vcglib/vcg/space/point3.h

365 lines
10 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_USE_EIGEN
#include "deprecated_point3.h"
#else
#ifndef __VCGLIB_POINT3
#define __VCGLIB_POINT3
#include "../math/eigen.h"
#include <vcg/math/base.h>
namespace vcg{
template<class Scalar> class Point3;
}
namespace Eigen{
template<typename Scalar>
struct ei_traits<vcg::Point3<Scalar> > : ei_traits<Eigen::Matrix<Scalar,3,1> > {};
template<typename Scalar>
struct NumTraits<vcg::Point3<Scalar> > : NumTraits<Scalar>
{
enum {
ReadCost = 3,
AddCost = 3,
MulCost = 3
};
};
}
namespace vcg {
/** \addtogroup space */
/*@{*/
/**
The templated class for representing a point in 3D space.
The class is templated over the ScalarType class that is used to represent coordinates. All the usual
operator overloading (* + - ...) is present.
*/
template <class T> class Box3;
template <class _Scalar> class Point3 : public Eigen::Matrix<_Scalar,3,1>
{
typedef Eigen::Matrix<_Scalar,3,1> _Base;
using _Base::coeff;
using _Base::coeffRef;
using _Base::setZero;
using _Base::data;
using _Base::V;
public:
_EIGEN_GENERIC_PUBLIC_INTERFACE(Point3,_Base);
typedef Scalar ScalarType;
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Point3)
enum {Dimension = 3};
//@{
/** @name Standard Constructors and Initializers
No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types
**/
inline Point3 () {}
inline Point3 ( const Scalar nx, const Scalar ny, const Scalar nz ) : Base(nx,ny,nz) {}
inline Point3 ( Point3 const & p ) : Base(p) {}
inline Point3 ( const Scalar nv[3] ) : Base(nv) {}
template<typename OtherDerived>
inline Point3(const Eigen::MatrixBase<OtherDerived>& other) : Base(other) {}
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
/// Useful for managing in a consistent way object that could have point2 / point3 / point4
inline Scalar Ext( const int i ) const
{
if(i>=0 && i<=2) return data()[i];
else return 0;
}
template<class OtherDerived>
inline void Import( const Eigen::MatrixBase<OtherDerived>& b )
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3);
data()[0] = Scalar(b[0]);
data()[1] = Scalar(b[1]);
data()[2] = Scalar(b[2]);
}
template <class Q>
static inline Point3 Construct( const Point3<Q> & b )
{
return Point3(Scalar(b[0]),Scalar(b[1]),Scalar(b[2]));
}
template <class Q>
static inline Point3 Construct( const Q & P0, const Q & P1, const Q & P2)
{
return Point3(Scalar(P0),Scalar(P1),Scalar(P2));
}
static inline Point3 Construct( const Point3<ScalarType> & b )
{
return b;
}
//@}
//@{
/** @name Data Access.
access to data is done by overloading of [] or explicit naming of coords (x,y,z)**/
inline const Scalar &X() const { return data()[0]; }
inline const Scalar &Y() const { return data()[1]; }
inline const Scalar &Z() const { return data()[2]; }
inline Scalar &X() { return data()[0]; }
inline Scalar &Y() { return data()[1]; }
inline Scalar &Z() { return data()[2]; }
inline Scalar & V( const int i )
{
assert(i>=0 && i<3);
return data()[i];
}
inline const Scalar & V( const int i ) const
{
assert(i>=0 && i<3);
return data()[i];
}
//@}
//@{
/** @name Classical overloading of operators
Note
**/
// Scalatura differenziata
inline Point3 & Scale( const Scalar sx, const Scalar sy, const Scalar sz )
{
data()[0] *= sx;
data()[1] *= sy;
data()[2] *= sz;
return *this;
}
inline Point3 & Scale( const Point3 & p )
{
data()[0] *= p.data()[0];
data()[1] *= p.data()[1];
data()[2] *= p.data()[2];
return *this;
}
/**
* Convert to polar coordinates from cartesian coordinates.
*
* Theta is the azimuth angle and ranges between [0, 360) degrees.
* Phi is the elevation angle (not the polar angle) and ranges between [-90, 90] degrees.
*
* /note Note that instead of the classical polar angle, which ranges between
* 0 and 180 degrees we opt for the elevation angle to obtain a more
* intuitive spherical coordinate system.
*/
void ToPolar(Scalar &ro, Scalar &theta, Scalar &phi) const
{
ro = this->norm();
theta = (Scalar)atan2(data()[2], data()[0]);
phi = (Scalar)asin(data()[1]/ro);
}
/**
* Convert from polar coordinates to cartesian coordinates.
*
* Theta is the azimuth angle and ranges between [0, 360) degrees.
* Phi is the elevation angle (not the polar angle) and ranges between [-90, 90] degrees.
*
* \note Note that instead of the classical polar angle, which ranges between
* 0 and 180 degrees, we opt for the elevation angle to obtain a more
* intuitive spherical coordinate system.
*/
void FromPolar(const Scalar &ro, const Scalar &theta, const Scalar &phi)
{
data()[0]= ro*cos(theta)*cos(phi);
data()[1]= ro*sin(phi);
data()[2]= ro*sin(theta)*cos(phi);
}
Box3<_Scalar> GetBBox(Box3<_Scalar> &bb) const;
//@}
//@{
/** @name Comparison Operators.
Note that the reverse z prioritized ordering, useful in many situations.
**/
inline bool operator < ( Point3 const & p ) const
{
return (data()[2]!=p.data()[2])?(data()[2]<p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]<p.data()[1]):
(data()[0]<p.data()[0]);
}
inline bool operator > ( Point3 const & p ) const
{
return (data()[2]!=p.data()[2])?(data()[2]>p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]>p.data()[1]):
(data()[0]>p.data()[0]);
}
inline bool operator <= ( Point3 const & p ) const
{
return (data()[2]!=p.data()[2])?(data()[2]< p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]< p.data()[1]):
(data()[0]<=p.data()[0]);
}
inline bool operator >= ( Point3 const & p ) const
{
return (data()[2]!=p.data()[2])?(data()[2]> p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]> p.data()[1]):
(data()[0]>=p.data()[0]);
}
//@}
}; // end class definition
// versione uguale alla precedente ma che assume che i due vettori sono unitari
template <class Scalar>
inline Scalar AngleN( Point3<Scalar> const & p1, Point3<Scalar> const & p2 )
{
Scalar w = p1*p2;
if(w>1)
w = 1;
else if(w<-1)
w=-1;
return (Scalar) acos(w);
}
template <class Scalar>
inline Point3<Scalar> & Normalize( Point3<Scalar> & p )
{
p.Normalize();
return p;
}
// Dot product preciso numericamente (solo double!!)
// Implementazione: si sommano i prodotti per ordine di esponente
// (prima le piu' grandi)
template<class Scalar>
double stable_dot ( Point3<Scalar> const & p0, Point3<Scalar> const & p1 )
{
Scalar k0 = p0.data()[0]*p1.data()[0];
Scalar k1 = p0.data()[1]*p1.data()[1];
Scalar k2 = p0.data()[2]*p1.data()[2];
int exp0,exp1,exp2;
frexp( double(k0), &exp0 );
frexp( double(k1), &exp1 );
frexp( double(k2), &exp2 );
if( exp0<exp1 )
{
if(exp0<exp2)
return (k1+k2)+k0;
else
return (k0+k1)+k2;
}
else
{
if(exp1<exp2)
return(k0+k2)+k1;
else
return (k0+k1)+k2;
}
}
/// Point(p) Edge(v1-v2) dist, q is the point in v1-v2 with min dist
template<class Scalar>
Scalar PSDist( const Point3<Scalar> & p,
const Point3<Scalar> & v1,
const Point3<Scalar> & v2,
Point3<Scalar> & q )
{
Point3<Scalar> e = v2-v1;
Scalar t = ((p-v1).dot(e))/e.SquaredNorm();
if(t<0) t = 0;
else if(t>1) t = 1;
q = v1+e*t;
return Distance(p,q);
}
template <class Scalar>
void GetUV( Point3<Scalar> &n,Point3<Scalar> &u, Point3<Scalar> &v, Point3<Scalar> up=(Point3<Scalar>(0,1,0)) )
{
n.Normalize();
const double LocEps=double(1e-7);
u=n^up;
double len = u.Norm();
if(len < LocEps)
{
if(fabs(n[0])<fabs(n[1])){
if(fabs(n[0])<fabs(n[2])) up=Point3<Scalar>(1,0,0); // x is the min
else up=Point3<Scalar>(0,0,1); // z is the min
}else {
if(fabs(n[1])<fabs(n[2])) up=Point3<Scalar>(0,1,0); // y is the min
else up=Point3<Scalar>(0,0,1); // z is the min
}
u=n^up;
}
u.Normalize();
v=n^u;
v.Normalize();
Point3<Scalar> uv=u^v;
}
template <class SCALARTYPE>
inline Point3<SCALARTYPE> Abs(const Point3<SCALARTYPE> & p) {
return (Point3<SCALARTYPE>(math::Abs(p[0]), math::Abs(p[1]), math::Abs(p[2])));
}
// probably a more uniform naming should be defined...
template <class SCALARTYPE>
inline Point3<SCALARTYPE> LowClampToZero(const Point3<SCALARTYPE> & p) {
return (Point3<SCALARTYPE>(math::Max(p[0], (SCALARTYPE)0), math::Max(p[1], (SCALARTYPE)0), math::Max(p[2], (SCALARTYPE)0)));
}
typedef Point3<short> Point3s;
typedef Point3<int> Point3i;
typedef Point3<float> Point3f;
typedef Point3<double> Point3d;
/*@}*/
} // end namespace
#endif
#endif