vcglib/vcg/complex/algorithms/parametrization/uv_utils.h

189 lines
7.1 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_UV_UTILS
#define VCG_UV_UTILS
namespace vcg {
namespace tri{
template <class MeshType>
class UV_Utils
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename vcg::Point2<ScalarType> UVCoordType;
public:
///calculate the BBox in UV space
static vcg::Box2<ScalarType> PerWedgeUVBox(MeshType &m)
{
vcg::Box2<ScalarType> UVBox;
FaceIterator fi;
for (fi=m.face.begin();fi!=m.face.end();fi++)
{
if ((*fi).IsD()) continue;
for (int i=0;i<3;i++)
UVBox.Add((*fi).WT(i).P());
}
return UVBox;
}
///calculate the BBox in UV space
static vcg::Box2<ScalarType> PerVertUVBox(MeshType &m)
{
vcg::Box2<ScalarType> UVBox;
VertexIterator vi;
for (vi=m.vert.begin();vi!=m.vert.end();vi++)
{
if ((*vi).IsD()) continue;
UVBox.Add((*vi).T().P());
}
return UVBox;
}
void PerWedgeMakeUnitaryUV(MeshType &m)
{
vcg::Box2<typename MeshType::ScalarType> UVBox = PerWedgeUVBox(m);
typename MeshType::FaceIterator fi;
Point2f boxSize(UVBox.max-UVBox.min);
for (fi=m.face.begin();fi!=m.face.end();fi++)
{
if ((*fi).IsD()) continue;
for (int i=0;i<3;i++)
{
(*fi).WT(i).U() = ((*fi).WT(i).U()-UVBox.min[0])/boxSize[0] ;
(*fi).WT(i).V() = ((*fi).WT(i).V()-UVBox.min[1])/boxSize[1] ;
}
}
}
///transform curvature to UV space
static UVCoordType Coord3DtoUV(FaceType &f,const CoordType &dir)
{
///then transform to UV
CoordType bary3d=(f.P(0)+f.P(1)+f.P(2))/3.0;
UVCoordType baryUV=(f.WT(0).P()+f.WT(1).P()+f.WT(2).P())/3.0;
CoordType dir3d=bary3d+dir;
CoordType baryCoordsUV;
vcg::InterpolationParameters<FaceType,ScalarType>(f,dir3d,baryCoordsUV);
UVCoordType dirUV=baryCoordsUV.X()*f.WT(0).P()+
baryCoordsUV.Y()*f.WT(1).P()+
baryCoordsUV.Z()*f.WT(2).P()-baryUV;
dirUV.Normalize();
return dirUV;
}
static void GloballyMirrorX(MeshType &m)
{
vcg::Box2<ScalarType> BBuv=PerVertUVBox(m);
ScalarType Xmin=BBuv.min.X();
ScalarType Xmax=BBuv.max.X();
ScalarType XAv=(Xmax+Xmin)/2;
VertexIterator vi;
for (vi=m.vert.begin();vi!=m.vert.end();vi++)
{
ScalarType distAV=(*vi).T().P().X()-XAv;
(*vi).T().P().X()=XAv-distAV;
}
}
static void GloballyRotate(MeshType &m,ScalarType Angle)
{
vcg::Box2<ScalarType> BB=PerWedgeUVBox(m);
UVCoordType Origin=BB.Center();
typename MeshType::FaceIterator fi;
for (fi=m.face.begin();fi!=m.face.end();fi++)
{
if ((*fi).IsD()) continue;
for (int i=0;i<3;i++)
{
(*fi).WT(i).P()-=Origin;
ScalarType X1=(*fi).WT(i).P().X()*cos(Angle)-(*fi).WT(i).P().Y()*sin(Angle);
ScalarType Y1=(*fi).WT(i).P().X()*cos(Angle)+(*fi).WT(i).P().Y()*sin(Angle);
(*fi).WT(i).P().X()=X1;
(*fi).WT(i).P().Y()=Y1;
(*fi).WT(i).P()+=Origin;
}
}
}
static void LaplacianUVVert(MeshType &m,bool fix_borders=false,int steps=3)
{
FaceIterator fi;
for (int s=0;s<steps;s++)
{
std::vector<int> num(m.vert.size(),0);
std::vector<UVCoordType> UVpos(m.vert.size(),UVCoordType(0,0));
for (fi=m.face.begin();fi!=m.face.end();fi++)
{
for (int j=0;j<3;j++)
{
VertexType *v0=(*fi).V(0);
VertexType *v1=(*fi).V1(0);
VertexType *v2=(*fi).V2(0);
assert(v0!=v1);
assert(v1!=v2);
assert(v0!=v2);
UVCoordType uv1=v1->T().P();
UVCoordType uv2=v2->T().P();
int index=v0-&(m.vert[0]);
num[index]+=2;
UVpos[index]+=uv1;
UVpos[index]+=uv2;
}
}
VertexIterator vi;
for (int i=0;i<m.vert.size();i++)
{
if ((fix_borders)&&(m.vert[i].IsB()))continue;
if (num[i]==0)continue;
m.vert[i].T().P()=UVpos[i]/(ScalarType)num[i];
}
}
}
static void CopyVertUVWedge(MeshType &m)
{
for (size_t i=0;i<m.face.size();i++)
for (size_t j=0;j<3;j++)
m.face[i].WT(j).P()=m.face[i].V(j)->T().P();
}
static void CopyWedgeVertUV(MeshType &m,bool onlyS=false)
{
for (size_t i=0;i<m.face.size();i++)
{
if ((onlyS)&&(!m.face[i].IsS()))continue;
for (int j=0;j<3;j++)
m.face[i].V(j)->T().P()=m.face[i].WT(j).P();
}
}
};
} //End Namespace Tri
} // End Namespace vcg
#endif