vcglib/vcg/complex/algorithms/update/topology.h

530 lines
14 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_TOPOLOGY
#define __VCG_TRI_UPDATE_TOPOLOGY
#include <algorithm>
#include <vector>
#include <vcg/simplex/face/pos.h>
#include <vcg/complex/complex.h>
namespace vcg {
namespace tri {
/// \ingroup trimesh
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
/// \brief Generation of per-vertex and per-face topological information.
template <class UpdateMeshType>
class UpdateTopology
{
public:
typedef UpdateMeshType MeshType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgePointer EdgePointer;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
/// \brief Auxiliairy data structure for computing face face adjacency information.
/**
It identifies and edge storing two vertex pointer and a face pointer where it belong.
*/
class PEdge
{
public:
VertexPointer v[2]; // the two Vertex pointer are ordered!
FacePointer f; // the face where this edge belong
int z; // index in [0..2] of the edge of the face
PEdge() {}
void Set( FacePointer pf, const int nz )
{
assert(pf!=0);
assert(nz>=0);
assert(nz<pf->VN());
v[0] = pf->V(nz);
v[1] = pf->V(pf->Next(nz));
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
if( v[0] > v[1] ) math::Swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const PEdge & pe ) const
{
if( v[0]<pe.v[0] ) return true;
else if( v[0]>pe.v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const PEdge & pe ) const
{
return v[0]==pe.v[0] && v[1]==pe.v[1];
}
};
// Fill a vector with all the edges of the mesh.
// each edge is stored in the vector the number of times that it appears in the mesh, with the referring face.
// optionally it can skip the faux edges (to retrieve only the real edges of a triangulated polygonal mesh)
static void FillEdgeVector(MeshType &m, std::vector<PEdge> &e, bool includeFauxEdge=true)
{
FaceIterator pf;
typename std::vector<PEdge>::iterator p;
// Alloco il vettore ausiliario
//e.resize(m.fn*3);
FaceIterator fi;
int n_edges = 0;
for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN();
e.resize(n_edges);
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf)
if( ! (*pf).IsD() )
for(int j=0;j<(*pf).VN();++j)
if(includeFauxEdge || !(*pf).IsF(j))
{
(*p).Set(&(*pf),j);
++p;
}
if(includeFauxEdge) assert(p==e.end());
else e.resize(p-e.begin());
}
static void FillUniqueEdgeVector(MeshType &m, std::vector<PEdge> &Edges, bool includeFauxEdge=true)
{
FillEdgeVector(m,Edges,includeFauxEdge);
sort(Edges.begin(), Edges.end()); // Lo ordino per vertici
typename std::vector< PEdge>::iterator newEnd = std::unique(Edges.begin(), Edges.end());
typename std::vector<PEdge>::iterator ei;
Edges.resize(newEnd-Edges.begin());
}
/// \brief Update the Face-Face topological relation by allowing to retrieve for each face what other faces shares their edges.
static void FaceFace(MeshType &m)
{
assert(HasFFAdjacency(m));
if( m.fn == 0 ) return;
std::vector<PEdge> e;
FillEdgeVector(m,e);
sort(e.begin(), e.end()); // Lo ordino per vertici
int ne = 0; // Numero di edge reali
typename std::vector<PEdge>::iterator pe,ps;
ps = e.begin();pe=e.begin();
//for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario
do
{
if( pe==e.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali
{
typename std::vector<PEdge>::iterator q,q_next;
for (q=ps;q<pe-1;++q) // Scansione facce associate
{
assert((*q).z>=0);
//assert((*q).z< 3);
q_next = q;
++q_next;
assert((*q_next).z>=0);
assert((*q_next).z< (*q_next).f->VN());
(*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce
(*q).f->FFi(q->z) = (*q_next).z;
}
assert((*q).z>=0);
assert((*q).z< (*q).f->VN());
(*q).f->FFp((*q).z) = ps->f;
(*q).f->FFi((*q).z) = ps->z;
ps = pe;
++ne; // Aggiorno il numero di edge
}
if(pe==e.end()) break;
++pe;
} while(true);
}
/// \brief Update the Vertex-Face topological relation.
/**
The function allows to retrieve for each vertex the list of faces sharing this vertex.
*/
static void VertexFace(MeshType &m)
{
if(!m.HasVFTopology()) return;
VertexIterator vi;
FaceIterator fi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
(*vi).VFp() = 0;
(*vi).VFi() = 0;
}
for(fi=m.face.begin();fi!=m.face.end();++fi)
if( ! (*fi).IsD() )
{
for(int j=0;j<(*fi).VN();++j)
{
(*fi).VFp(j) = (*fi).V(j)->VFp();
(*fi).VFi(j) = (*fi).V(j)->VFi();
(*fi).V(j)->VFp() = &(*fi);
(*fi).V(j)->VFi() = j;
}
}
}
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
/// \brief Auxiliairy data structure for computing face face adjacency information.
/**
It identifies and edge storing two vertex pointer and a face pointer where it belong.
*/
class PEdgeTex
{
public:
typename FaceType::TexCoordType v[2]; // the two Vertex pointer are ordered!
FacePointer f; // the face where this edge belong
int z; // index in [0..2] of the edge of the face
PEdgeTex() {}
void Set( FacePointer pf, const int nz )
{
assert(pf!=0);
assert(nz>=0);
assert(nz<3);
v[0] = pf->WT(nz);
v[1] = pf->WT(pf->Next(nz));
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
if( v[1] < v[0] ) std::swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const PEdgeTex & pe ) const
{
if( v[0]<pe.v[0] ) return true;
else if( pe.v[0]<v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const PEdgeTex & pe ) const
{
return (v[0]==pe.v[0]) && (v[1]==pe.v[1]);
}
inline bool operator != ( const PEdgeTex & pe ) const
{
return (v[0]!=pe.v[0]) || (v[1]!=pe.v[1]);
}
};
/// \brief Update the Face-Face topological relation
/**
The function allows to retrieve for each face what other faces shares their edges.
*/
static void FaceFaceFromTexCoord(MeshType &m)
{
// assert(HasFFTopology(m));
assert(HasPerWedgeTexCoord(m));
std::vector<PEdgeTex> e;
FaceIterator pf;
typename std::vector<PEdgeTex>::iterator p;
if( m.fn == 0 ) return;
// e.resize(m.fn*3); // Alloco il vettore ausiliario
FaceIterator fi;
int n_edges = 0;
for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN();
e.resize(n_edges);
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<(*pf).VN();++j)
{
if( (*pf).WT(j) != (*pf).WT((*pf).Next(j)))
{
(*p).Set(&(*pf),j);
++p;
}
}
e.resize(p-e.begin()); // remove from the end of the edge vector the unitiailized ones
assert(p==e.end());
sort(e.begin(), e.end());
int ne = 0; // number of real edges
typename std::vector<PEdgeTex>::iterator pe,ps;
ps = e.begin();pe=e.begin();
//for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario
do
{
if( pe==e.end() || (*pe) != (*ps) ) // Trovo blocco di edge uguali
{
typename std::vector<PEdgeTex>::iterator q,q_next;
for (q=ps;q<pe-1;++q) // Scansione facce associate
{
assert((*q).z>=0);
assert((*q).z< 3);
q_next = q;
++q_next;
assert((*q_next).z>=0);
assert((*q_next).z< (*q_next).f->VN());
(*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce
(*q).f->FFi(q->z) = (*q_next).z;
}
assert((*q).z>=0);
assert((*q).z< (*q).f->VN());
(*q).f->FFp((*q).z) = ps->f;
(*q).f->FFi((*q).z) = ps->z;
ps = pe;
++ne; // Aggiorno il numero di edge
}
if(pe==e.end()) break;
++pe;
} while(true);
}
/// \brief Test correctness of VFtopology
static void TestVertexFace(MeshType &m)
{
SimpleTempData<typename MeshType::VertContainer, int > numVertex(m.vert,0);
if(!m.HasVFTopology()) return;
FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
if (!(*fi).IsD())
{
numVertex[(*fi).V0(0)]++;
numVertex[(*fi).V1(0)]++;
numVertex[(*fi).V2(0)]++;
}
}
VertexIterator vi;
vcg::face::VFIterator<FaceType> VFi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if (!vi->IsD())
if(vi->VFp()!=0) // unreferenced vertices MUST have VF == 0;
{
int num=0;
assert(vi->VFp() >= &*m.face.begin());
assert(vi->VFp() <= &m.face.back());
VFi.f=vi->VFp();
VFi.z=vi->VFi();
while (!VFi.End())
{
num++;
assert(!VFi.F()->IsD());
assert((VFi.F()->V(VFi.I()))==&(*vi));
++VFi;
}
int num1=numVertex[&(*vi)];
assert(num==num1);
/*assert(num>1);*/
}
}
}
/// \brief Test correctness of FFtopology (only for 2Manifold Meshes!)
static void TestFaceFace(MeshType &m)
{
if(!m.HasFFTopology()) return;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if (!fi->IsD())
{
for (int i=0;i<(*fi).VN();i++)
{
FaceType *ffpi=fi->FFp(i);
int e=fi->FFi(i);
//invariant property of FF topology for two manifold meshes
assert(ffpi->FFp(e) == &(*fi));
assert(ffpi->FFi(e) == i);
// Test that the two faces shares the same edge
// Vertices of the i-th edges of the first face
VertexPointer v0i= fi->V0(i);
VertexPointer v1i= fi->V1(i);
// Vertices of the corresponding edge on the other face
VertexPointer ffv0i= ffpi->V0(e);
VertexPointer ffv1i= ffpi->V1(e);
assert( (ffv0i==v0i) || (ffv0i==v1i) );
assert( (ffv1i==v0i) || (ffv1i==v1i) );
}
}
}
}
/// Auxiliairy data structure for computing edge edge adjacency information.
/// It identifies an edge storing a vertex pointer and a edge pointer where it belong.
class PVertexEdge
{
public:
VertexPointer v; // the two Vertex pointer are ordered!
EdgePointer e; // the edge where this vertex belong
int z; // index in [0..1] of the vertex of the edge
PVertexEdge( ) {}
PVertexEdge( EdgePointer pe, const int nz )
{
assert(pe!=0);
assert(nz>=0);
assert(nz<2);
v= pe->V(nz);
e = pe;
z = nz;
}
inline bool operator < ( const PVertexEdge & pe ) const { return ( v<pe.v ); }
inline bool operator == ( const PVertexEdge & pe ) const { return ( v==pe.v ); }
inline bool operator != ( const PVertexEdge & pe ) const { return ( v!=pe.v ); }
};
static void EdgeEdge(MeshType &m)
{
if(!HasEEAdjacency(m)) return;
std::vector<PVertexEdge> v;
if( m.en == 0 ) return;
// printf("Inserting Edges\n");
for(EdgeIterator pf=m.edge.begin(); pf!=m.edge.end(); ++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<2;++j)
{
// printf("egde %i ind %i (%i %i)\n",tri::Index(m,&*pf),j,tri::Index(m,pf->V(0)),tri::Index(m,pf->V(1)));
v.push_back(PVertexEdge(&*pf,j));
}
// printf("en = %i (%i)\n",m.en,m.edge.size());
sort(v.begin(), v.end()); // Lo ordino per vertici
int ne = 0; // Numero di edge reali
typename std::vector<PVertexEdge>::iterator pe,ps;
for(ps = v.begin(),pe=v.begin();pe<=v.end();++pe) // Scansione vettore ausiliario
{
// printf("v %i -> e %i\n",tri::Index(m,(*ps).v),tri::Index(m,(*ps).e));
if( pe==v.end() || *pe != *ps ) // Trovo blocco di edge uguali
{
typename std::vector<PVertexEdge>::iterator q,q_next;
for (q=ps;q<pe-1;++q) // Scansione edge associati
{
assert((*q).z>=0);
assert((*q).z< 2);
q_next = q;
++q_next;
assert((*q_next).z>=0);
assert((*q_next).z< 2);
(*q).e->EEp(q->z) = (*q_next).e; // Collegamento in lista delle facce
(*q).e->EEi(q->z) = (*q_next).z;
}
assert((*q).z>=0);
assert((*q).z< 2);
(*q).e->EEp((*q).z) = ps->e;
(*q).e->EEi((*q).z) = ps->z;
ps = pe;
++ne; // Aggiorno il numero di edge
}
}
}
static void VertexEdge(MeshType &m)
{
if(!m.HasVETopology()) return;
VertexIterator vi;
EdgeIterator ei;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
(*vi).Ep() = 0;
(*vi).Ei() = 0;
}
for(ei=m.edges.begin();ei!=m.edges.end();++ei)
if( ! (*ei).IsD() )
{
for(int j=0;j<2;++j)
{
(*ei).Ev(j) = (*ei).V(j)->Ep();
(*ei).Zv(j) = (*ei).V(j)->Ei();
(*ei).V(j)->Ep() = &(*ei);
(*ei).V(j)->Ei() = j;
}
}
}
}; // end class
} // End namespace
} // End namespace
#endif