|
|
|
|
|
|
if (!fitBicubicPoints(&*it, ref, b, projected,pointsFitting))
|
|
{
|
|
onedimensional.push_back(0);
|
|
}
|
|
else
|
|
{
|
|
onedimensional.push_back(b.distanceRMS(projected));
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// // vecchio fit ax^4
|
|
Eigen::MatrixXf Am(onedimensional.size(),1);
|
|
Eigen::MatrixXf bm(onedimensional.size(),1);
|
|
Eigen::MatrixXf sol(1,1);
|
|
|
|
for(unsigned int c=0; c < onedimensional.size(); ++c)
|
|
{
|
|
double x = oneX.at(c);
|
|
|
|
Am(c,0) = pow(x,4);
|
|
bm[c] = onedimensional[c];
|
|
}
|
|
|
|
Am.svd().solve(bm, &sol);
|
|
|
|
it->Q() = pow((double)sol[0],0.25);
|
|
|
|
// // nuovo fit ax^4 + b
|
|
// Eigen::MatrixXf Am(onedimensional.size()+1,2);
|
|
// Eigen::MatrixXf bm(onedimensional.size()+1,1);
|
|
// Eigen::MatrixXf sol(2,1);
|
|
//
|
|
// Am(0,0) = 0;
|
|
// Am(0,1) = 0;
|
|
// bm[0] = 0;
|
|
//
|
|
// for(unsigned int c=0; c < onedimensional.size(); ++c)
|
|
// {
|
|
// double x = oneX.at(c);
|
|
//
|
|
// Am(c,0) = pow(x,4);
|
|
// Am(c,1) = 1;
|
|
// bm[c] = onedimensional[c];
|
|
// }
|
|
//
|
|
// //sol = ((Am.transpose()*Am).inverse()*Am.transpose())*bm;
|
|
// Am.svd().solve(bm, &sol);
|
|
//
|
|
// cerr << "------" << sol[0] << " " << sol[1] << endl;
|
|
// if (sol[0] > 0)
|
|
// saliency[it] = pow((double)sol[0],0.25);
|
|
// else
|
|
// saliency[it] = 0;
|
|
|
|
|
|
}
|
|
|
|
vcg::tri::Smooth<MeshType>::VertexQualityLaplacian(m,1);
|
|
}
|
|
|
|
|
|
~Fitmaps(){};
|
|
|
|
};
|
|
|
|
}} // END NAMESPACES
|
|
|
|
#endif // FITMAPS_H
|