516 lines
16 KiB
C++
516 lines
16 KiB
C++
/****************************************************************************
|
||
* VCGLib o o *
|
||
* Visual and Computer Graphics Library o o *
|
||
* _ O _ *
|
||
* Copyright(C) 2004 \/)\/ *
|
||
* Visual Computing Lab /\/| *
|
||
* ISTI - Italian National Research Council | *
|
||
* \ *
|
||
* All rights reserved. *
|
||
* *
|
||
* This program is free software; you can redistribute it and/or modify *
|
||
* it under the terms of the GNU General Public License as published by *
|
||
* the Free Software Foundation; either version 2 of the License, or *
|
||
* (at your option) any later version. *
|
||
* *
|
||
* This program is distributed in the hope that it will be useful, *
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
* for more details. *
|
||
* *
|
||
****************************************************************************/
|
||
|
||
#ifndef VCG_USE_EIGEN
|
||
#include "deprecated_matrix44.h"
|
||
#else
|
||
|
||
#ifndef __VCGLIB_MATRIX44
|
||
#define __VCGLIB_MATRIX44
|
||
|
||
#include "eigen.h"
|
||
#include <vcg/space/point3.h>
|
||
#include <vcg/space/point4.h>
|
||
#include <memory.h>
|
||
#include <vector>
|
||
|
||
namespace vcg{
|
||
template<class Scalar> class Matrix44;
|
||
}
|
||
|
||
namespace Eigen{
|
||
template<typename Scalar>
|
||
struct ei_traits<vcg::Matrix44<Scalar> > : ei_traits<Eigen::Matrix<Scalar,4,4,RowMajor> > {};
|
||
}
|
||
|
||
namespace vcg {
|
||
|
||
/*
|
||
Annotations:
|
||
Opengl stores matrix in column-major order. That is, the matrix is stored as:
|
||
|
||
a0 a4 a8 a12
|
||
a1 a5 a9 a13
|
||
a2 a6 a10 a14
|
||
a3 a7 a11 a15
|
||
|
||
Usually in opengl (see opengl specs) vectors are 'column' vectors
|
||
so usually matrix are PRE-multiplied for a vector.
|
||
So the command glTranslate generate a matrix that
|
||
is ready to be premultipled for a vector:
|
||
|
||
1 0 0 tx
|
||
0 1 0 ty
|
||
0 0 1 tz
|
||
0 0 0 1
|
||
|
||
Matrix44 stores matrix in row-major order i.e.
|
||
|
||
a0 a1 a2 a3
|
||
a4 a5 a6 a7
|
||
a8 a9 a10 a11
|
||
a12 a13 a14 a15
|
||
|
||
So for the use of that matrix in opengl with their supposed meaning you have to transpose them before feeding to glMultMatrix.
|
||
This mechanism is hidden by the templated function defined in wrap/gl/math.h;
|
||
If your machine has the ARB_transpose_matrix extension it will use the appropriate;
|
||
The various gl-like command SetRotate, SetTranslate assume that you are making matrix
|
||
for 'column' vectors.
|
||
|
||
*/
|
||
|
||
|
||
/** This class represents a 4x4 matrix. T is the kind of element in the matrix.
|
||
*/
|
||
template<typename _Scalar>
|
||
class Matrix44 : public Eigen::Matrix<_Scalar,4,4,Eigen::RowMajor> // FIXME col or row major !
|
||
{
|
||
|
||
typedef Eigen::Matrix<_Scalar,4,4,Eigen::RowMajor> _Base;
|
||
using _Base::coeff;
|
||
using _Base::coeffRef;
|
||
using _Base::ElementAt;
|
||
using _Base::setZero;
|
||
|
||
public:
|
||
|
||
_EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix44,_Base);
|
||
typedef _Scalar ScalarType;
|
||
|
||
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Matrix44)
|
||
|
||
Matrix44() : Base() {}
|
||
~Matrix44() {}
|
||
Matrix44(const Matrix44 &m) : Base(m) {}
|
||
Matrix44(const Scalar * v ) : Base(Eigen::Map<Eigen::Matrix<Scalar,4,4,Eigen::RowMajor> >(v)) {}
|
||
|
||
template<typename OtherDerived>
|
||
Matrix44(const Eigen::MatrixBase<OtherDerived>& other) : Base(other) {}
|
||
|
||
const typename Base::RowXpr operator[](int i) const { return Base::row(i); }
|
||
typename Base::RowXpr operator[](int i) { return Base::row(i); }
|
||
|
||
typename Base::ColXpr GetColumn4(const int& i) const { return Base::col(i); }
|
||
const Eigen::Block<Base,3,1> GetColumn3(const int& i) const { return this->template block<3,1>(0,i); }
|
||
|
||
typename Base::RowXpr GetRow4(const int& i) const { return Base::row(i); }
|
||
Eigen::Block<Base,1,3> GetRow3(const int& i) const { return this->template block<1,3>(i,0); }
|
||
|
||
template <class Matrix44Type>
|
||
void ToMatrix(Matrix44Type & m) const { m = (*this).template cast<typename Matrix44Type::Scalar>(); }
|
||
|
||
void ToEulerAngles(Scalar &alpha, Scalar &beta, Scalar &gamma);
|
||
|
||
template <class Matrix44Type>
|
||
void FromMatrix(const Matrix44Type & m) { for(int i = 0; i < 16; i++) Base::data()[i] = m.data()[i]; }
|
||
|
||
void FromEulerAngles(Scalar alpha, Scalar beta, Scalar gamma);
|
||
void SetDiagonal(const Scalar k);
|
||
Matrix44 &SetScale(const Scalar sx, const Scalar sy, const Scalar sz);
|
||
Matrix44 &SetScale(const Point3<Scalar> &t);
|
||
Matrix44 &SetTranslate(const Point3<Scalar> &t);
|
||
Matrix44 &SetTranslate(const Scalar sx, const Scalar sy, const Scalar sz);
|
||
Matrix44 &SetShearXY(const Scalar sz);
|
||
Matrix44 &SetShearXZ(const Scalar sy);
|
||
Matrix44 &SetShearYZ(const Scalar sx);
|
||
|
||
///use radiants for angle.
|
||
Matrix44 &SetRotateDeg(Scalar AngleDeg, const Point3<Scalar> & axis);
|
||
Matrix44 &SetRotateRad(Scalar AngleRad, const Point3<Scalar> & axis);
|
||
|
||
template <class Q> void Import(const Matrix44<Q> &m) {
|
||
for(int i = 0; i < 16; i++)
|
||
Base::data()[i] = (Scalar)(m.data()[i]);
|
||
}
|
||
template <class Q>
|
||
static inline Matrix44 Construct( const Matrix44<Q> & b )
|
||
{
|
||
Matrix44 tmp; tmp.FromMatrix(b);
|
||
return tmp;
|
||
}
|
||
|
||
|
||
};
|
||
|
||
|
||
/** Class for solving A * x = b. */
|
||
template <class T> class LinearSolve: public Matrix44<T> {
|
||
public:
|
||
LinearSolve(const Matrix44<T> &m);
|
||
Point4<T> Solve(const Point4<T> &b); // solve A <20> x = b
|
||
///If you need to solve some equation you can use this function instead of Matrix44 one for speed.
|
||
T Determinant() const;
|
||
protected:
|
||
///Holds row permutation.
|
||
int index[4]; //hold permutation
|
||
///Hold sign of row permutation (used for determinant sign)
|
||
T d;
|
||
bool Decompose();
|
||
};
|
||
|
||
/*** Postmultiply */
|
||
//template <class T> Point3<T> operator*(const Point3<T> &p, const Matrix44<T> &m);
|
||
|
||
///Premultiply
|
||
template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p);
|
||
|
||
//return NULL matrix if not invertible
|
||
template <class T> Matrix44<T> &Invert(Matrix44<T> &m);
|
||
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m);
|
||
|
||
typedef Matrix44<short> Matrix44s;
|
||
typedef Matrix44<int> Matrix44i;
|
||
typedef Matrix44<float> Matrix44f;
|
||
typedef Matrix44<double> Matrix44d;
|
||
|
||
|
||
//template <class T> T &Matrix44<T>::operator[](const int i) {
|
||
// assert(i >= 0 && i < 16);
|
||
// return ((T *)_a)[i];
|
||
//}
|
||
//
|
||
//template <class T> const T &Matrix44<T>::operator[](const int i) const {
|
||
// assert(i >= 0 && i < 16);
|
||
// return ((T *)_a)[i];
|
||
//}
|
||
|
||
|
||
template < class PointType , class T > void operator*=( std::vector<PointType> &vert, const Matrix44<T> & m ) {
|
||
typename std::vector<PointType>::iterator ii;
|
||
for(ii=vert.begin();ii!=vert.end();++ii)
|
||
(*ii).P()=m * (*ii).P();
|
||
}
|
||
|
||
template <class T>
|
||
void Matrix44<T>::ToEulerAngles(Scalar &alpha, Scalar &beta, Scalar &gamma)
|
||
{
|
||
alpha = atan2(coeff(1,2), coeff(2,2));
|
||
beta = asin(-coeff(0,2));
|
||
gamma = atan2(coeff(0,1), coeff(1,1));
|
||
}
|
||
|
||
template <class T>
|
||
void Matrix44<T>::FromEulerAngles(Scalar alpha, Scalar beta, Scalar gamma)
|
||
{
|
||
this->SetZero();
|
||
|
||
T cosalpha = cos(alpha);
|
||
T cosbeta = cos(beta);
|
||
T cosgamma = cos(gamma);
|
||
T sinalpha = sin(alpha);
|
||
T sinbeta = sin(beta);
|
||
T singamma = sin(gamma);
|
||
|
||
ElementAt(0,0) = cosbeta * cosgamma;
|
||
ElementAt(1,0) = -cosalpha * singamma + sinalpha * sinbeta * cosgamma;
|
||
ElementAt(2,0) = sinalpha * singamma + cosalpha * sinbeta * cosgamma;
|
||
|
||
ElementAt(0,1) = cosbeta * singamma;
|
||
ElementAt(1,1) = cosalpha * cosgamma + sinalpha * sinbeta * singamma;
|
||
ElementAt(2,1) = -sinalpha * cosgamma + cosalpha * sinbeta * singamma;
|
||
|
||
ElementAt(0,2) = -sinbeta;
|
||
ElementAt(1,2) = sinalpha * cosbeta;
|
||
ElementAt(2,2) = cosalpha * cosbeta;
|
||
|
||
ElementAt(3,3) = 1;
|
||
}
|
||
|
||
template <class T> void Matrix44<T>::SetDiagonal(const Scalar k) {
|
||
setZero();
|
||
ElementAt(0, 0) = k;
|
||
ElementAt(1, 1) = k;
|
||
ElementAt(2, 2) = k;
|
||
ElementAt(3, 3) = 1;
|
||
}
|
||
|
||
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const Point3<Scalar> &t) {
|
||
SetScale(t[0], t[1], t[2]);
|
||
return *this;
|
||
}
|
||
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const Scalar sx, const Scalar sy, const Scalar sz) {
|
||
setZero();
|
||
ElementAt(0, 0) = sx;
|
||
ElementAt(1, 1) = sy;
|
||
ElementAt(2, 2) = sz;
|
||
ElementAt(3, 3) = 1;
|
||
return *this;
|
||
}
|
||
|
||
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const Point3<Scalar> &t) {
|
||
SetTranslate(t[0], t[1], t[2]);
|
||
return *this;
|
||
}
|
||
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const Scalar tx, const Scalar ty, const Scalar tz) {
|
||
Base::setIdentity();
|
||
ElementAt(0, 3) = tx;
|
||
ElementAt(1, 3) = ty;
|
||
ElementAt(2, 3) = tz;
|
||
return *this;
|
||
}
|
||
|
||
template <class T> Matrix44<T> &Matrix44<T>::SetRotateDeg(Scalar AngleDeg, const Point3<Scalar> & axis) {
|
||
return SetRotateRad(math::ToRad(AngleDeg),axis);
|
||
}
|
||
|
||
template <class T> Matrix44<T> &Matrix44<T>::SetRotateRad(Scalar AngleRad, const Point3<Scalar> & axis) {
|
||
//angle = angle*(T)3.14159265358979323846/180; e' in radianti!
|
||
T c = math::Cos(AngleRad);
|
||
T s = math::Sin(AngleRad);
|
||
T q = 1-c;
|
||
Point3<T> t = axis;
|
||
t.Normalize();
|
||
ElementAt(0,0) = t[0]*t[0]*q + c;
|
||
ElementAt(0,1) = t[0]*t[1]*q - t[2]*s;
|
||
ElementAt(0,2) = t[0]*t[2]*q + t[1]*s;
|
||
ElementAt(0,3) = 0;
|
||
ElementAt(1,0) = t[1]*t[0]*q + t[2]*s;
|
||
ElementAt(1,1) = t[1]*t[1]*q + c;
|
||
ElementAt(1,2) = t[1]*t[2]*q - t[0]*s;
|
||
ElementAt(1,3) = 0;
|
||
ElementAt(2,0) = t[2]*t[0]*q -t[1]*s;
|
||
ElementAt(2,1) = t[2]*t[1]*q +t[0]*s;
|
||
ElementAt(2,2) = t[2]*t[2]*q +c;
|
||
ElementAt(2,3) = 0;
|
||
ElementAt(3,0) = 0;
|
||
ElementAt(3,1) = 0;
|
||
ElementAt(3,2) = 0;
|
||
ElementAt(3,3) = 1;
|
||
return *this;
|
||
}
|
||
|
||
/* Shear Matrixes
|
||
XY
|
||
1 k 0 0 x x+ky
|
||
0 1 0 0 y y
|
||
0 0 1 0 z z
|
||
0 0 0 1 1 1
|
||
|
||
1 0 k 0 x x+kz
|
||
0 1 0 0 y y
|
||
0 0 1 0 z z
|
||
0 0 0 1 1 1
|
||
|
||
1 1 0 0 x x
|
||
0 1 k 0 y y+kz
|
||
0 0 1 0 z z
|
||
0 0 0 1 1 1
|
||
|
||
*/
|
||
|
||
template <class T> Matrix44<T> & Matrix44<T>::SetShearXY( const Scalar sh) {// shear the X coordinate as the Y coordinate change
|
||
Base::setIdentity();
|
||
ElementAt(0,1) = sh;
|
||
return *this;
|
||
}
|
||
|
||
template <class T> Matrix44<T> & Matrix44<T>::SetShearXZ( const Scalar sh) {// shear the X coordinate as the Z coordinate change
|
||
Base::setIdentity();
|
||
ElementAt(0,2) = sh;
|
||
return *this;
|
||
}
|
||
|
||
template <class T> Matrix44<T> &Matrix44<T>::SetShearYZ( const Scalar sh) {// shear the Y coordinate as the Z coordinate change
|
||
Base::setIdentity();
|
||
ElementAt(1,2) = sh;
|
||
return *this;
|
||
}
|
||
|
||
|
||
/*
|
||
Given a non singular, non projective matrix (e.g. with the last row equal to [0,0,0,1] )
|
||
This procedure decompose it in a sequence of
|
||
Scale,Shear,Rotation e Translation
|
||
|
||
- ScaleV and Tranv are obiviously scaling and translation.
|
||
- ShearV contains three scalars with, respectively
|
||
ShearXY, ShearXZ e ShearYZ
|
||
- RotateV contains the rotations (in degree!) around the x,y,z axis
|
||
The input matrix is modified leaving inside it a simple roto translation.
|
||
|
||
To obtain the original matrix the above transformation have to be applied in the strict following way:
|
||
|
||
OriginalMatrix = Trn * Rtx*Rty*Rtz * ShearYZ*ShearXZ*ShearXY * Scl
|
||
|
||
Example Code:
|
||
double srv() { return (double(rand()%40)-20)/2.0; } // small random value
|
||
|
||
srand(time(0));
|
||
Point3d ScV(10+srv(),10+srv(),10+srv()),ScVOut(-1,-1,-1);
|
||
Point3d ShV(srv(),srv(),srv()),ShVOut(-1,-1,-1);
|
||
Point3d RtV(10+srv(),srv(),srv()),RtVOut(-1,-1,-1);
|
||
Point3d TrV(srv(),srv(),srv()),TrVOut(-1,-1,-1);
|
||
|
||
Matrix44d Scl; Scl.SetScale(ScV);
|
||
Matrix44d Sxy; Sxy.SetShearXY(ShV[0]);
|
||
Matrix44d Sxz; Sxz.SetShearXZ(ShV[1]);
|
||
Matrix44d Syz; Syz.SetShearYZ(ShV[2]);
|
||
Matrix44d Rtx; Rtx.SetRotate(math::ToRad(RtV[0]),Point3d(1,0,0));
|
||
Matrix44d Rty; Rty.SetRotate(math::ToRad(RtV[1]),Point3d(0,1,0));
|
||
Matrix44d Rtz; Rtz.SetRotate(math::ToRad(RtV[2]),Point3d(0,0,1));
|
||
Matrix44d Trn; Trn.SetTranslate(TrV);
|
||
|
||
Matrix44d StartM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy *Scl;
|
||
Matrix44d ResultM=StartM;
|
||
Decompose(ResultM,ScVOut,ShVOut,RtVOut,TrVOut);
|
||
|
||
Scl.SetScale(ScVOut);
|
||
Sxy.SetShearXY(ShVOut[0]);
|
||
Sxz.SetShearXZ(ShVOut[1]);
|
||
Syz.SetShearYZ(ShVOut[2]);
|
||
Rtx.SetRotate(math::ToRad(RtVOut[0]),Point3d(1,0,0));
|
||
Rty.SetRotate(math::ToRad(RtVOut[1]),Point3d(0,1,0));
|
||
Rtz.SetRotate(math::ToRad(RtVOut[2]),Point3d(0,0,1));
|
||
Trn.SetTranslate(TrVOut);
|
||
|
||
// Now Rebuild is equal to StartM
|
||
Matrix44d RebuildM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy * Scl ;
|
||
*/
|
||
template <class T>
|
||
bool Decompose(Matrix44<T> &M, Point3<T> &ScaleV, Point3<T> &ShearV, Point3<T> &RotV,Point3<T> &TranV)
|
||
{
|
||
if(!(M(3,0)==0 && M(3,1)==0 && M(3,2)==0 && M(3,3)==1) ) // the matrix is projective
|
||
return false;
|
||
if(math::Abs(M.Determinant())<1e-10) return false; // matrix should be at least invertible...
|
||
|
||
// First Step recover the traslation
|
||
TranV=M.GetColumn3(3);
|
||
|
||
// Second Step Recover Scale and Shearing interleaved
|
||
ScaleV[0]=Norm(M.GetColumn3(0));
|
||
Point3<T> R[3];
|
||
R[0]=M.GetColumn3(0);
|
||
R[0].Normalize();
|
||
|
||
ShearV[0]=R[0].dot(M.GetColumn3(1)); // xy shearing
|
||
R[1]= M.GetColumn3(1)-R[0]*ShearV[0];
|
||
assert(math::Abs(R[1].dot(R[0]))<1e-10);
|
||
ScaleV[1]=Norm(R[1]); // y scaling
|
||
R[1]=R[1]/ScaleV[1];
|
||
ShearV[0]=ShearV[0]/ScaleV[1];
|
||
|
||
ShearV[1]=R[0].dot(M.GetColumn3(2)); // xz shearing
|
||
R[2]= M.GetColumn3(2)-R[0]*ShearV[1];
|
||
assert(math::Abs(R[2].dot(R[0]))<1e-10);
|
||
|
||
R[2] = R[2]-R[1]*(R[2].dot(R[1]));
|
||
assert(math::Abs(R[2].dot(R[1]))<1e-10);
|
||
assert(math::Abs(R[2].dot(R[0]))<1e-10);
|
||
|
||
ScaleV[2]=Norm(R[2]);
|
||
ShearV[1]=ShearV[1]/ScaleV[2];
|
||
R[2]=R[2]/ScaleV[2];
|
||
assert(math::Abs(R[2].dot(R[1]))<1e-10);
|
||
assert(math::Abs(R[2].dot(R[0]))<1e-10);
|
||
|
||
ShearV[2]=R[1].dot(M.GetColumn3(2)); // yz shearing
|
||
ShearV[2]=ShearV[2]/ScaleV[2];
|
||
int i,j;
|
||
for(i=0;i<3;++i)
|
||
for(j=0;j<3;++j)
|
||
M(i,j)=R[j][i];
|
||
|
||
// Third and last step: Recover the rotation
|
||
//now the matrix should be a pure rotation matrix so its determinant is +-1
|
||
double det=M.Determinant();
|
||
if(math::Abs(det)<1e-10) return false; // matrix should be at least invertible...
|
||
assert(math::Abs(math::Abs(det)-1.0)<1e-10); // it should be +-1...
|
||
if(det<0) {
|
||
ScaleV *= -1;
|
||
M *= -1;
|
||
}
|
||
|
||
double alpha,beta,gamma; // rotations around the x,y and z axis
|
||
beta=asin( M(0,2));
|
||
double cosbeta=cos(beta);
|
||
if(math::Abs(cosbeta) > 1e-5)
|
||
{
|
||
alpha=asin(-M(1,2)/cosbeta);
|
||
if((M(2,2)/cosbeta) < 0 ) alpha=M_PI-alpha;
|
||
gamma=asin(-M(0,1)/cosbeta);
|
||
if((M(0,0)/cosbeta)<0) gamma = M_PI-gamma;
|
||
}
|
||
else
|
||
{
|
||
alpha=asin(-M(1,0));
|
||
if(M(1,1)<0) alpha=M_PI-alpha;
|
||
gamma=0;
|
||
}
|
||
|
||
RotV[0]=math::ToDeg(alpha);
|
||
RotV[1]=math::ToDeg(beta);
|
||
RotV[2]=math::ToDeg(gamma);
|
||
|
||
return true;
|
||
}
|
||
|
||
template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p) {
|
||
T w;
|
||
Point3<T> s;
|
||
s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(0, 1)*p[1] + m.ElementAt(0, 2)*p[2] + m.ElementAt(0, 3);
|
||
s[1] = m.ElementAt(1, 0)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(1, 2)*p[2] + m.ElementAt(1, 3);
|
||
s[2] = m.ElementAt(2, 0)*p[0] + m.ElementAt(2, 1)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(2, 3);
|
||
w = m.ElementAt(3, 0)*p[0] + m.ElementAt(3, 1)*p[1] + m.ElementAt(3, 2)*p[2] + m.ElementAt(3, 3);
|
||
if(w!= 0) s /= w;
|
||
return s;
|
||
}
|
||
|
||
|
||
|
||
// template <class T> Point3<T> operator*(const Point3<T> &p, const Matrix44<T> &m) {
|
||
// T w;
|
||
// Point3<T> s;
|
||
// s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(1, 0)*p[1] + m.ElementAt(2, 0)*p[2] + m.ElementAt(3, 0);
|
||
// s[1] = m.ElementAt(0, 1)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(2, 1)*p[2] + m.ElementAt(3, 1);
|
||
// s[2] = m.ElementAt(0, 2)*p[0] + m.ElementAt(1, 2)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(3, 2);
|
||
// w = m.ElementAt(0, 3)*p[0] + m.ElementAt(1, 3)*p[1] + m.ElementAt(2, 3)*p[2] + m.ElementAt(3, 3);
|
||
// if(w != 0) s /= w;
|
||
// return s;
|
||
// }
|
||
|
||
|
||
/*
|
||
To invert a matrix you can
|
||
either invert the matrix inplace calling
|
||
|
||
vcg::Invert(yourMatrix);
|
||
|
||
or get the inverse matrix of a given matrix without touching it:
|
||
|
||
invertedMatrix = vcg::Inverse(untouchedMatrix);
|
||
|
||
*/
|
||
template <class T> Matrix44<T> & Invert(Matrix44<T> &m) {
|
||
return m = m.lu().inverse();
|
||
}
|
||
|
||
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m) {
|
||
return m.lu().inverse();
|
||
}
|
||
|
||
|
||
} //namespace
|
||
#endif
|
||
|
||
#endif
|