vcglib/vcg/simplex/face/base.h

1208 lines
27 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.17 2004/07/15 12:03:07 ganovelli
minor changes
Revision 1.16 2004/07/15 11:31:59 ganovelli
minor changes
Revision 1.15 2004/07/12 12:17:09 pietroni
added function NormalizedNormal
Revision 1.14 2004/05/13 11:01:06 turini
Changed ComputeMormalizedNormal() using Triangle3
Revision 1.13 2004/05/12 18:49:05 ganovelli
dist and coputeRT removed (see distance.h and updateEdges)
Revision 1.12 2004/05/12 14:43:36 cignoni
removed warning of unused variables
Revision 1.11 2004/05/12 12:50:20 turini
include color4
Revision 1.10 2004/05/10 14:01:09 ganovelli
assert(i*0) for using "i" and preventing the compiler warning for unreferenced variable
Revision 1.9 2004/05/10 13:19:38 cignoni
Added mandatory template params for edge and face class names to the face class
Changed type of return face pointer to the one passed by templ params
Changed name of func FV to VF (it stores Vertex-Face Topology)
Revision 1.8 2004/05/06 09:06:59 pietroni
changed names to topology functions
Revision 1.7 2004/05/04 02:46:23 ganovelli
added function Dist
Revision 1.5 2004/04/05 11:51:22 cignoni
wrong define FACE_N instead of FACE_FN
Revision 1.4 2004/03/29 08:37:09 cignoni
missing include
Revision 1.3 2004/03/10 00:52:38 cignoni
Moved geometric stuff to the space/triangle class
Revision 1.2 2004/03/03 16:08:38 cignoni
First working version
Revision 1.1 2004/02/13 00:44:45 cignoni
First commit...
****************************************************************************/
#ifndef FACE_TYPE
#pragma error message("\nYou should never directly include this file\_n")
#else
#include <vcg/math/base.h>
#include <vcg/space/box3.h>
#include <vcg/space/tcoord2.h>
#include <vcg/space/triangle3.h>
#include <vcg/space/color4.h>
#include <vcg/space/plane3.h>
#include <vcg/simplex/face/topology.h>
namespace vcg {
class DUMMYEDGETYPE;
class DUMMYFACETYPE;
class DUMMYTETRATYPE;
/**
\ingroup face
@name Face
Class Face.
This is the base class for definition of a face of the mesh.
@param FVTYPE (Templete Parameter) Specifies the vertex class type.
*/
template <class FVTYPE, class FETYPE, class FFTYPE, class TCTYPE = TCoord2<float,1> > class FACE_TYPE
{
public:
/// The base type of the face
typedef FACE_TYPE BaseFaceType;
/// The base type of the face itself
typedef FFTYPE FaceType;
/// The vertex type
typedef FVTYPE VertexType;
/// The type of the scalar field of the vertex coordinate
typedef typename VertexType::ScalarType ScalarType;
/// The type of the the vertex coordinate
typedef Point3< ScalarType > CoordType;
typedef Point3< ScalarType > NormalType;
typedef typename FVTYPE::FaceType FaceFromVertType;
/// The bounding box type
typedef Box3<ScalarType> BoxType;
/// Default Empty Costructor
inline FACE_TYPE(){}
/// This are the _flags of face, the default value is 0
int _flags;
/***********************************************/
/** @name Vertex Pointer
blah
blah
**/
//@{
protected:
/// Vector of vertex pointer incident in the face
VertexType *v[3];
public:
/** Return the pointer to the j-th vertex of the face.
@param j Index of the face vertex.
*/
inline FVTYPE * & V( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j >= 0);
assert(j < 3);
return v[j];
}
inline FVTYPE * const & V( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
return v[j];
}
inline FVTYPE * const cV( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
return v[j];
}
// Shortcut per accedere ai punti delle facce
inline CoordType & P( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<3);
return v[j]->P();
}
inline const CoordType & P( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
return v[j]->cP();
}
inline const CoordType & cP( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
return v[j]->cP();
}
/** Return the pointer to the ((j+1)%3)-th vertex of the face.
@param j Index of the face vertex.
*/
inline FVTYPE * & V0( const int j ) { return V(j);}
inline FVTYPE * & V1( const int j ) { return V((j+1)%3);}
inline FVTYPE * & V2( const int j ) { return V((j+2)%3);}
inline const FVTYPE * const & V0( const int j ) const { return V(j);}
inline const FVTYPE * const & V1( const int j ) const { return V((j+1)%3);}
inline const FVTYPE * const & V2( const int j ) const { return V((j+2)%3);}
inline const FVTYPE * const & cV0( const int j ) const { return cV(j);}
inline const FVTYPE * const & cV1( const int j ) const { return cV((j+1)%3);}
inline const FVTYPE * const & cV2( const int j ) const { return cV((j+2)%3);}
/// Shortcut per accedere ai punti delle facce
inline CoordType & P0( const int j ) { return V(j)->P();}
inline CoordType & P1( const int j ) { return V((j+1)%3)->P();}
inline CoordType & P2( const int j ) { return V((j+2)%3)->P();}
inline const CoordType & P0( const int j ) const { return V(j)->P();}
inline const CoordType & P1( const int j ) const { return V((j+1)%3)->P();}
inline const CoordType & P2( const int j ) const { return V((j+2)%3)->P();}
inline const CoordType & cP0( const int j ) const { return cV(j)->P();}
inline const CoordType & cP1( const int j ) const { return cV((j+1)%3)->P();}
inline const CoordType & cP2( const int j ) const { return cV((j+2)%3)->P();}
inline FVTYPE * & UberV( const int j )
{
assert(j>=0);
assert(j<3);
return v[j];
}
inline const FVTYPE * const & UberV( const int j ) const
{
assert(j>=0);
assert(j<3);
return v[j];
}
//@}
/***********************************************/
/** @name Normal
blah
blah
**/
//@{
#ifdef __VCGLIB_FACE_FN
/// This vector indicates the normal of the face (defines if FACE_N is defined)
protected:
CoordType _n;
public:
#endif
/// Return the reference of the normal to the face (if __VCGLIB_FACE_FN is defined).
inline CoordType & N()
{
#ifdef __VCGLIB_FACE_FN
return _n;
#else
assert(0);
return *(CoordType *)0;
#endif
}
/// Return the reference of the normal to the face (if __VCGLIB_FACE_FN is defined).
inline const CoordType & N() const
{
#ifdef __VCGLIB_FACE_FN
return _n;
#else
return *(CoordType *)0;
#endif
}
/// Return the reference of the normal to the face (if __VCGLIB_FACE_FN is defined).
inline const CoordType cN() const
{
#ifdef __VCGLIB_FACE_FN
return _n;
#else
return *(CoordType *)0;
#endif
}
/// Calculate the normal to the face, the value is store in the field _n of the face
void ComputeNormal()
{
#ifdef __VCGLIB_FACE_FN
_n = vcg::Normal(*this);
#else
assert(0);
#endif
}
void ComputeNormalizedNormal()
{
#ifdef __VCGLIB_FACE_FN
_n = vcg::NormalizedNormal(*this);
#else
assert(0);
#endif
}
/// Return the value of the face normal as it correspond to the current geometry.
/// it is always computed and never stored.
const CoordType Normal() const
{
return vcg::Normal(*this);
}
/// Return the value of the face normal as it correspond to the current geometry.
/// it is always computed and never stored.
const CoordType NormalizedNormal() const
{
return vcg::NormalizedNormal(*this);
}
#ifdef __VCGLIB_FACE_WN
/// This vector indicates per wedge normal
CoordType _wn[3];
#endif
public:
CoordType & WN(const int i)
{
#ifdef __VCGLIB_FACE_WN
return _wn[i];
#else
assert(0);
return *(CoordType *)(&_flags);
#endif
}
const CoordType & WN(const int i) const
{
#ifdef __VCGLIB_FACE_WN
return _wn[i];
#else
return CoordType();
#endif
}
//@}
/***********************************************/
/** @name Quality
blah
blah
**/
//@{
#ifdef __VCGLIB_FACE_FQ
protected:
float _q;
#endif
public:
float & Q()
{
#ifdef __VCGLIB_FACE_FQ
return _q;
#else
assert(0);
return *(float*)(&_flags);
#endif
}
const float & Q() const
{
#ifdef __VCGLIB_FACE_FQ
return _q;
#else
assert(0);
return *(float*)(&_flags);
#endif
}
//@}
/***********************************************/
/** @name Texture
blah
blah
**/
//@{
// Per Wedge Texture Coords
protected:
#ifdef __VCGLIB_FACE_WT
TCTYPE _wt[3];
#endif
public:
TCTYPE & WT(const int i)
{
#ifdef __VCGLIB_FACE_WT
return _wt[i];
#else
assert(0);
return *(TCTYPE*)(&_flags +i) ;
#endif
}
const TCTYPE & WT(const int i) const
{
#ifdef __VCGLIB_FACE_WT
return _wt[i];
#else
assert(0);
return *(TCTYPE*)(&_flags);
#endif
}
//@}
/***********************************************/
/** @name Colors
blah
blah
**/
//@{
protected:
#ifdef __VCGLIB_FACE_FC
Color4b _c;
#endif
public:
Color4b & C()
{
#ifdef __VCGLIB_FACE_FC
return _c;
#else
assert(0);
return *(Color4b*)(&_flags);
#endif
}
const Color4b C() const
{
#ifdef __VCGLIB_FACE_FC
return _c;
#else
return Color4b(Color4b::White);
#endif
}
protected:
#ifdef __VCGLIB_FACE_WC
Color4b _wc[3];
#endif
public:
Color4b & WC(const int i)
{
#ifdef __VCGLIB_FACE_WC
return _wc[i];
#else
assert(0);
return *(Color4b*)(&_flags + i);
#endif
}
const Color4b WC(const int i) const
{
#ifdef __VCGLIB_FACE_WC
return _wc[i];
#else
assert(0);
return Color4b(Color4b::White);
#endif
}
//@}
/***********************************************/
/** @name Adjacency
blah
blah
**/
//@{
#if (defined(__VCGLIB_FACE_AF) && defined(__VCGLIB_FACE_AS))
#error Error: You cannot specify face-to-face and shared topology together
#endif
#if (defined(__VCGLIB_FACE_AV) && defined(__VCGLIB_FACE_AS))
#error Error: You cannot specify vertex-face and shared topology together
#endif
protected:
#if defined(__VCGLIB_FACE_AF)
/// Vector of face pointer, it's used to indicate the adjacency relations (defines if FACE_A is defined)
FFTYPE *_ffp[3]; // Facce adiacenti
/// Index of the face in the arrival face
char _ffi[4];
#endif
#ifdef __VCGLIB_FACE_AV
///Vettore di puntatori a faccia, utilizzato per indicare le adiacenze vertice faccia
FFTYPE *_fvp[3];
char _fvi[3];
#endif
#ifdef __VCGLIB_FACE_AS
///Vettore di puntatori a faccia, utilizzato per indicare le adiacenze vertice faccia
FFTYPE *fs[3];
char zs[3];
#endif
public:
/** Return the pointer to the j-th adjacent face.
@param j Index of the edge.
*/
inline FFTYPE * & FFp( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<3);
#if defined(__VCGLIB_FACE_AF)
return _ffp[j];
#elif defined(__VCGLIB_FACE_AS)
return fs[j];
#else
assert(0);
static FFTYPE *dum=0; dum+=j;
return dum;
#endif
}
inline const FFTYPE * const & FFp( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
#if defined(__VCGLIB_FACE_AF)
return _ffp[j];
#elif defined(__VCGLIB_FACE_AS)
return fs[j];
#else
assert(0);
return (FFTYPE *)this;
#endif
}
inline FFTYPE * & F1( const int j ) { return F((j+1)%3);}
inline FFTYPE * & F2( const int j ) { return F((j+2)%3);}
inline const FFTYPE * const& F1( const int j ) const { return F((j+1)%3);}
inline const FFTYPE * const& F2( const int j ) const { return F((j+2)%3);}
/** Return the pointer to the j-th adjacent face.
@param j Index of the edge.
*/
inline FFTYPE * & UberF( const int j )
{
assert(j>=0);
assert(j<3);
#if defined(__VCGLIB_FACE_AF)
return _ffp[j];
#elif defined(__VCGLIB_FACE_AS)
return fs[j];
#else
assert(0); // if you stop here you are probably trying to use FF topology in a face without it
return *((FFTYPE **)(_flags));
#endif
}
inline const FFTYPE * const & UberF( const int j ) const
{
assert(j>=0);
assert(j<3);
#if defined(__VCGLIB_FACE_AF)
return _ffp[j];
#elif defined(__VCGLIB_FACE_AS)
return fs[j];
#else
assert(0); // if you stop here you are probably trying to use FF topology in a face without it
return *((FFTYPE **)(_flags));
#endif
}
inline FFTYPE * & VFp( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<3);
#ifdef __VCGLIB_FACE_AV
return _fvp[j];
#elif defined(__VCGLIB_FACE_AS)
return fs[j];
#else
assert(0); // you are probably trying to use VF topology in a vertex without it
return *((FFTYPE **)(_flags));
#endif
}
inline const FFTYPE * const & VFp( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
#ifdef __VCGLIB_FACE_AV
return _fvp[j];
#elif defined(__VCGLIB_FACE_AS)
return fs[j];
#else
assert(0);
return (FFTYPE *)this;
#endif
}
/** Return the index that the face have in the j-th adjacent face.
@param j Index of the edge.
*/
inline char & FFi( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<3);
#if defined(__VCGLIB_FACE_AF)
return _ffi[j];
#elif defined(__VCGLIB_FACE_AS)
return zs[j];
#else
assert(0);
return *(char *)&_flags; // tanto per farlo compilare...
#endif
}
inline const char & FFi( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
#if defined(__VCGLIB_FACE_AF)
return _ffi[j];
#elif defined(__VCGLIB_FACE_AS)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
/** Return the index that the face have in the j-th adjacent face.
@param j Index of the edge.
*/
inline char & UberZ( const int j )
{
assert(j>=0);
assert(j<3);
#if defined(__VCGLIB_FACE_AF)
return _ffi[j];
#elif defined(__VCGLIB_FACE_AS)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
inline const char & UberZ( const int j ) const
{
assert(j>=0);
assert(j<3);
#if defined(__VCGLIB_FACE_AF)
return _ffi[j];
#elif defined(__VCGLIB_FACE_AS)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
inline char & VFi( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<3);
#ifdef __VCGLIB_FACE_AV
return _fvi[j];
#elif defined(__VCGLIB_FACE_AS)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
inline const char & VFi( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
#ifdef __VCGLIB_FACE_AV
return _fvi[j];
#elif defined(__VCGLIB_FACE_AS)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
//@}
/***********************************************/
/** @name Mark
blah
blah
**/
//@{
#ifdef __VCGLIB_FACE_FM
/// Incremental mark (defines if FACE_I is defined)
int imark;
inline int & IMark()
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
return imark;
}
inline const int & IMark() const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return imark;
}
#endif // Mark
/// Initialize the imark system of the face
inline void InitIMark()
{
#ifdef __VCGLIB_FACE_FM
imark = 0;
#endif
}
//@}
/***********************************************/
/** @name Flags
blah
blah
**/
//@{
enum {
// This bit indicate that the face is deleted from the mesh
DELETED = 0x00000001, // cancellato
// This bit indicate that the face of the mesh is not readable
NOTREAD = 0x00000002, // non leggibile (ma forse modificabile)
// This bit indicate that the face is not modifiable
NOTWRITE = 0x00000004, // non modificabile (ma forse leggibile)
// This bit indicate that the face is modified
SELECTED = 0x00000020, // Selection _flags
// Border _flags, it is assumed that BORDERi = BORDER0<<i
BORDER0 = 0x00000040,
BORDER1 = 0x00000080,
BORDER2 = 0x00000100,
// Face Orientation Flags, used efficiently compute point face distance
NORMX = 0x00000200,
NORMY = 0x00000400,
NORMZ = 0x00000800,
// Crease _flags, it is assumed that FEATUREi = FEATURE0<<i
FEATURE0 = 0x00008000,
FEATURE1 = 0x00010000,
FEATURE2 = 0x00020000,
// First user bit
USER0 = 0x00040000
};
public:
static int &LastBitFlag()
{
static int b =USER0;
return b;
}
static inline int NewBitFlag()
{
LastBitFlag()=LastBitFlag()<<1;
return LastBitFlag();
}
static inline bool DeleteBitFlag(int bitval)
{
if(LastBitFlag()==bitval) {
LastBitFlag()= LastBitFlag()>>1;
return true;
}
assert(0);
return false;
}
void ClearFlags() {_flags=0;}
/// Return the _flags.
inline int & Flags ()
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return _flags;
}
inline const int & Flags () const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return _flags;
}
/// Ritorna il _flags senza effettuare alcun controllo sui relativi bit
inline int & UberFlags()
{
return _flags;
}
inline const int UberFlags() const
{
return _flags;
}
/// This function checks if the face is deleted
bool IsD() const {return (_flags & DELETED) != 0;}
/// This function mark the face as deleted
void SetD() {_flags |=DELETED;}
/// This function mark the face as not deleted
void ClearD() {_flags &= (~DELETED);}
/// This function checks if the face is deleted
bool IsDeleted() const {return IsD();}
/// This function checks if the face is readable
bool IsR() const {return (_flags & NOTREAD) == 0;}
/// This function marks the face as readable
void SetR() {_flags &= (~NOTREAD);}
/// This function marks the face as not readable
void ClearR() {_flags |=NOTREAD;}
/// This function checks if the face is readable
bool IsW() const {return (_flags & NOTWRITE)== 0;}
/// This function marks the vertex as not writable
void SetW() {_flags &=(~NOTWRITE);}
/// This function marks the face as not writable
void ClearW() {_flags |=NOTWRITE;}
/// This funcion checks whether the face is both readable and modifiable
bool IsRW() const {return (_flags & (NOTREAD | NOTWRITE)) == 0;}
/// This function checks if the face is selected
bool IsS() const {return (_flags & SELECTED) != 0;}
/// This function select the face
void SetS() {_flags |=SELECTED;}
/// This funcion execute the inverse operation of SetS()
void ClearS() {_flags &= (~SELECTED);}
/// This function checks if the face is selected
bool IsB(int i) const {return (_flags & (BORDER0<<i)) != 0;}
/// This function select the face
void SetB(int i) {_flags |=(BORDER0<<i);}
/// This funcion execute the inverse operation of SetS()
void ClearB(int i) {_flags &= (~(BORDER0<<i));}
/// This function checks if the face is Crease on side i
bool IsFF(int i) const {return (_flags & (FEATURE0<<i)) != 0;}
/// This function select the face flag
void SetFF(int i) {_flags |=(FEATURE0<<i);}
/// This funcion execute the inverse operation of Set()
void ClearFF(int i) {_flags &= (~(FEATURE0<<i));}
/// This function checks if the given user bit is true
bool IsUserBit(int userBit){return (_flags & userBit) != 0;}
/// This function set the given user bit
void SetUserBit(int userBit){_flags |=userBit;}
/// This function clear the given user bit
void ClearUserBit(int userBit){_flags &= (~userBit);}
//@}
/*#*******************
* Bounding box *
**********************/
void GetBBox( BoxType & bb )
{
bb.Set( v[0]->P() );
bb.Add( v[1]->P() );
bb.Add( v[2]->P() );
}
/***********************************************/
/** @name Reflection Functions
Static functions that give information about the current vertex type.
Reflection is a mechanism making it possible to investigate yourself. Reflection is used to investigate format of objects at runtime, invoke methods and access fields of these objects. Here we provide static const functions that are resolved at compile time and they give information about the data (normal, color etc.) supported by the current vertex type.
**/
//@{
static bool HasFaceNormal() {
#ifdef __VCGLIB_FACE_FN
return true;
#else
return false;
#endif
}
static bool HasFaceQuality() {
#ifdef __VCGLIB_FACE_FQ
return true;
#else
return false;
#endif
}
static bool HasFaceColor() {
#ifdef __VCGLIB_FACE_FC
return true;
#else
return false;
#endif
}
static bool HasFFAdjacency() {
#if (defined(__VCGLIB_FACE_AF) || defined(__VCGLIB_FACE_AS))
return true;
#else
return false;
#endif
}
static bool HasVFAdjacency() {
#if (defined(__VCGLIB_FACE_AV) || defined(__VCGLIB_FACE_AS))
return true;
#else
return false;
#endif
}
static bool HasSharedAdjacency() {
#if defined(__VCGLIB_FACE_AS)
return true;
#else
return false;
#endif
}
static bool HasFaceMark() {
#ifdef __VCGLIB_FACE_FC
return true;
#else
return false;
#endif
}
static bool HasWedgeColor() {
#ifdef __VCGLIB_FACE_WC
return true;
#else
return false;
#endif
}
static bool HasWedgeTexture() {
#ifdef __VCGLIB_FACE_WT
return true;
#else
return false;
#endif
}
static bool HasWedgeNormal() {
#ifdef __VCGLIB_FACE_WN
return true;
#else
return false;
#endif
}
//@}
/// operator to compare two faces
inline bool operator == ( const FFTYPE & f ) const {
for(int i=0; i<3; ++i)
if( (V(i) != f.V(0)) && (V(i) != f.V(1)) && (V(i) != f.V(2)) )
return false;
return true;
}
/** Calcola i coefficienti della combinazione convessa.
@param bq Punto appartenente alla faccia
@param a Valore di ritorno per il vertice V(0)
@param b Valore di ritorno per il vertice V(1)
@param _c Valore di ritorno per il vertice V(2)
@return true se bq appartiene alla faccia, false altrimenti
*/
bool InterpolationParameters(const CoordType & bq, ScalarType &a, ScalarType &b, ScalarType &_c ) const
{
const ScalarType EPSILON = ScalarType(0.000001);
#define x1 (cV(0)->P()[0])
#define y1 (cV(0)->P()[1])
#define z1 (cV(0)->P()[2])
#define x2 (cV(1)->P()[0])
#define y2 (cV(1)->P()[1])
#define z2 (cV(1)->P()[2])
#define x3 (cV(2)->P()[0])
#define y3 (cV(2)->P()[1])
#define z3 (cV(2)->P()[2])
#define px (bq[0])
#define py (bq[1])
#define pz (bq[2])
ScalarType t1 = px*y2;
ScalarType t2 = px*y3;
ScalarType t3 = py*x2;
ScalarType t4 = py*x3;
ScalarType t5 = x2*y3;
ScalarType t6 = x3*y2;
ScalarType t8 = x1*y2;
ScalarType t9 = x1*y3;
ScalarType t10 = y1*x2;
ScalarType t11 = y1*x3;
ScalarType t13 = t8-t9-t10+t11+t5-t6;
if(fabs(t13)>=EPSILON)
{
ScalarType t15 = px*y1;
ScalarType t16 = py*x1;
a = (t1 -t2-t3 +t4+t5-t6 )/t13;
b = -(t15-t2-t16+t4+t9-t11)/t13;
_c = (t15-t1-t16+t3+t8-t10)/t13;
return true;
}
t1 = px*z2;
t2 = px*z3;
t3 = pz*x2;
t4 = pz*x3;
t5 = x2*z3;
t6 = x3*z2;
t8 = x1*z2;
t9 = x1*z3;
t10 = z1*x2;
t11 = z1*x3;
t13 = t8-t9-t10+t11+t5-t6;
if(fabs(t13)>=EPSILON)
{
ScalarType t15 = px*z1;
ScalarType t16 = pz*x1;
a = (t1 -t2-t3 +t4+t5-t6 )/t13;
b = -(t15-t2-t16+t4+t9-t11)/t13;
_c = (t15-t1-t16+t3+t8-t10)/t13;
return true;
}
t1 = pz*y2; t2 = pz*y3;
t3 = py*z2; t4 = py*z3;
t5 = z2*y3; t6 = z3*y2;
t8 = z1*y2; t9 = z1*y3;
t10 = y1*z2; t11 = y1*z3;
t13 = t8-t9-t10+t11+t5-t6;
if(fabs(t13)>=EPSILON)
{
ScalarType t15 = pz*y1;
ScalarType t16 = py*z1;
a = (t1 -t2-t3 +t4+t5-t6 )/t13;
b = -(t15-t2-t16+t4+t9-t11)/t13;
_c = (t15-t1-t16+t3+t8-t10)/t13;
return true;
}
#undef x1
#undef y1
#undef z1
#undef x2
#undef y2
#undef z2
#undef x3
#undef y3
#undef z3
#undef px
#undef py
#undef pz
return false;
}
/// Return the DOUBLE of the area of the face
ScalarType Area() const
{
return ( (V(1)->cP() - V(0)->cP()) ^ (V(2)->cP() - V(0)->P()) ).Norm();
}
CoordType Barycenter() const
{
return (V(0)->P()+V(1)->P()+V(2)->P())/ScalarType(3.0);
}
ScalarType Perimeter() const
{
return Distance(V(0)->P(),V(1)->P())+
Distance(V(1)->P(),V(2)->P())+
Distance(V(2)->P(),V(0)->P());
}
/// Return the _q of the face, the return value is in [0,sqrt(3)/2] = [0 - 0.866.. ]
ScalarType QualityFace( ) const
{
return Quality(V(0)->P(), V(1)->P(), V(2)->P());
/*
CoordType d10 = V(1)->P() - V(0)->P();
CoordType d20 = V(2)->P() - V(0)->P();
CoordType d12 = V(1)->P() - V(2)->P();
CoordType x = d10^d20;
ScalarType a = Norm( x ); // doppio dell' Area
ScalarType b;
b = Norm2( d10 );
ScalarType t = b;
t = Norm2( d20 ); if( b<t ) b = t;
t = Norm2( d12 ); if( b<t ) b = t;
assert(b!=0.0);
return a/b;*/
}
// Funzione di supporto
inline void Nexts( BaseFaceType *&f,int &z )
{
int t;
t = z;
z = (*f).Z(z);
f = (*f).F(t);
}
/** This function change the orientation of the face. Inverting the index of two vertex
@param z Index of the edge
*/
void Swap ( const int z )
{
int i;
BaseFaceType *tmp, *prec;
int t, precz;
swap ( V((z )%3),V((z+1)%3));
if( OBJ_TYPE & (OBJ_TYPE_A|OBJ_TYPE_S ) )
{
swap ( F((z+1)%3),F((z+2)%3));
swap ( Z((z+1)%3),Z((z+2)%3));
for(i = 1; i < 3; i++)
{
tmp = this;
t = (z+i)%3;
do {
prec = tmp;
precz = t;
Nexts(tmp,t);
}
while (tmp != this);
(*prec).Z(precz) = (z+i)%3;
}
}
}
// Sezione dist e ray
#ifdef __VCGLIB_FACE_RT
CoordType edge[3];
Plane3<ScalarType> plane;
#endif
/// return the index [0..2] of a vertex in a face
inline int VertexIndex( const FVTYPE * w ) const
{
if( v[0]==w ) return 0;
else if( v[1]==w ) return 1;
else if( v[2]==w ) return 2;
else return -1;
}
}; //end Class
} // end namespace
#endif