vcglib/vcg/complex/algorithms/curve_on_manifold.h

1179 lines
40 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_CURVE_ON_SURF_H
#define __VCGLIB_CURVE_ON_SURF_H
#include<vcg/complex/complex.h>
#include<vcg/simplex/face/topology.h>
#include<vcg/complex/algorithms/update/topology.h>
#include<vcg/complex/algorithms/update/color.h>
#include<vcg/complex/algorithms/update/normal.h>
#include<vcg/complex/algorithms/update/quality.h>
#include<vcg/complex/algorithms/clean.h>
#include<vcg/complex/algorithms/refine.h>
#include<vcg/complex/algorithms/create/platonic.h>
#include<vcg/complex/algorithms/point_sampling.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/space/index/kdtree/kdtree.h>
#include <vcg/math/histogram.h>
#include<vcg/space/distance3.h>
#include <vcg/complex/algorithms/attribute_seam.h>
#include <wrap/io_trimesh/export_ply.h>
namespace vcg {
namespace tri {
/// \ingroup trimesh
/// \brief A class for managing curves on a 2manifold.
/**
This class is used to project/simplify/smooth polylines over a triangulated surface.
*/
template <class MeshType>
class CoM
{
public:
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef Box3<ScalarType> Box3Type;
typedef Segment3<ScalarType> Segment3Type;
typedef typename vcg::GridStaticPtr<FaceType, ScalarType> MeshGrid;
typedef typename vcg::GridStaticPtr<EdgeType, ScalarType> EdgeGrid;
typedef typename face::Pos<FaceType> PosType;
typedef typename tri::UpdateTopology<MeshType>::PEdge PEdge;
class Param
{
public:
ScalarType surfDistThr; // Distance between surface and curve; used in simplify and refine
ScalarType polyDistThr; // Distance between the
ScalarType minRefEdgeLen; // Minimal admitted Edge Lenght (used in refine: never make edge shorther than this value)
ScalarType maxSimpEdgeLen; // Maximal admitted Edge Lenght (used in simplify: never make edges longer than this value)
ScalarType maxSmoothDelta; // The maximum movement that is admitted during smoothing.
ScalarType maxSnapThr; // The maximum distance allowed when snapping a vertex of the polyline onto a mesh vertex
ScalarType gridBailout; // The maximum distance bailout used in grid sampling
ScalarType barycentricSnapThr; // The maximum distance bailout used in grid sampling
Param(MeshType &m) { Default(m);}
void Default(MeshType &m)
{
surfDistThr = m.bbox.Diag()/1000.0;
polyDistThr = m.bbox.Diag()/5000.0;
minRefEdgeLen = m.bbox.Diag()/16000.0;
maxSimpEdgeLen = m.bbox.Diag()/100.0;
maxSmoothDelta = m.bbox.Diag()/100.0;
maxSnapThr = m.bbox.Diag()/1000.0;
gridBailout = m.bbox.Diag()/20.0;
barycentricSnapThr = 0.05;
}
void Dump() const
{
printf("surfDistThr = %6.4f\n",surfDistThr );
printf("polyDistThr = %6.4f\n",polyDistThr );
printf("minRefEdgeLen = %6.4f\n",minRefEdgeLen );
printf("maxSimpEdgeLen = %6.4f\n",maxSimpEdgeLen );
printf("maxSmoothDelta = %6.4f\n",maxSmoothDelta);
}
};
// The Data Members
MeshType &base;
MeshGrid uniformGrid;
Param par;
CoM(MeshType &_m) :base(_m),par(_m){}
FaceType *GetClosestFace(const CoordType &p)
{
ScalarType closestDist;
CoordType closestP;
return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, p.gridBailout, closestDist, closestP);
}
FaceType *GetClosestFaceIP(const CoordType &p, CoordType &ip)
{
ScalarType closestDist;
CoordType closestP,closestN;
return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, this->par.gridBailout, closestDist, closestP,closestN,ip);
}
FaceType *GetClosestFaceIP(const CoordType &p, CoordType &ip, CoordType &in)
{
ScalarType closestDist;
CoordType closestP;
return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, this->par.gridBailout, closestDist, closestP,in,ip);
}
FaceType *GetClosestFacePoint(const CoordType &p, CoordType &closestP)
{
ScalarType closestDist;
return vcg::tri::GetClosestFaceBase(base,uniformGrid,p, this->par.gridBailout, closestDist, closestP);
}
bool IsSnappedEdge(CoordType &ip, int &ei)
{
for(int i=0;i<3;++i)
if(ip[i]>0.0 && ip[(i+1)%3]>0.0 && ip[(i+2)%3]==0.0 ) {
ei=i;
return true;
}
ei=-1;
return false;
}
// Given a baricentric coordinate finds that we assume that snaps onto an edge, it finds the vertex on which it is snapping
bool IsSnappedVertex(CoordType &ip, int &vi)
{
for(int i=0;i<3;++i)
if(ip[i]==1.0 && ip[(i+1)%3]==0.0 && ip[(i+2)%3]==0.0 ) {
vi=i;
return true;
}
vi=-1;
return false;
}
// Given a baricentric coordinate finds that we assume that snaps onto an edge, it finds the vertex on which it is snapping
VertexPointer FindVertexSnap(FacePointer fp, CoordType &ip)
{
for(int i=0;i<3;++i)
if(ip[i]==1.0 && ip[(i+1)%3]==0.0 && ip[(i+2)%3]==0.0 ) return fp->V(i);
return 0;
}
/**
* @brief MarkFauxEdgeWithPolyLine marks the edges of basemesh as non-faux when they coincide with the polyline ones *
* @param poly
* @return true if all the edges of the polyline are snapped onto the mesh.
*
* Use this function together with the CutMeshAlongCrease function to actually cut the mesh with a snapped polyline.
*
*/
bool MarkFauxEdgeWithPolyLine(MeshType &poly,bool markFlag=true)
{
if(markFlag) tri::UpdateFlags<MeshType>::FaceSetF(base);
tri::UpdateTopology<MeshType>::VertexFace(base);
tri::UpdateTopology<MeshType>::FaceFace(base);
for(EdgeIterator ei=poly.edge.begin(); ei!=poly.edge.end();++ei)
{
CoordType ip0,ip1;
FaceType *f0 = GetClosestFaceIP(ei->cP(0),ip0);
FaceType *f1 = GetClosestFaceIP(ei->cP(1),ip1);
if(BarycentricSnap(ip0) && BarycentricSnap(ip1))
{
VertexPointer v0 = FindVertexSnap(f0,ip0);
VertexPointer v1 = FindVertexSnap(f1,ip1);
if(v0==0 || v1==0) return false;
if(v0==v1) return false;
FacePointer ff0,ff1;
int e0,e1;
bool ret=face::FindSharedFaces<FaceType>(v0,v1,ff0,ff1,e0,e1);
if(ret){
assert(ret);
assert(ff0->V(e0)==v0 || ff0->V(e0)==v1);
ff0->ClearF(e0);
ff1->ClearF(e1);
}
else {
return false;
}
}
else {
return false;
}
}
return true;
}
ScalarType MinDistOnEdge(CoordType samplePnt, EdgeGrid &edgeGrid, MeshType &poly, CoordType &closestPoint)
{
ScalarType polyDist;
EdgeType *cep = vcg::tri::GetClosestEdgeBase(poly,edgeGrid,samplePnt,par.gridBailout,polyDist,closestPoint);
return polyDist;
}
// Given an edge of a mesh, supposedly intersecting the polyline,
// we search on it the closest point to the polyline
static ScalarType MinDistOnEdge(VertexType *v0,VertexType *v1, EdgeGrid &edgeGrid, MeshType &poly, CoordType &closestPoint)
{
ScalarType minPolyDist = std::numeric_limits<ScalarType>::max();
const ScalarType sampleNum = 50;
const ScalarType maxDist = poly.bbox.Diag()/10.0;
for(ScalarType k = 0;k<sampleNum+1;++k)
{
ScalarType polyDist;
CoordType closestPPoly;
CoordType samplePnt = (v0->P()*k +v1->P()*(sampleNum-k))/sampleNum;
EdgeType *cep = vcg::tri::GetClosestEdgeBase(poly,edgeGrid,samplePnt,maxDist,polyDist,closestPPoly);
if(polyDist < minPolyDist)
{
minPolyDist = polyDist;
closestPoint = samplePnt;
// closestPoint = closestPPoly;
}
}
return minPolyDist;
}
/**
* @brief ExtractVertex
* must extract an unambiguous representation of a vertex
* to be used with attribute_seam.h
*
*/
static inline void ExtractVertex(const MeshType & srcMesh, const FaceType & f, int whichWedge, const MeshType & dstMesh, VertexType & v)
{
(void)srcMesh;
(void)dstMesh;
// This is done to preserve every single perVertex property
// perVextex Texture Coordinate is instead obtained from perWedge one.
v.ImportData(*f.cV(whichWedge));
v.C() = f.cC();
}
static inline bool CompareVertex(const MeshType & m, const VertexType & vA, const VertexType & vB)
{
(void)m;
if(vA.C() == Color4b(Color4b::Red) && vB.C() == Color4b(Color4b::Blue) ) return false;
if(vA.C() == Color4b(Color4b::Blue) && vB.C() == Color4b(Color4b::Red) ) return false;
return true;
}
static CoordType QLerp(VertexType *v0, VertexType *v1)
{
ScalarType qSum = fabs(v0->Q())+fabs(v1->Q());
ScalarType w0 = (qSum - fabs(v0->Q()))/qSum;
ScalarType w1 = (qSum - fabs(v1->Q()))/qSum;
return v0->P()*w0 + v1->P()*w1;
}
/**
* @brief SnapPolyline snaps the vertexes of a polyline onto the base mesh
* @param poly
* @param newVertVec the vector of the indexes of the snapped vertices
*
* Polyline vertices can be snapped either on vertexes or on edges.
* Usually the only points that we should allow to not be snapped are the endpoints and non manifold points.
* Vertexes are colored according to their snapping state
*/
void SnapPolyline(MeshType &poly)
{
tri::Allocator<MeshType>::CompactEveryVector(poly);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
int vertSnapCnt=0;
int edgeSnapCnt=0;
int borderCnt=0,midCnt=0,nonmanifCnt=0;
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
{
CoordType ip;
FaceType *f = GetClosestFaceIP(vi->cP(),ip);
if(BarycentricSnap(ip))
{
if(ip[0]>0 && ip[1]>0) { vi->P() = f->P(0)*ip[0]+f->P(1)*ip[1]; edgeSnapCnt++; assert(ip[2]==0); vi->C()=Color4b::White;}
if(ip[0]>0 && ip[2]>0) { vi->P() = f->P(0)*ip[0]+f->P(2)*ip[2]; edgeSnapCnt++; assert(ip[1]==0); vi->C()=Color4b::White;}
if(ip[1]>0 && ip[2]>0) { vi->P() = f->P(1)*ip[1]+f->P(2)*ip[2]; edgeSnapCnt++; assert(ip[0]==0); vi->C()=Color4b::White;}
if(ip[0]==1.0) { vi->P() = f->P(0); vertSnapCnt++; assert(ip[1]==0 && ip[2]==0); vi->C()=Color4b::Black; }
if(ip[1]==1.0) { vi->P() = f->P(1); vertSnapCnt++; assert(ip[0]==0 && ip[2]==0); vi->C()=Color4b::Black;}
if(ip[2]==1.0) { vi->P() = f->P(2); vertSnapCnt++; assert(ip[0]==0 && ip[1]==0); vi->C()=Color4b::Black;}
}
else
{
int deg = edge::VEDegree<EdgeType>(&*vi);
if (deg > 2) { nonmanifCnt++; vi->C()=Color4b::Magenta; }
if (deg < 2) { borderCnt++; vi->C()=Color4b::Green;}
if (deg== 2) { midCnt++; vi->C()=Color4b::Blue;}
}
}
printf("SnapPolyline %i vertices: snapped %i onto vert and %i onto edges %i nonmanif, %i border, %i mid\n",
poly.vn, vertSnapCnt, edgeSnapCnt, nonmanifCnt,borderCnt,midCnt); fflush(stdout);
int dupCnt=tri::Clean<MeshType>::RemoveDuplicateVertex(poly);
tri::Allocator<MeshType>::CompactEveryVector(poly);
if(dupCnt) printf("SnapPolyline: Removed %i Duplicated vertices\n",dupCnt);
}
void SelectBoundaryVertex(MeshType &poly)
{
tri::UpdateSelection<MeshType>::VertexClear(poly);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
ForEachVertex(poly, [&](VertexType &v){
if(edge::VEDegree<EdgeType>(&v)==1) v.SetS();
});
}
void SelectUniformlyDistributed(MeshType &poly, int k)
{
tri::TrivialPointerSampler<MeshType> tps;
ScalarType samplingRadius = tri::Stat<MeshType>::ComputeEdgeLengthSum(poly)/ScalarType(k);
tri::SurfaceSampling<MeshType, typename tri::TrivialPointerSampler<MeshType> >::EdgeMeshUniform(poly,tps,samplingRadius);
for(int i=0;i<tps.sampleVec.size();++i)
tps.sampleVec[i]->SetS();
}
/*
* Make an edge mesh 1-manifold by splitting all the
* vertexes that have more than two incident edges
*
* It performs the split in three steps.
* - First it collects and counts the vertices to be splitten.
* - Then it adds the vertices to the mesh and
* - lastly it updates the poly with the newly added vertices.
*
* singSplitFlag allows to ubersplit each singularity in a number of vertex of the same order of its degree.
* This is not really necessary but helps the management of sharp turns in the poly mesh.
* \todo add corner detection and split.
*/
void DecomposeNonManifoldPolyline(MeshType &poly, bool singSplitFlag = true)
{
tri::Allocator<MeshType>::CompactEveryVector(poly);
std::vector<int> degreeVec(poly.vn, 0);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
int neededVert=0;
int delta;
if(singSplitFlag) delta = 1;
else delta = 2;
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
{
std::vector<EdgeType *> starVec;
edge::VEStarVE(&*vi,starVec);
degreeVec[tri::Index(poly, *vi)] = starVec.size();
if(starVec.size()>2)
neededVert += starVec.size()-delta;
}
printf("DecomposeNonManifold Adding %i vert to a polyline of %i vert\n",neededVert,poly.vn);
VertexIterator firstVi = tri::Allocator<MeshType>::AddVertices(poly,neededVert);
for(size_t i=0;i<degreeVec.size();++i)
{
if(degreeVec[i]>2)
{
std::vector<EdgeType *> edgeStarVec;
edge::VEStarVE(&(poly.vert[i]),edgeStarVec);
assert(edgeStarVec.size() == degreeVec[i]);
for(size_t j=delta;j<edgeStarVec.size();++j)
{
EdgeType *ep = edgeStarVec[j];
int ind; // index of the vertex to be changed
if(tri::Index(poly,ep->V(0)) == i) ind = 0;
else ind = 1;
ep->V(ind) = &*firstVi;
ep->V(ind)->P() = poly.vert[i].P();
ep->V(ind)->N() = poly.vert[i].N();
++firstVi;
}
}
}
assert(firstVi == poly.vert.end());
}
/**
* @brief SplitMeshWithPolyline
* @param poly
*
* First it splits the base mesh with all the non snapped points doing a standard 1 to 3 split;
*
*/
void SplitMeshWithPolyline(MeshType &poly)
{
std::vector< std::pair<int,VertexPointer> > toSplitVec; // the index of the face to be split and the poly vertex to be used
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
{
CoordType ip;
FaceType *f = GetClosestFaceIP(vi->cP(),ip);
if(!BarycentricSnap(ip))
toSplitVec.push_back(std::make_pair(tri::Index(base,f),&*vi));
}
printf("SplitMeshWithPolyline found %lu non snapped points\n",toSplitVec.size());fflush(stdout);
FaceIterator newFi = tri::Allocator<MeshType>::AddFaces(base,toSplitVec.size()*2);
VertexIterator newVi = tri::Allocator<MeshType>::AddVertices(base,toSplitVec.size());
tri::UpdateColor<MeshType>::PerVertexConstant(base,Color4b::White);
for(size_t i =0; i<toSplitVec.size();++i)
{
newVi->P() = toSplitVec[i].second->P();
newVi->C()=Color4b::Green;
face::TriSplit(&base.face[toSplitVec[i].first],&*(newFi++),&*(newFi++),&*(newVi++));
}
Init(); // need to reset everthing
SnapPolyline(poly);
// Second loop to perform the face-face Edge split **********************
std::map<std::pair<CoordType,CoordType>, VertexPointer> edgeToPolyVertMap;
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
{
CoordType ip;
FaceType *f = GetClosestFaceIP(vi->cP(),ip);
if(!BarycentricSnap(ip)) { assert(0); }
for(int i=0;i<3;++i)
{
if(ip[i]>0 && ip[(i+1)%3]>0 && ip[(i+2)%3]==0 )
{
CoordType p0=f->P0(i);
CoordType p1=f->P1(i);
if (p0>p1) std::swap(p0,p1);
if(edgeToPolyVertMap[make_pair(p0,p1)]) printf("Found an already used Edge %lu - %lu %lu!!!\n", tri::Index(base,f->V0(i)),tri::Index(base,f->V1(i)),tri::Index(poly,&*vi));
edgeToPolyVertMap[make_pair(p0,p1)]=&*vi;
}
}
}
printf("SplitMeshWithPolyline: Created a map of %lu edges to be split\n",edgeToPolyVertMap.size());
EdgePointPred ePred(edgeToPolyVertMap);
EdgePointSplit eSplit(edgeToPolyVertMap);
tri::UpdateTopology<MeshType>::FaceFace(base);
tri::RefineE(base,eSplit,ePred);
Init(); // need to reset everthing
}
void Init()
{
// Construction of the uniform grid
UpdateNormal<MeshType>::PerFaceNormalized(base);
UpdateTopology<MeshType>::FaceFace(base);
uniformGrid.Set(base.face.begin(), base.face.end());
}
void SimplifyMidEdge(MeshType &poly)
{
int startVn;
int midEdgeCollapseCnt=0;
tri::Allocator<MeshType>::CompactEveryVector(poly);
do
{
startVn = poly.vn;
for(int ei =0; ei<poly.en; ++ei)
{
VertexType *v0=poly.edge[ei].V(0);
VertexType *v1=poly.edge[ei].V(1);
CoordType ip0,ip1;
FaceType *f0=GetClosestFaceIP(v0->P(),ip0);
FaceType *f1=GetClosestFaceIP(v1->P(),ip1);
bool snap0=BarycentricSnap(ip0);
bool snap1=BarycentricSnap(ip1);
int e0i,e1i;
bool e0 = IsSnappedEdge(ip0,e0i);
bool e1 = IsSnappedEdge(ip1,e1i);
if(e0 && e1)
if( ( f0 == f1 && e0i == e1i) ||
( f0 == f1->FFp(e1i) && e0i == f1->FFi(e1i)) ||
(f0->FFp(e0i) == f1 && f0->FFi(e0i) == e1i) ||
(f0->FFp(e0i) == f1->FFp(e1i) && f0->FFi(e0i) == f1->FFi(e1i)) )
{
CoordType newp = (v0->P()+v1->P())/2.0;
v0->P()=newp;
v1->P()=newp;
midEdgeCollapseCnt++;
}
}
tri::Clean<MeshType>::RemoveDuplicateVertex(poly);
tri::Allocator<MeshType>::CompactEveryVector(poly);
// printf("SimplifyMidEdge %5i -> %5i %i mid %i ve \n",startVn,poly.vn,midEdgeCollapseCnt);
} while(startVn>poly.vn);
}
/**
* @brief SimplifyMidFace remove all the vertices that in the mid of a face
* and between two of the points snapped onto the edges of the same face
* @param poly
*
* It assumes that the mesh has been snapped and refined by the BaseMesh
*
*/
void SimplifyMidFace(MeshType &poly)
{
int startVn= poly.vn;;
int midFaceCollapseCnt=0;
int vertexEdgeCollapseCnt=0;
int curVn;
do
{
tri::Allocator<MeshType>::CompactEveryVector(poly);
curVn = poly.vn;
UpdateTopology<MeshType>::VertexEdge(poly);
for(int i =0; i<poly.vn;++i)
{
std::vector<VertexPointer> starVecVp;
edge::VVStarVE(&(poly.vert[i]),starVecVp);
if( (starVecVp.size()==2) )
{
CoordType ipP, ipN, ipI;
FacePointer fpP = GetClosestFaceIP(starVecVp[0]->P(),ipP);
FacePointer fpN = GetClosestFaceIP(starVecVp[1]->P(),ipN);
FacePointer fpI = GetClosestFaceIP(poly.vert[i].P(), ipI);
bool snapP = (BarycentricSnap(ipP));
bool snapN = (BarycentricSnap(ipN));
bool snapI = (BarycentricSnap(ipI));
VertexPointer vertexSnapP = 0;
VertexPointer vertexSnapN = 0;
VertexPointer vertexSnapI = 0;
for(int j=0;j<3;++j)
{
if(ipP[j]==1.0) vertexSnapP=fpP->V(j);
if(ipN[j]==1.0) vertexSnapN=fpN->V(j);
if(ipI[j]==1.0) vertexSnapI=fpI->V(j);
}
bool collapseFlag=false;
if((!snapI && snapP && snapN) || // First case a vertex that is not snapped between two snapped vertexes
(!snapI && !snapP && fpI==fpP) || // Or a two vertex not snapped but on the same face
(!snapI && !snapN && fpI==fpN) )
{
collapseFlag=true;
midFaceCollapseCnt++;
}
else // case 2) a vertex snap and edge snap we have to check that the edge do not share the same vertex of the vertex snap
if(snapI && snapP && snapN && vertexSnapI==0 && (vertexSnapP!=0 || vertexSnapN!=0) )
{
for(int j=0;j<3;++j) {
if(ipI[j]!=0 && (fpI->V(j)==vertexSnapP || fpI->V(j)==vertexSnapN)) {
collapseFlag=true;
vertexEdgeCollapseCnt++;
}
}
}
if(collapseFlag)
edge::VEEdgeCollapse(poly,&(poly.vert[i]));
}
}
} while(curVn>poly.vn);
printf("SimplifyMidFace %5i -> %5i %i mid %i ve \n",startVn,poly.vn,midFaceCollapseCnt,vertexEdgeCollapseCnt);
}
void Simplify(MeshType &poly)
{
int startEn = poly.en;
Distribution<ScalarType> hist;
for(int i =0; i<poly.en;++i)
hist.Add(edge::Length(poly.edge[i]));
UpdateTopology<MeshType>::VertexEdge(poly);
for(int i =0; i<poly.vn;++i)
{
std::vector<VertexPointer> starVecVp;
edge::VVStarVE(&(poly.vert[i]),starVecVp);
if ((starVecVp.size()==2) && (!poly.vert[i].IsS()))
{
ScalarType newSegLen = Distance(starVecVp[0]->P(), starVecVp[1]->P());
Segment3Type seg(starVecVp[0]->P(),starVecVp[1]->P());
ScalarType segDist;
CoordType closestPSeg;
SegmentPointDistance(seg,poly.vert[i].cP(),closestPSeg,segDist);
CoordType fp,fn;
ScalarType maxSurfDist = MaxSegDist(starVecVp[0], starVecVp[1],fp,fn);
if((maxSurfDist < par.surfDistThr) && (newSegLen < par.maxSimpEdgeLen) )
{
edge::VEEdgeCollapse(poly,&(poly.vert[i]));
}
}
}
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
tri::Allocator<MeshType>::CompactEveryVector(poly);
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
printf("Simplify %5i -> %5i (total len %5.2f)\n",startEn,poly.en,hist.Sum());
}
void EvaluateHausdorffDistance(MeshType &poly, Distribution<ScalarType> &dist)
{
dist.Clear();
tri::UpdateTopology<MeshType>::VertexEdge(poly);
tri::UpdateQuality<MeshType>::VertexConstant(poly,0);
for(int i =0; i<poly.edge.size();++i)
{
CoordType farthestP, farthestN;
ScalarType maxDist = MaxSegDist(poly.edge[i].V(0),poly.edge[i].V(1), farthestP, farthestN, &dist);
poly.edge[i].V(0)->Q()+= maxDist;
poly.edge[i].V(1)->Q()+= maxDist;
}
for(int i=0;i<poly.vn;++i)
{
ScalarType deg = edge::VEDegree<EdgeType>(&poly.vert[i]);
poly.vert[i].Q()/=deg;
}
tri::UpdateColor<MeshType>::PerVertexQualityRamp(poly,0,dist.Max());
}
/**
* @brief BarycentricSnap
* @param ip the baricentric coords to be snapped
* @return true if they have been snapped.
*
* This is the VERY important function that is used everywhere.
* Given a barycentric coord of a point inside a triangle it decides if it should be "snapped" either onto an edge or on a vertex.
* It relies on the barycentricSnapThr parameter
*
*/
bool BarycentricSnap(CoordType &ip)
{
for(int i=0;i<3;++i)
{
if(ip[i] <= par.barycentricSnapThr) ip[i]=0;
if(ip[i] >= 1.0-par.barycentricSnapThr) ip[i]=1;
}
ScalarType sum = ip[0]+ip[1]+ip[2];
for(int i=0;i<3;++i)
if(ip[i]!=1) ip[i]/=sum;
if(ip[0]==0 || ip[1]==0 || ip[2]==0) return true;
return false;
}
/**
* @brief TestSplitSegWithMesh Given a poly segment decide if it should be split along elements of base mesh.
* @param v0
* @param v1
* @param splitPt
* @return true if it should be split
*
* We make a few samples onto the edge and if some of them snaps onto a an edge we use it.
* In case there are more than one candidate we choose the sample closeset to its snapping point.
* We explicitly avoid snapping twice on the same edge by checking the starting and ending edges.
*
* Two cases:
* - poly edge pass near a vertex of the mesh
* - poly edge cross one or more edges
*
* Note that we have to check the case where
*/
bool TestSplitSegWithMesh(VertexType *v0, VertexType *v1, CoordType &splitPt)
{
Segment3Type segPoly(v0->P(),v1->P());
const ScalarType sampleNum = 40;
CoordType ip0,ip1;
FaceType *f0=GetClosestFaceIP(v0->P(),ip0);
FaceType *f1=GetClosestFaceIP(v1->P(),ip1);
if(f0==f1) return false;
bool snap0=false,snap1=false; // true if the segment start/end on a edge/vert
Segment3Type seg0; // The two segments to be avoided
Segment3Type seg1; // from which the current poly segment can start
VertexPointer vertexSnap0 = 0;
VertexPointer vertexSnap1 = 0;
if(BarycentricSnap(ip0)) {
snap0=true;
for(int i=0;i<3;++i) {
if(ip0[i]==1.0) vertexSnap0=f0->V(i);
if(ip0[i]==0.0) seg0=Segment3Type(f0->P1(i),f0->P2(i));
}
}
if(BarycentricSnap(ip1)) {
snap1=true;
for(int i=0;i<3;++i){
if(ip1[i]==1.0) vertexSnap1=f1->V(i);
if(ip1[i]==0.0) seg1=Segment3Type(f1->P1(i),f1->P2(i));
}
}
CoordType bestSplitPt(0,0,0);
ScalarType bestDist = std::numeric_limits<ScalarType>::max();
for(ScalarType k = 1;k<sampleNum;++k)
{
CoordType samplePnt = segPoly.Lerp(k/sampleNum);
CoordType ip;
FaceType *f=GetClosestFaceIP(samplePnt,ip);
// BarycentricEdgeSnap(ip);
if(BarycentricSnap(ip))
{
VertexPointer vertexSnapI = 0;
for(int i=0;i<3;++i)
if(ip[i]==1.0) vertexSnapI=f->V(i);
CoordType closestPt = f->P(0)*ip[0]+f->P(1)*ip[1]+f->P(2)*ip[2];
if(Distance(samplePnt,closestPt) < bestDist )
{
ScalarType dist0=std::numeric_limits<ScalarType>::max();
ScalarType dist1=std::numeric_limits<ScalarType>::max();
CoordType closestSegPt;
if(snap0) SegmentPointDistance(seg0,closestPt,closestSegPt,dist0);
if(snap1) SegmentPointDistance(seg1,closestPt,closestSegPt,dist1);
if( (!vertexSnapI && (dist0 > par.surfDistThr/1000 && dist1>par.surfDistThr/1000) ) ||
( vertexSnapI!=vertexSnap0 && vertexSnapI!=vertexSnap1) )
{
bestDist = Distance(samplePnt,closestPt);
bestSplitPt = closestPt;
}
}
}
}
if(bestDist < par.surfDistThr*100)
{
splitPt = bestSplitPt;
return true;
}
return false;
}
/**
* @brief SnappedOnSameFace Return true if the two points are snapped to a common face;
* @param f0
* @param i0
* @param f1
* @param i0
* @return
*
* Require FFAdj. se assume that both SNAPPED. Three cases:
* - Edge Edge - true iff the two edges belongs to a common face.
* - Vert Edge - true iff there is one of the two snapped edge faces has the vert as non-edge face;
* - Vert Vert
*
*/
bool SnappedOnSameFace(FacePointer f0, CoordType i0, FacePointer f1, CoordType i1)
{
if(f0==f1) return true;
int e0,e1;
int v0,v1;
bool e0Snap = IsSnappedEdge(i0,e0);
bool e1Snap = IsSnappedEdge(i1,e1);
bool v0Snap = IsSnappedVertex(i0,v0);
bool v1Snap = IsSnappedVertex(i1,v1);
FacePointer f0p=0; int e0p=-1; // When Edge snap the other face and the index of the snapped edge on the other face
FacePointer f1p=0; int e1p=-1;
assert((e0Snap != v0Snap) && (e1Snap != v1Snap));
// For EdgeSnap compute the 'other' face stuff
if(e0Snap){
f0p = f0->FFp(e0); e0p=f0->FFi(e0); assert(f0p->FFp(e0p)==f0);
}
if(e1Snap){
f1p = f1->FFp(e1); e1p=f1->FFi(e1); assert(f1p->FFp(e1p)==f1);
}
if(e0Snap && e1Snap) {
if(f0==f1p || f0p==f1p || f0p==f1 || f0==f1) return true;
}
if(e0Snap && v1Snap) {
assert(v1>=0 && v1<3 && v0==-1 && e1==-1);
if(f0->V2(e0) ==f1->V(v1)) return true;
if(f0p->V2(e0p)==f1->V(v1)) return true;
}
if(e1Snap && v0Snap) {
assert(v0>=0 && v0<3 && v1==-1 && e0==-1);
if(f1->V2(e1) ==f0->V(v0)) return true;
if(f1p->V2(e1p)==f0->V(v0)) return true;
}
if(v1Snap && v0Snap) {
PosType startPos(f0,f0->V(v0));
PosType curPos=startPos;
do
{
assert(curPos.V()==f0->V(v0));
if(curPos.VFlip()==f1->V(v1)) return true;
curPos.FlipE();
curPos.FlipF();
}
while(curPos!=startPos);
}
return false;
}
/**
* @brief TestSplitSegWithMesh Given a poly segment decide if it should be split along elements of base mesh.
* @param v0
* @param v1
* @param splitPt
* @return true if it should be split
*
* We make a few samples onto the edge and if some of them snaps onto a an edge we use it.
* In case there are more than one candidate we choose the sample closeset to its snapping point.
* We explicitly avoid snapping twice on the same edge by checking the starting and ending edges.
*
* Two cases:
* - poly edge pass near a vertex of the mesh
* - poly edge cross one or more edges
*
* Note that we have to check the case where
*/
bool TestSplitSegWithMeshAdapt(VertexType *v0, VertexType *v1, CoordType &splitPt)
{
splitPt=(v0->P()+v1->P())/2.0;
CoordType ip0,ip1,ipm;
FaceType *f0=GetClosestFaceIP(v0->P(),ip0);
FaceType *f1=GetClosestFaceIP(v1->P(),ip1);
FaceType *fm=GetClosestFaceIP(splitPt,ipm);
if(f0==f1) return false;
bool snap0=BarycentricSnap(ip0);
bool snap1=BarycentricSnap(ip1);
bool snapm=BarycentricSnap(ipm);
splitPt = fm->P(0)*ipm[0]+fm->P(1)*ipm[1]+fm->P(2)*ipm[2];
if(!snap0 && !snap1) {
assert(f0!=f1);
return true;
}
if(snap0 && snap1)
{
if(SnappedOnSameFace(f0,ip0,f1,ip1))
return false;
}
if(snap0) {
int e0,v0;
if (IsSnappedEdge(ip0,e0)) {
if(f0->FFp(e0) == f1) return false;
}
if(IsSnappedVertex(ip0,v0)) {
for(int i=0;i<3;++i)
if(f1->V(i)==f0->V(v0)) return false;
}
}
if(snap1) {
int e1,v1;
if (IsSnappedEdge(ip1,e1)) {
if(f1->FFp(e1) == f0) return false;
}
if(IsSnappedVertex(ip1,v1)) {
for(int i=0;i<3;++i)
if(f0->V(i)==f1->V(v1)) return false;
}
}
return true;
}
bool TestSplitSegWithMeshAdaptOld(VertexType *v0, VertexType *v1, CoordType &splitPt)
{
Segment3Type segPoly(v0->P(),v1->P());
const ScalarType sampleNum = 40;
CoordType ip0,ip1;
FaceType *f0=GetClosestFaceIP(v0->P(),ip0);
FaceType *f1=GetClosestFaceIP(v1->P(),ip1);
if(f0==f1) return false;
bool snap0=BarycentricSnap(ip0);
bool snap1=BarycentricSnap(ip1);
if(!snap0 && !snap1) {
assert(f0!=f1);
splitPt=(v0->P()+v1->P())/2.0;
return true;
}
if(snap0 && snap1)
{
if(SnappedOnSameFace(f0,ip0,f1,ip1))
return false;
}
if(snap0) {
int e0,v0;
if (IsSnappedEdge(ip0,e0)) {
if(f0->FFp(e0) == f1) return false;
}
if(IsSnappedVertex(ip0,v0)) {
for(int i=0;i<3;++i)
if(f1->V(i)==f0->V(v0)) return false;
}
}
splitPt=(v0->P()+v1->P())/2.0;
return true;
}
// Given a segment find the maximum distance from it to the original surface.
// It is used to evaluate the Haustdorff distance of a Segment from the mesh.
ScalarType MaxSegDist(VertexType *v0, VertexType *v1, CoordType &farthestPointOnSurf, CoordType &farthestN, Distribution<ScalarType> *dist=0)
{
ScalarType maxSurfDist = 0;
const ScalarType sampleNum = 10;
const ScalarType maxDist = base.bbox.Diag()/10.0;
for(ScalarType k = 1;k<sampleNum;++k)
{
ScalarType surfDist;
CoordType closestPSurf;
CoordType samplePnt = (v0->P()*k +v1->P()*(sampleNum-k))/sampleNum;
FaceType *f = vcg::tri::GetClosestFaceBase(base,uniformGrid,samplePnt,maxDist, surfDist, closestPSurf);
if(dist)
dist->Add(surfDist);
assert(f);
if(surfDist > maxSurfDist)
{
maxSurfDist = surfDist;
farthestPointOnSurf = closestPSurf;
farthestN = f->N();
}
}
return maxSurfDist;
}
/**
* @brief RefineCurve
* @param poly the curve to be refined
* @param uniformFlag
*
* Make one pass of refinement for all the edges of the curve that are distant from the basemesh
* uses two parameters:
* - par.minRefEdgeLen
* - par.surfDistThr
*/
void RefineCurveByDistance(MeshType &poly)
{
tri::Allocator<MeshType>::CompactEveryVector(poly);
int startEdgeSize = poly.en;
for(int i =0; i<startEdgeSize;++i)
{
EdgeType &ei = poly.edge[i];
if(edge::Length(ei)>par.minRefEdgeLen)
{
CoordType farthestP, farthestN;
ScalarType maxDist = MaxSegDist(ei.V(0),ei.V(1),farthestP, farthestN);
if(maxDist > par.surfDistThr)
{
edge::VEEdgeSplit(poly, &ei, farthestP, farthestN);
}
}
}
// tri::Allocator<MeshType>::CompactEveryVector(poly);
printf("Refine %i -> %i\n",startEdgeSize,poly.en);fflush(stdout);
}
/**
* @brief RefineCurveByBaseMesh
* @param poly
*/
void RefineCurveByBaseMesh(MeshType &poly)
{
tri::Allocator<MeshType>::CompactEveryVector(poly);
std::vector<int> edgeToRefineVec;
for(int i=0; i<poly.en;++i)
edgeToRefineVec.push_back(i);
int startEn=poly.en;
int iterCnt=0;
while (!edgeToRefineVec.empty() && iterCnt<100) {
iterCnt++;
std::vector<int> edgeToRefineVecNext;
for(int i=0; i<edgeToRefineVec.size();++i)
{
EdgeType &e = poly.edge[edgeToRefineVec[i]];
CoordType splitPt;
if(TestSplitSegWithMeshAdapt(e.V(0),e.V(1),splitPt))
{
edge::VEEdgeSplit(poly, &e, splitPt);
edgeToRefineVecNext.push_back(edgeToRefineVec[i]);
edgeToRefineVecNext.push_back(poly.en-1);
}
}
tri::Allocator<MeshType>::CompactEveryVector(poly);
swap(edgeToRefineVecNext,edgeToRefineVec);
printf("RefineCurveByBaseMesh %i en -> %i en\n",startEn,poly.en); fflush(stdout);
}
//
SimplifyMidFace(poly);
SimplifyMidEdge(poly);
SnapPolyline(poly);
printf("RefineCurveByBaseMesh %i en -> %i en\n",startEn,poly.en); fflush(stdout);
}
/**
* @brief SmoothProject
* @param poly
* @param iterNum
* @param smoothWeight [0..1] range;
* @param projectWeight [0..1] range;
*
* The very important function to adapt a polyline onto the base mesh
* The projection process must be done slowly to guarantee some empirical convergence...
* For each iteration it choose a new position of each vertex of the polyline.
* The new position is a blend between the smoothed position, the closest point on the surface and the original position.
* You need a good balance...
* after each iteration the polyline is refined and simplified.
*/
void SmoothProject(MeshType &poly, int iterNum, ScalarType smoothWeight, ScalarType projectWeight)
{
tri::RequireCompactness(poly);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
printf("SmoothProject: Selected vert num %i\n",tri::UpdateSelection<MeshType>::VertexCount(poly));
assert(poly.en>0 && base.fn>0);
for(int k=0;k<iterNum;++k)
{
if(k==iterNum-1) projectWeight=1;
std::vector<CoordType> posVec(poly.vn,CoordType(0,0,0));
std::vector<int> cntVec(poly.vn,0);
for(int i =0; i<poly.en;++i)
{
for(int j=0;j<2;++j)
{
int vertInd = tri::Index(poly,poly.edge[i].V0(j));
posVec[vertInd] += poly.edge[i].V1(j)->P();
cntVec[vertInd] += 1;
}
}
const ScalarType maxDist = base.bbox.Diag()/10.0;
for(int i=0; i<poly.vn; ++i)
if(!poly.vert[i].IsS())
{
CoordType smoothPos = (poly.vert[i].P() + posVec[i])/ScalarType(cntVec[i]+1);
CoordType newP = poly.vert[i].P()*(1.0-smoothWeight) + smoothPos *smoothWeight;
// CoordType delta = newP - poly.vert[i].P();
// if(delta.Norm() > par.maxSmoothDelta)
// {
// newP = poly.vert[i].P() + ( delta / delta.Norm()) * maxDist*0.5;
// }
ScalarType minDist;
CoordType closestP;
FaceType *f = vcg::tri::GetClosestFaceBase(base,uniformGrid,newP,maxDist, minDist, closestP);
assert(f);
poly.vert[i].P() = newP*(1.0-projectWeight) +closestP*projectWeight;
poly.vert[i].N() = f->N();
}
// Refine(poly);
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
RefineCurveByDistance(poly);
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
Simplify(poly);
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
int dupVertNum = Clean<MeshType>::RemoveDuplicateVertex(poly);
if(dupVertNum) {
printf("****REMOVED %i Duplicated\n",dupVertNum);
tri::Allocator<MeshType>::CompactEveryVector(poly);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
}
}
}
class EdgePointPred
{
public:
std::map<std::pair<CoordType,CoordType>, VertexPointer> &edgeToPolyVertMap;
EdgePointPred(std::map<std::pair<CoordType,CoordType>, VertexPointer> &_edgeToPolyVertMap):edgeToPolyVertMap(_edgeToPolyVertMap){};
bool operator()(face::Pos<FaceType> ep) const
{
CoordType p0 = ep.V()->P();
CoordType p1 = ep.VFlip()->P();
if (p0>p1) std::swap(p0,p1);
VertexPointer vp=edgeToPolyVertMap[make_pair(p0,p1)];
return vp!=0;
}
};
struct EdgePointSplit : public std::unary_function<face::Pos<FaceType> , CoordType>
{
public:
std::map<std::pair<CoordType,CoordType>, VertexPointer> &edgeToPolyVertMap;
EdgePointSplit(std::map<std::pair<CoordType,CoordType>, VertexPointer> &_edgeToPolyVertMap):edgeToPolyVertMap(_edgeToPolyVertMap){};
void operator()(VertexType &nv, face::Pos<FaceType> ep)
{
CoordType p0 = ep.V()->P();
CoordType p1 = ep.VFlip()->P();
if (p0>p1) std::swap(p0,p1);
VertexPointer vp=edgeToPolyVertMap[make_pair(p0,p1)];
assert(vp);
nv.P()=vp->P();
return;
}
Color4b WedgeInterp(Color4b &c0, Color4b &c1)
{
Color4b cc;
cc.lerp(c0,c1,0.5f);
return Color4b::Red;
}
TexCoord2f WedgeInterp(TexCoord2f &t0, TexCoord2f &t1)
{
TexCoord2f tmp;
assert(t0.n()== t1.n());
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
};
};
} // end namespace tri
} // end namespace vcg
#endif // __VCGLIB_CURVE_ON_SURF_H