676 lines
17 KiB
C++
676 lines
17 KiB
C++
/****************************************************************************
|
||
* VCGLib o o *
|
||
* Visual and Computer Graphics Library o o *
|
||
* _ O _ *
|
||
* Copyright(C) 2004 \/)\/ *
|
||
* Visual Computing Lab /\/| *
|
||
* ISTI - Italian National Research Council | *
|
||
* \ *
|
||
* All rights reserved. *
|
||
* *
|
||
* This program is free software; you can redistribute it and/or modify *
|
||
* it under the terms of the GNU General Public License as published by *
|
||
* the Free Software Foundation; either version 2 of the License, or *
|
||
* (at your option) any later version. *
|
||
* *
|
||
* This program is distributed in the hope that it will be useful, *
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
* for more details. *
|
||
* *
|
||
****************************************************************************/
|
||
/***************************************************************************
|
||
$Log: not supported by cvs2svn $
|
||
***************************************************************************/
|
||
|
||
#ifndef MATRIX_VCGLIB
|
||
#define MATRIX_VCGLIB
|
||
|
||
#include <stdio.h>
|
||
#include <math.h>
|
||
#include <memory.h>
|
||
#include <assert.h>
|
||
#include <algorithm>
|
||
#include <vcg/space/Point.h>
|
||
|
||
namespace vcg{
|
||
namespace ndim{
|
||
|
||
/** \addtogroup math */
|
||
/* @{ */
|
||
|
||
/*!
|
||
* This class represent a diagonal <I>m</I><3E><I>m</I> matrix.
|
||
*/
|
||
|
||
class MatrixDiagBase{public:
|
||
virtual const int & Dimension()const =0;
|
||
virtual const float operator[](const int & i)const = 0;
|
||
};
|
||
template<int N, class S>
|
||
class MatrixDiag: public PointBase<N,S>, public MatrixDiagBase{
|
||
public:
|
||
const int & Dimension() const {return N;}
|
||
MatrixDiag(const PointBase<N,S>&p):PointBase<N,S>(p){}
|
||
};
|
||
|
||
/*!
|
||
* This class represent a generic <I>m</I><3E><I>n</I> matrix. The class is templated over the scalar type field.
|
||
* @param TYPE (Templete Parameter) Specifies the ScalarType field.
|
||
*/
|
||
template<class TYPE>
|
||
class Matrix
|
||
{
|
||
|
||
public:
|
||
typedef TYPE ScalarType;
|
||
|
||
/*!
|
||
* Default constructor
|
||
* All the elements are initialized to zero.
|
||
* \param m the number of matrix rows
|
||
* \param n the number of matrix columns
|
||
*/
|
||
Matrix(unsigned int m, unsigned int n)
|
||
{
|
||
_rows = m;
|
||
_columns = n;
|
||
_data = new ScalarType[m*n];
|
||
memset(_data, 0, m*n*sizeof(ScalarType));
|
||
};
|
||
|
||
/*!
|
||
* Constructor
|
||
* The matrix elements are initialized with the values of the elements in \i values.
|
||
* \param m the number of matrix rows
|
||
* \param n the number of matrix columns
|
||
* \param values the values of the matrix elements
|
||
*/
|
||
Matrix(unsigned int m, unsigned int n, TYPE *values)
|
||
{
|
||
_rows = m;
|
||
_columns = n;
|
||
_data = new ScalarType[m*n];
|
||
unsigned int i;
|
||
for (i=0; i<_rows*_columns; i++)
|
||
_data[i] = values[i];
|
||
};
|
||
|
||
/*!
|
||
* Copy constructor
|
||
* The matrix elements are initialized with the value of the corresponding element in \i m
|
||
* \param m the matrix to be copied
|
||
*/
|
||
Matrix(const Matrix<TYPE> &m)
|
||
{
|
||
_rows = m._rows;
|
||
_columns = m._columns;
|
||
_data = new ScalarType[_rows*_columns];
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
_data[i] = m._data[i];
|
||
};
|
||
|
||
/*!
|
||
* Default destructor
|
||
*/
|
||
~Matrix()
|
||
{
|
||
delete []_data;
|
||
};
|
||
|
||
/*!
|
||
* Number of columns
|
||
*/
|
||
inline unsigned int ColumnsNumber() const
|
||
{
|
||
return _columns;
|
||
};
|
||
|
||
|
||
/*!
|
||
* Number of rows
|
||
*/
|
||
inline unsigned int RowsNumber() const
|
||
{
|
||
return _rows;
|
||
};
|
||
|
||
/*!
|
||
* Equality operator.
|
||
* \param m
|
||
* \return true iff the matrices have same size and its elements have same values.
|
||
*/
|
||
bool operator==(const Matrix<TYPE> &m) const
|
||
{
|
||
if (_rows==m._rows && _columns==m._columns)
|
||
{
|
||
bool result = true;
|
||
for (unsigned int i=0; i<_rows*_columns && result; i++)
|
||
result = (_data[i]==m._data[i]);
|
||
return result;
|
||
}
|
||
return false;
|
||
};
|
||
|
||
/*!
|
||
* Inequality operator
|
||
* \param m
|
||
* \return true iff the matrices have different size or if their elements have different values.
|
||
*/
|
||
bool operator!=(const Matrix<TYPE> &m) const
|
||
{
|
||
if (_rows==m._rows && _columns==m._columns)
|
||
{
|
||
bool result = false;
|
||
for (unsigned int i=0; i<_rows*_columns && !result; i++)
|
||
result = (_data[i]!=m._data[i]);
|
||
return result;
|
||
}
|
||
return true;
|
||
};
|
||
|
||
/*!
|
||
* Return the element stored in the <I>i</I>-th rows at the <I>j</I>-th column
|
||
* \param i the row index
|
||
* \param j the column index
|
||
* \return the element
|
||
*/
|
||
inline TYPE ElementAt(unsigned int i, unsigned int j)
|
||
{
|
||
assert(i>=0 && i<_rows);
|
||
assert(j>=0 && j<_columns);
|
||
return _data[i*_columns+j];
|
||
};
|
||
|
||
/*!
|
||
* Calculate and return the matrix determinant (Laplace)
|
||
* \return the matrix determinant
|
||
*/
|
||
TYPE Determinant() const
|
||
{
|
||
assert(_rows == _columns);
|
||
switch (_rows)
|
||
{
|
||
case 2:
|
||
{
|
||
return _data[0]*_data[3]-_data[1]*_data[2];
|
||
break;
|
||
};
|
||
case 3:
|
||
{
|
||
return _data[0]*(_data[4]*_data[8]-_data[5]*_data[7]) -
|
||
_data[1]*(_data[3]*_data[8]-_data[5]*_data[6]) +
|
||
_data[2]*(_data[3]*_data[7]-_data[4]*_data[6]) ;
|
||
break;
|
||
};
|
||
default:
|
||
{
|
||
// da migliorare: si puo' cercare la riga/colonna con maggior numero di zeri
|
||
ScalarType det = 0;
|
||
for (unsigned int j=0; j<_columns; j++)
|
||
if (_data[j]!=0)
|
||
det += _data[j]*this->Cofactor(0, j);
|
||
|
||
return det;
|
||
}
|
||
};
|
||
};
|
||
|
||
/*!
|
||
* Return the cofactor <I>A<SUB>i,j</SUB></I> of the <I>a<SUB>i,j</SUB></I> element
|
||
* \return ...
|
||
*/
|
||
TYPE Cofactor(unsigned int i, unsigned int j) const
|
||
{
|
||
assert(_rows == _columns);
|
||
assert(_rows>2);
|
||
TYPE *values = new TYPE[(_rows-1)*(_columns-1)];
|
||
unsigned int u, v, p, q, s, t;
|
||
for (u=0, p=0, s=0, t=0; u<_rows; u++, t+=_rows)
|
||
{
|
||
if (i==u)
|
||
continue;
|
||
|
||
for (v=0, q=0; v<_columns; v++)
|
||
{
|
||
if (j==v)
|
||
continue;
|
||
values[s+q] = _data[t+v];
|
||
q++;
|
||
}
|
||
p++;
|
||
s+=(_rows-1);
|
||
}
|
||
Matrix<TYPE> temp(_rows-1, _columns-1, values);
|
||
return (pow(-1, i+j)*temp.Determinant());
|
||
};
|
||
|
||
/*!
|
||
* Subscript operator:
|
||
* \param i the index of the row
|
||
* \return a reference to the <I>i</I>-th matrix row
|
||
*/
|
||
inline TYPE* operator[](const unsigned int i)
|
||
{
|
||
assert(i>=0 && i<_rows);
|
||
return _data + i*_columns;
|
||
};
|
||
|
||
/*!
|
||
* Const subscript operator
|
||
* \param i the index of the row
|
||
* \return a reference to the <I>i</I>-th matrix row
|
||
*/
|
||
inline const TYPE* operator[](const unsigned int i) const
|
||
{
|
||
assert(i>=0 && i<_rows);
|
||
return _data + i*_columns;
|
||
};
|
||
|
||
/*!
|
||
* Get the <I>j</I>-th column on the matrix.
|
||
* \param j the column index.
|
||
* \return the reference to the column elements.
|
||
*/
|
||
TYPE* GetColumn(const unsigned int j)
|
||
{
|
||
assert(j>=0 && j<_columns);
|
||
ScalarType *v = new ScalarType[_columns];
|
||
unsigned int i, p;
|
||
for (i=0, p=j; i<_rows; i++, p+=_columns)
|
||
v[i] = _data[p];
|
||
return v;
|
||
};
|
||
|
||
/*!
|
||
* Get the <I>i</I>-th row on the matrix.
|
||
* \param i the column index.
|
||
* \return the reference to the row elements.
|
||
*/
|
||
TYPE* GetRow(const unsigned int i)
|
||
{
|
||
assert(i>=0 && i<_rows);
|
||
ScalarType *v = new ScalarType[_rows];
|
||
unsigned int j, p;
|
||
for (j=0, p=i*_columns; j<_columns; j++, p++)
|
||
v[j] = _data[p];
|
||
return v;
|
||
};
|
||
|
||
/*!
|
||
* Assignment operator
|
||
* \param m ...
|
||
*/
|
||
Matrix<TYPE>& operator=(const Matrix<TYPE> &m)
|
||
{
|
||
if (this != &m)
|
||
{
|
||
assert(_rows == m._rows);
|
||
assert(_columns == m._columns);
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
_data[i] = m._data[i];
|
||
}
|
||
return *this;
|
||
};
|
||
|
||
/*!
|
||
* Adds a matrix <I>m</I> to this matrix.
|
||
* \param m reference to matrix to add to this
|
||
* \return the matrix sum.
|
||
*/
|
||
Matrix<TYPE>& operator+=(const Matrix<TYPE> &m)
|
||
{
|
||
assert(_rows == m._rows);
|
||
assert(_columns == m._columns);
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
_data[i] += m._data[i];
|
||
return *this;
|
||
};
|
||
|
||
/*!
|
||
* Subtracts a matrix <I>m</I> to this matrix.
|
||
* \param m reference to matrix to subtract
|
||
* \return the matrix difference.
|
||
*/
|
||
Matrix<TYPE>& operator-=(const Matrix<TYPE> &m)
|
||
{
|
||
assert(_rows == m._rows);
|
||
assert(_columns == m._columns);
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
_data[i] -= m._data[i];
|
||
return *this;
|
||
};
|
||
|
||
/*!
|
||
* (Modifier) Add to each element of this matrix the scalar constant <I>k</I>.
|
||
* \param k the scalar constant
|
||
* \return the modified matrix
|
||
*/
|
||
Matrix<TYPE>& operator+=(const TYPE k)
|
||
{
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
_data[i] += k;
|
||
return *this;
|
||
};
|
||
|
||
/*!
|
||
* (Modifier) Subtract from each element of this matrix the scalar constant <I>k</I>.
|
||
* \param k the scalar constant
|
||
* \return the modified matrix
|
||
*/
|
||
Matrix<TYPE>& operator-=(const TYPE k)
|
||
{
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
_data[i] -= k;
|
||
return *this;
|
||
};
|
||
|
||
/*!
|
||
* (Modifier) Multiplies each element of this matrix by the scalar constant <I>k</I>.
|
||
* \param k the scalar constant
|
||
* \return the modified matrix
|
||
*/
|
||
Matrix<TYPE>& operator*=(const TYPE k)
|
||
{
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
_data[i] *= k;
|
||
return *this;
|
||
};
|
||
|
||
/*!
|
||
* (Modifier) Divides each element of this matrix by the scalar constant <I>k</I>.
|
||
* \param k the scalar constant
|
||
* \return the modified matrix
|
||
*/
|
||
Matrix<TYPE>& operator/=(const TYPE k)
|
||
{
|
||
assert(k!=0);
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
_data[i] /= k;
|
||
return *this;
|
||
};
|
||
|
||
/*!
|
||
* Matrix multiplication: calculates the cross product.
|
||
* \param reference to the matrix to multiply by
|
||
* \return the matrix product
|
||
*/
|
||
Matrix<TYPE> operator*(const Matrix<TYPE> &m)
|
||
{
|
||
assert(_columns == m._rows);
|
||
Matrix<TYPE> result(_rows, m._columns);
|
||
unsigned int i, j, k, p, q, r;
|
||
for (i=0, p=0, r=0; i<result._rows; i++, p+=_columns, r+=result._columns)
|
||
for (j=0; j<result._columns; j++)
|
||
{
|
||
ScalarType temp = 0;
|
||
for (k=0, q=0; k<_columns; k++, q+=m._columns)
|
||
temp+=(_data[p+k]*m._data[q+j]);
|
||
result._data[r+j] = temp;
|
||
}
|
||
|
||
return result;
|
||
};
|
||
|
||
/*!
|
||
* Matrix multiplication: calculates the cross product.
|
||
* \param reference to the matrix to multiply by
|
||
* \return the matrix product
|
||
*/
|
||
template <int N,int M>
|
||
void DotProduct(PointBase<N,TYPE> &m,PointBase<M,TYPE> &result)
|
||
{
|
||
unsigned int i, j, p, r;
|
||
for (i=0, p=0, r=0; i<M; i++)
|
||
{ result[i]=0;
|
||
for (j=0; j<N; j++)
|
||
result[i]+=(*this)[i][j]*m[j];
|
||
}
|
||
};
|
||
|
||
/*!
|
||
* Matrix multiplication by a diagonal matrix
|
||
*/
|
||
Matrix<TYPE> operator*(const MatrixDiagBase &m)
|
||
{
|
||
assert(_columns == _rows);
|
||
assert(_columns == m.Dimension());
|
||
int i,j;
|
||
Matrix<TYPE> result(_rows, _columns);
|
||
|
||
for (i=0; i<result._rows; i++)
|
||
for (j=0; j<result._columns; j++)
|
||
result[i][j]*= m[j];
|
||
|
||
return result;
|
||
};
|
||
/*!
|
||
* Matrix from outer product.
|
||
*/
|
||
template <int N, int M>
|
||
void OuterProduct(const PointBase<N,TYPE> a, const PointBase< M,TYPE> b)
|
||
{
|
||
assert(N == _rows);
|
||
assert(M == _columns);
|
||
Matrix<TYPE> result(_rows,_columns);
|
||
unsigned int i, j;
|
||
|
||
for (i=0; i<result._rows; i++)
|
||
for (j=0; j<result._columns; j++)
|
||
(*this)[i][j] = a[i] * b[j];
|
||
};
|
||
|
||
|
||
/*!
|
||
* Matrix-vector multiplication.
|
||
* \param reference to the 3-dimensional vector to multiply by
|
||
* \return the resulting vector
|
||
*/
|
||
vcg::ndim::Point3<TYPE> operator*(const vcg::ndim::Point3<TYPE> &p)
|
||
{
|
||
assert(_columns==3 && _rows==3);
|
||
vcg::Point3<TYPE> result;
|
||
result[0] = _data[0]*p[0]+_data[1]*p[1]+_data[2]*p[2];
|
||
result[1] = _data[3]*p[0]+_data[4]*p[1]+_data[5]*p[2];
|
||
result[2] = _data[6]*p[0]+_data[7]*p[1]+_data[8]*p[2];
|
||
return result;
|
||
};
|
||
|
||
|
||
/*!
|
||
* Scalar sum.
|
||
* \param k
|
||
* \return the resultant matrix
|
||
*/
|
||
Matrix<TYPE> operator+(const TYPE k)
|
||
{
|
||
Matrix<TYPE> result(_rows, _columns);
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
result._data[i] = _data[i]+k;
|
||
return result;
|
||
};
|
||
|
||
/*!
|
||
* Scalar difference.
|
||
* \param k
|
||
* \return the resultant matrix
|
||
*/
|
||
Matrix<TYPE> operator-(const TYPE k)
|
||
{
|
||
Matrix<TYPE> result(_rows, _columns);
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
result._data[i] = _data[i]-k;
|
||
return result;
|
||
};
|
||
|
||
/*!
|
||
* Negate all matrix elements
|
||
* \return the modified matrix
|
||
*/
|
||
Matrix<TYPE> operator-() const
|
||
{
|
||
Matrix<TYPE> result(_rows, _columns, _data);
|
||
for (unsigned int i=0; i<_columns*_rows; i++)
|
||
result._data[i] = -1*_data[i];
|
||
return result;
|
||
};
|
||
|
||
/*!
|
||
* Scalar multiplication.
|
||
* \param k value to multiply every member by
|
||
* \return the resultant matrix
|
||
*/
|
||
Matrix<TYPE> operator*(const TYPE k)
|
||
{
|
||
Matrix<TYPE> result(_rows, _columns);
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
result._data[i] = _data[i]*k;
|
||
return result;
|
||
};
|
||
|
||
/*!
|
||
* Scalar division.
|
||
* \param k value to divide every member by
|
||
* \return the resultant matrix
|
||
*/
|
||
Matrix<TYPE> operator/(const TYPE k)
|
||
{
|
||
Matrix<TYPE> result(_rows, _columns);
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
result._data[i] = _data[i]/k;
|
||
return result;
|
||
};
|
||
|
||
|
||
/*!
|
||
* Set all the matrix elements to zero.
|
||
*/
|
||
void SetZero()
|
||
{
|
||
for (unsigned int i=0; i<_rows*_columns; i++)
|
||
_data[i] = ScalarType(0.0);
|
||
};
|
||
|
||
/*!
|
||
* Set the values of <I>j</I>-th column to v[j]
|
||
* \param j the column index
|
||
* \param v ...
|
||
*/
|
||
void SetColumn(const unsigned int j, TYPE* v)
|
||
{
|
||
assert(j>=0 && j<_columns);
|
||
unsigned int i, p;
|
||
for (i=0, p=0; i<_rows; i++, p+=_columns)
|
||
_data[p] = v[i];
|
||
};
|
||
|
||
/*!
|
||
* Set the elements of the <I>i</I>-th row to v[j]
|
||
* \param i the row index
|
||
* \param v ...
|
||
*/
|
||
void SetRow(const unsigned int i, TYPE* v)
|
||
{
|
||
assert(i>=0 && i<_rows);
|
||
unsigned int j, p;
|
||
for (j=0, p=i*_rows; j<_columns; j++, p++)
|
||
_data[p] = v[j];
|
||
};
|
||
|
||
/*!
|
||
* Set the diagonal elements <I>v<SUB>i,i</SUB></I> to v[i]
|
||
* \param v
|
||
*/
|
||
void SetDiagonal(TYPE *v)
|
||
{
|
||
assert(_rows == _columns);
|
||
for (unsigned int i=0, p=0; i<_rows; i++, p+=_rows)
|
||
_data[p+i] = v[i];
|
||
};
|
||
|
||
/*!
|
||
* Resize the current matrix.
|
||
* \param m the number of matrix rows.
|
||
* \param n the number of matrix columns.
|
||
*/
|
||
void Resize(const unsigned int m, const unsigned int n)
|
||
{
|
||
assert(m>=2);
|
||
assert(n>=2);
|
||
_rows = m;
|
||
_columns = n;
|
||
delete []_data;
|
||
_data = new ScalarType[m*n];
|
||
for (unsigned int i=0; i<m*n; i++)
|
||
_data[i] = 0;
|
||
};
|
||
|
||
|
||
/*!
|
||
* Matrix transposition operation: set the current matrix to its transpose
|
||
*/
|
||
void Transpose()
|
||
{
|
||
ScalarType *temp = new ScalarType[_rows*_columns];
|
||
unsigned int i, j, p, q;
|
||
for (i=0, p=0; i<_rows; i++, p+=_columns)
|
||
for (j=0, q=0; j<_columns; j++, q+=_rows)
|
||
temp[q+i] = _data[p+j];
|
||
|
||
std::swap(_columns, _rows);
|
||
std::swap(_data, temp);
|
||
delete []temp;
|
||
};
|
||
|
||
|
||
/*!
|
||
* Print all matrix elements
|
||
*/
|
||
void Dump()
|
||
{
|
||
unsigned int i, j, p;
|
||
for (i=0, p=0; i<_rows; i++, p+=_columns)
|
||
{
|
||
printf("[\t");
|
||
for (j=0; j<_columns; j++)
|
||
printf("%g\t", _data[p+j]);
|
||
|
||
printf("]\n");
|
||
}
|
||
printf("\n");
|
||
};
|
||
|
||
protected:
|
||
/// the number of matrix rows
|
||
unsigned int _rows;
|
||
|
||
/// the number of matrix rows
|
||
unsigned int _columns;
|
||
|
||
/// the matrix elements
|
||
ScalarType *_data;
|
||
};
|
||
|
||
/*! @} */
|
||
|
||
template <class MatrixType>
|
||
void Invert(MatrixType & m){
|
||
typename MatrixType::ScalarType *diag;
|
||
diag = new MatrixType::ScalarType [m.ColumnsNumber()];
|
||
|
||
MatrixType res(m.RowsNumber(),m.ColumnsNumber());
|
||
vcg::SingularValueDecomposition<MatrixType > (m,&diag[0],res,50 );
|
||
m.Transpose();
|
||
// prodotto per la diagonale
|
||
unsigned int i,j;
|
||
for (i=0; i<m.RowsNumber(); i++)
|
||
for (j=0; j<m.ColumnsNumber(); j++)
|
||
res[i][j]/= diag[j];
|
||
m = res *m;
|
||
}
|
||
|
||
}
|
||
}; // end of namespace
|
||
|
||
#endif |