vcglib/vcg/complex/trimesh/hole.h

589 lines
15 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_HOLE
#define __VCG_TRI_UPDATE_HOLE
/*
Questa Classe serve per gestire la non duplicazione degli edge durante la chiusura
di un buco.
*/
namespace vcg {
namespace tri {
template<class MESH>
class SimpleEdge
{
public:
MESH::VertexPointer v[2];
SimpleEdge(MESH::VertexPointer v0, MESH::VertexPointer v1)
{
if(v0>v1) {v[0]=v1; v[1]=v0;}
else {v[0]=v0; v[1]=v1;}
}
SimpleEdge(MESH::hedgepos_type &ep) {
*this=SimpleEdge(ep.VFlip(), ep.v);
}
bool operator < (const SimpleEdge & e) const
{ return (v[0]!=e.v[0])?(v[0]<e.v[0]):(v[1]<e.v[1]); }
};
template<class MESH>
class HoleInfo
{
public:
HoleInfo(){}
HoleInfo(MESH::hedgepos_type const &pHole, int const pHoleSize, Box3<MESH::scalar_type> &pHoleBB)
{
p=pHole;
size=pHoleSize;
bb=pHoleBB;
}
MESH::hedgepos_type p;
int size;
Box3<MESH::scalar_type> bb;
bool operator < (const HoleInfo & hh) const {return size < hh.size;}
bool operator > (const HoleInfo & hh) const {return size > hh.size;}
bool operator == (const HoleInfo & hh) const {return size == hh.size;}
bool operator != (const HoleInfo & hh) const {return size != hh.size;}
bool operator >= (const HoleInfo & hh) const {return size >= hh.size;}
bool operator <= (const HoleInfo & hh) const {return size <= hh.size;}
MESH::scalar_type Perimeter()
{
MESH::scalar_type sum=0;
MESH::hedgepos_type ip = p;
do
{
sum+=Distance(ip.v->cP(),ip.VFlip()->cP());
ip.NextB();
}
while (ip != p);
return sum;
}
int CollectEdges(set< SimpleEdge<MESH> > &EV)
{
assert(p.IsBorder());
EV.clear();
int tsz=0;
MESH::hedgepos_type ip=p;
MESH::hedgepos_type tp;
do
{
// Stesso codice della nextb
do
{
ip.NextE();
EV.insert(SimpleEdge<MESH>(ip)); // l'edge che sto scorrendo
tp=ip;
tp.FlipV();tp.FlipE();
EV.insert(SimpleEdge<MESH>(tp)); // l'edge della faccia su cui sono e opposto al vertice su cui ruoto
tp.FlipF(); tp.FlipE();
EV.insert(SimpleEdge<MESH>(tp)); // gli altri due edge della faccia opposta a questa
tp.FlipE();
EV.insert(SimpleEdge<MESH>(tp));
}
while(!ip.f->IsBorder(ip.z));
ip.FlipV();
++tsz;
}
while (ip != p);
assert(tsz==size);
return EV.size();
}
};
template<class MESH>
void FindHole(MESH &m, MESH::hedgepos_type ep, HoleInfo<MESH> &h)
{
if(!ep.IsBorder()) return;
int holesize = 0;
Box3<MESH::scalar_type> hbox;
if(ep.v->IsR()) hbox.Add(ep.v->cP());
MESH::hedgepos_type init;
init = ep;
do
{
ep.NextB();
ep.f->SetV();
if(ep.v->IsR()) hbox.Add(ep.v->cP());
++holesize;
}
while (ep != init);
h=HoleInfo<MESH>(ep,holesize,hbox);
}
template<class MESH,class STL_CONTAINER_HOLES>
void FindHole(MESH &m, STL_CONTAINER_HOLES & H)
{
MESH::face_iterator pf;
int holesize;
for (pf=m.face.begin(); pf!=m.face.end(); ++pf)
if( !(*pf).IsD() && (*pf).IsW() )
(*pf).ClearV();
MESH::hedgepos_type ep;
for (pf=m.face.begin(); pf!=m.face.end(); ++pf)
{
if( !(*pf).IsDeleted() && !(*pf).IsV() && (*pf).IsR() )
{
for(int j=0; j<3; ++j)
if( (*pf).IsBorder(j) && !(*pf).IsV() && (*pf).IsR() )
{
(*pf).SetV();
ep.Set(&*pf, j, (*pf).V(j));
holesize = 0;
Box3<MESH::scalar_type> hbox;
if(ep.v->IsR()) hbox.Add(ep.v->cP());
MESH::hedgepos_type init;
init = ep;
do
{
ep.NextB();
ep.f->SetV();
if(ep.v->IsR()) hbox.Add(ep.v->cP());
++holesize;
}
while (ep != init);
H.push_back(HoleInfo<MESH>(ep,holesize,hbox));
break;
}
}
}
};
/*
Un ear e' identificato da due hedge pos.
i vertici dell'ear sono
e0.FlipV().v
e0.v
e1.v
Vale che e1== e0.NextB();
e che e1.FlipV() == e0;
Situazioni ear non manifold, e degeneri (buco triangolare)
T XXXXXXXXXXXXX A /XXXXX B en/XXXXX
/XXXXXXXXXXXXXXX /XXXXXX /XXXXXX
XXXXXXep==en XXX ep\ /en XXXX /e1 XXXX
XXXXXX ----/| XX ------ ----/| XX ------ ----/|XXX
XXXXXX| /e1 XX XXXXXX| /e1 XX XXXXXX| o/e0 XX
XXXXXX| /XXXXXX XXXXXX| /XXXXXX XXXXXX| /XXXXXX
XXX e0|o/XXXXXXX XXX e0|o/XXXXXXX XXX ep| /XXXXXXX
XXX \|/XXXXXXXX XXX \|/XXXXXXXX XXX \|/XXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
*/
template<class MSH_TYPE> class TrivialEar
{
public:
MSH_TYPE::hedgepos_type e0; //
MSH_TYPE::hedgepos_type e1; //
MSH_TYPE::scalar_type quality;
TrivialEar(){}
TrivialEar(const MSH_TYPE::hedgepos_type & ep)
{
e0=ep;
assert(e0.IsBorder());
e1=e0;
e1.NextB();
ComputeQuality();
}
// Nota: minori invertiti
inline bool operator < ( const TrivialEar & c ) const { return quality > c.quality; }
inline bool operator > ( const TrivialEar & c ) const { return quality < c.quality; }
inline bool operator == ( const TrivialEar & c ) const { return quality == c.quality; }
inline bool operator != ( const TrivialEar & c ) const { return quality != c.quality; }
inline bool operator >= ( const TrivialEar & c ) const { return quality <= c.quality; }
inline bool operator <= ( const TrivialEar & c ) const { return quality >= c.quality; }
bool IsNull(){return e0.IsNull() || e1.IsNull();}
void SetNull(){e0.SetNull();e1.SetNull();}
void ComputeQuality(){ quality = Distance(e0.VFlip()->P(),e1.v->P());};
bool IsUpToDate() {return (e0.IsBorder() && e1.IsBorder());};
bool Degen()
{
MSH_TYPE::hedgepos_type ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
MSH_TYPE::hedgepos_type en=e1; en.NextB(); // he successivo a e1
// caso ear degenere per buco triangolare
if(ep==en) return true;
// Caso ear non manifold a
if(ep.v==en.v) return true;
// Caso ear non manifold b
if(ep.VFlip()==e1.v) return true;
return false;
}
bool Close(TrivialEar &ne0, TrivialEar &ne1, MSH_TYPE::face_type* f)
{
// simple topological check
if(e0.f==e1.f) {
TRACE("Avoided bad ear");
return false;
}
//usato per generare una delle due nuove orecchie.
MSH_TYPE::hedgepos_type ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
MSH_TYPE::hedgepos_type en=e1; en.NextB(); // he successivo a e1
(*f).V(0) = e0.VFlip();
(*f).V(1) = e0.v;
(*f).V(2) = e1.v;
(*f).F(0) = e0.f;
(*f).Z(0) = e0.z;
(*f).F(1) = e1.f;
(*f).Z(1) = e1.z;
(*f).F(2) = f;
(*f).Z(2) = 2;
e0.f->F(e0.z)=f;
e0.f->Z(e0.z)=0;
e1.f->F(e1.z)=f;
e1.f->Z(e1.z)=1;
// caso ear degenere per buco triangolare
if(ep==en)
{
TRACE("Closing the last triangle");
f->F(2)=en.f;
f->Z(2)=en.z;
en.f->F(en.z)=f;
en.f->Z(en.z)=2;
ne0.SetNull();
ne1.SetNull();
}
// Caso ear non manifold a
else if(ep.v==en.v)
{
TRACE("Ear Non manif A\n");
MSH_TYPE::hedgepos_type enold=en;
en.NextB();
f->F(2)=enold.f;
f->Z(2)=enold.z;
enold.f->F(enold.z)=f;
enold.f->Z(enold.z)=2;
ne0=TrivialEar(ep);
ne1=TrivialEar(en);
}
// Caso ear non manifold b
else if(ep.VFlip()==e1.v)
{
TRACE("Ear Non manif B\n");
MSH_TYPE::hedgepos_type epold=ep;
ep.FlipV(); ep.NextB(); ep.FlipV();
f->F(2)=epold.f;
f->Z(2)=epold.z;
epold.f->F(epold.z)=f;
epold.f->Z(epold.z)=2;
ne0=TrivialEar(ep);
ne1=TrivialEar(en);
}
else // caso standard
// Now compute the new ears;
{
ne0=TrivialEar(ep);
ne1=TrivialEar(MSH_TYPE::hedgepos_type(f,2,e1.v));
}
return true;
}
};
// Funzione principale per chiudier un buco in maniera topologicamente corretta.
// Gestisce situazioni non manifold ragionevoli
// (tutte eccetto quelle piu' di 2 facce per 1 edge).
// Controlla che non si generino nuove situazioni non manifold chiudendo orecchie
// che sottendono un edge che gia'esiste.
//
// Attenzione: se per riaggiungere facce deve riallocare il vettore non funge!!!!
//
template<class MESH, class EAR>
MESH::face_iterator CloseHole(MESH &m, HoleInfo<MESH> &h)
{
set<SimpleEdge<MESH> > ES; // vettore con tutti gli edge adiacenti al buco.
h.CollectEdges(ES);
vector<EAR> H; // Heap delle ear da chiudere
H.reserve(h.size);
assert(h.p.IsBorder());
MESH::hedgepos_type ep=h.p;
do {
H.push_back(EAR(ep));
ep.NextB();
} while(ep!=h.p);
make_heap(H.begin(),H.end());
int cnt=h.size;
EAR en0,en1;
MESH::face_iterator f=m.AddFaces(h.size-2);
MESH::face_iterator firstf=f;
SimpleEdge<MESH> se(0,0);
while(cnt>2 && !H.empty())
{
pop_heap(H.begin(),H.end());
se=SimpleEdge<MESH>(H.back().e0.VFlip(), H.back().e1.v);
if(H.back().IsUpToDate())
{
if(!H.back().Degen() && ES.find(se)!=ES.end()){
// Nota che nel caso di ear degeneri si DEVE permettere la creazione di un edge che gia'esiste
TRACE("Evitata orecchia brutta!");
}
else if(H.back().Close(en0,en1,&*f))
{
ES.insert(se);
if(!en0.IsNull()){
H.push_back(en0);
push_heap( H.begin(), H.end());
}
if(!en1.IsNull()){
H.push_back(en1);
push_heap( H.begin(), H.end());
}
--cnt;
++f;
//return firstf;///////////////dbug
}
}
H.pop_back();
}
//Delete the unused faces (caused by non 1-manifold vertexes)
while(f!=m.face.end())
{
(*f).SetD();
++f;
m.fn--;
}
return firstf;
};
/*
Trivial Ear con preferred Normal
*/
template<class MSH_TYPE> class TrivialEarN : public TrivialEar<MSH_TYPE>
{
public:
TrivialEarN(){}
TrivialEarN(const MSH_TYPE::hedgepos_type & ep)
{
e0=ep;
assert(e0.IsBorder());
e1=e0;
e1.NextB();
ComputeQuality();
}
static MSH_TYPE::vectorial_type &PreferredNormal()
{
static MSH_TYPE::vectorial_type nn;
return nn;
}
void ComputeQuality(){
Point3d nn= -Normal( e0.VFlip()->P(), e0.v->P(), e1.v->P());
quality = Distance(e0.VFlip()->P(),e1.v->P());
if(nn*PreferredNormal() < -0.1)
quality*=1000000;
};
};
/* 2d Triangulation Code */
class Triangulate2D
{
static double Area(const vector<Point2d> &contour)
{
int n = contour.size();
double A=0.0f;
for(int p=n-1,q=0; q<n; p=q++) {
A+= contour[p].x()*contour[q].y() - contour[q].x()*contour[p].y();
}
return A*0.5f;
}
/*
InsideTriangle decides if a point P is Inside of the triangle
defined by A, B, C.
*/
static bool InsideTriangle(double Ax, double Ay,
double Bx, double By,
double Cx, double Cy,
double Px, double Py)
{
double ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
double cCROSSap, bCROSScp, aCROSSbp;
ax = Cx - Bx; ay = Cy - By;
bx = Ax - Cx; by = Ay - Cy;
cx = Bx - Ax; cy = By - Ay;
apx= Px - Ax; apy= Py - Ay;
bpx= Px - Bx; bpy= Py - By;
cpx= Px - Cx; cpy= Py - Cy;
aCROSSbp = ax*bpy - ay*bpx;
cCROSSap = cx*apy - cy*apx;
bCROSScp = bx*cpy - by*cpx;
return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
};
static bool Snip(const vector<Point2d> &contour,int u,int v,int w,int n,int *V)
{
int p;
double Ax, Ay, Bx, By, Cx, Cy, Px, Py;
const double epsilon =1e-2;
Ax = contour[V[u]].x();
Ay = contour[V[u]].y();
Bx = contour[V[v]].x();
By = contour[V[v]].y();
Cx = contour[V[w]].x();
Cy = contour[V[w]].y();
if ( epsilon> (((Bx-Ax)*(Cy-Ay)) - ((By-Ay)*(Cx-Ax))) ) return false;
for (p=0;p<n;p++)
{
if( (p == u) || (p == v) || (p == w) ) continue;
Px = contour[V[p]].x();
Py = contour[V[p]].y();
if (InsideTriangle(Ax,Ay,Bx,By,Cx,Cy,Px,Py)) return false;
}
return true;
}
public:
static bool Process(const vector<Point2d> &contour,vector<int> &result)
{
/* allocate and initialize list of Vertices in polygon */
int n = contour.size();
double area=Area(contour);
if ( n < 3 ) return false;
int *V = new int[n];
/* we want a counter-clockwise polygon in V */
if ( 0.0f < area ) for (int v=0; v<n; v++) V[v] = v;
else{
for(int v=0; v<n; v++) V[v] = (n-1)-v;
area=-area;
}
int nv = n;
/* remove nv-2 Vertices, creating 1 triangle every time */
int count = 2*nv; /* error detection */
double CurrBest=Sqrt(area)/1000;
for(int m=0, v=nv-1; nv>2; )
{
count--;
/* if we loop, it is probably a non-simple polygon */
if( count<0)
{
CurrBest*=1.3;
count = 2*nv;
if(CurrBest>Sqrt(area)*2)
return false;
}
/* three consecutive vertices in current polygon, <u,v,w> */
int u = v ; if (nv <= u) u = 0; /* previous */
v = u+1; if (nv <= v) v = 0; /* new v */
int w = v+1; if (nv <= w) w = 0; /* next */
if(Distance(contour[u],contour[w]) < CurrBest)
if ( Snip(contour,u,v,w,nv,V) )
{
int a,b,c,s,t;
/* true names of the vertices */
a = V[u]; b = V[v]; c = V[w];
/* output Triangle */
result.push_back( a );
result.push_back( b );
result.push_back( c );
m++;
/* remove v from remaining polygon */
for(s=v,t=v+1;t<nv;s++,t++) V[s] = V[t];
nv--;
/* resest error detection counter */
count = 2*nv;
}
}
delete V;
return true;
}
};
} // end namespace
#endif