570 lines
16 KiB
C++
570 lines
16 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.8 2004/09/28 09:45:17 cignoni
|
|
Added MapFalseColor
|
|
|
|
Revision 1.7 2004/09/16 14:23:57 ponchio
|
|
fixed gcc template compatibility issues.
|
|
|
|
Revision 1.6 2004/09/10 14:02:20 cignoni
|
|
Added Cone directions
|
|
|
|
Revision 1.5 2004/09/09 22:59:21 cignoni
|
|
Removed many small warnings
|
|
|
|
Revision 1.4 2004/09/09 22:37:48 cignoni
|
|
Integrated lost modifications...
|
|
|
|
Revision 1.3 2004/09/09 14:35:54 ponchio
|
|
Various changes for gcc compatibility
|
|
|
|
Revision 1.2 2004/07/11 22:13:30 cignoni
|
|
Added GPL comments
|
|
|
|
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCG_MESH_VISIBILITY
|
|
#define __VCG_MESH_VISIBILITY
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <bitset>
|
|
#include <vcg/math/matrix44.h>
|
|
#include <wrap/gl/math.h>
|
|
#include "simplepic.h"
|
|
#include "gen_normal.h"
|
|
|
|
namespace vcg {
|
|
// Base Class che definisce le varie interfaccie;
|
|
template <class MESH_TYPE, int MAXVIS=2048> class VisShader
|
|
{
|
|
public :
|
|
enum {VisMax=MAXVIS};
|
|
VisShader(MESH_TYPE &me):m(me)
|
|
{
|
|
CullFlag= false;
|
|
IsClosedFlag = false;
|
|
ZTWIST=1e-3;
|
|
SplitNum=1;
|
|
|
|
CameraViewing=false;
|
|
}
|
|
|
|
typedef Point3<typename MESH_TYPE::ScalarType> Point3x;
|
|
|
|
typedef typename MESH_TYPE::CoordType CoordType;
|
|
typedef typename MESH_TYPE::ScalarType ScalarType;
|
|
typedef typename MESH_TYPE::VertexType VertexType;
|
|
typedef typename MESH_TYPE::VertexPointer VertexPointer;
|
|
typedef typename MESH_TYPE::VertexIterator VertexIterator;
|
|
typedef typename MESH_TYPE::FaceIterator FaceIterator;
|
|
typedef typename MESH_TYPE::FaceType FaceType;
|
|
typedef Matrix44<ScalarType> Matrix44x;
|
|
typedef Box3<ScalarType> Box3x;
|
|
|
|
// The Basic Data the mesh and its wrapper;
|
|
MESH_TYPE &m;
|
|
|
|
std::vector<MESH_TYPE *> OMV; // Occluder Mesh Vector;
|
|
|
|
// la visibilita' e' in float, per ogni entita'
|
|
// 1 significa che e' totalmente visibile per una data direzione.
|
|
|
|
std::vector<float> VV;
|
|
std::vector< Point3x > VN; // Vettore delle normali che ho usato per calcolare la mask e i float in W;
|
|
|
|
// User defined parameters and flags
|
|
bool IsClosedFlag;
|
|
float ZTWIST;
|
|
bool CullFlag; // Enable the frustum culling. Useful when the splitting value is larger than 2
|
|
int SplitNum;
|
|
protected:
|
|
bool CameraViewing;
|
|
//Camera<ScalarType> Cam;
|
|
public:
|
|
|
|
/********************************************************/
|
|
// Generic functions with Specialized code for every subclass
|
|
virtual void MapVisibility(float Gamma=1, float LowPass=0, float HighPass=1,float Scale=1.0)=0;
|
|
//virtual void ApplyLightingEnvironment(std::vector<float> &W, float Gamma);
|
|
|
|
virtual int GLAccumPixel( std::vector<int> &PixSeen)=0;
|
|
|
|
virtual bool ReadVisibility(const char * /*filename*/){assert( 0); return false;}
|
|
virtual bool WriteVisibility(const char * /*filename*/){assert( 0); return false;}
|
|
|
|
/********************************************************/
|
|
// Generic functions with same code for every subclass
|
|
|
|
void Clear() {
|
|
fill(VV.begin(),VV.end(),0); }
|
|
|
|
void InitGL()
|
|
{
|
|
glPushAttrib(GL_COLOR_BUFFER_BIT );
|
|
::glClearColor (1.0, 1.0, 1.0, 0.0);
|
|
glMatrixMode (GL_PROJECTION);
|
|
glPushMatrix();
|
|
glMatrixMode (GL_MODELVIEW);
|
|
glPushMatrix();
|
|
}
|
|
|
|
void RestoreGL()
|
|
{
|
|
glMatrixMode (GL_PROJECTION);
|
|
glPopMatrix();
|
|
glMatrixMode (GL_MODELVIEW);
|
|
glPopMatrix();
|
|
glPopAttrib();
|
|
}
|
|
|
|
|
|
/*
|
|
Funzione principale di conversione in visibilita'
|
|
Dati i due vettori PixSeen e PixNotSeen che indicano per ogni entita' (vertice o faccia)
|
|
quanti sono, rispettivamente, i pixel visibili e occlusi,
|
|
questa funzione calcola un valore float per ogni entita' che indica quanto e' visibile lungo una data direzione camera
|
|
== 1 significa completamente visibile
|
|
== 0 significa completamente occluso.
|
|
|
|
*/
|
|
void AddPixelCount(std::vector<float> &_VV, const std::vector<int> &PixSeen)
|
|
{
|
|
assert(_VV.size()==PixSeen.size());
|
|
for(unsigned int i=0;i<PixSeen.size();++i)
|
|
if(PixSeen[i]>0) _VV[i]+= 1;
|
|
}
|
|
|
|
|
|
//void SetVisibilityMask(std::vector< std::bitset<MAXVIS> > &_VM, const std::vector<int> &PixSeen, const int dir)
|
|
// {
|
|
// assert(_VM.size()==PixSeen.size());
|
|
// for(int i=0;i<PixSeen.size();++i)
|
|
// if(PixSeen[i]>0) _VM[i][dir]=true;
|
|
// }
|
|
|
|
/*******************************
|
|
Funzioni ad alto livello che computano le Visibility Mask per varie distribuzioni di direzioni
|
|
|
|
|
|
*******************************/
|
|
|
|
// Funzione Generica
|
|
// Calcola l'occlusion in base all'insieme VN di direzioni.
|
|
|
|
void Compute( CallBack *cb)
|
|
{
|
|
//cb(buf.format("Start to compute %i dir\n",VN.size()));
|
|
InitGL();
|
|
int t00=clock();
|
|
VV.resize(m.vert.size());
|
|
std::vector<int> PixSeen(VV.size(),0);
|
|
int TotRay=0,HitRay=0;
|
|
for(unsigned int i=0;i<VN.size();++i)
|
|
{
|
|
int t0=clock();
|
|
fill(PixSeen.begin(),PixSeen.end(),0);
|
|
int added=SplittedRendering(VN[i], PixSeen,cb);
|
|
AddPixelCount(VV,PixSeen);
|
|
int t1=clock();
|
|
HitRay+=added;
|
|
TotRay+=VV.size();
|
|
printf("%3i/%i : %i msec -- TotRays %i, HitRays %i, ray/sec %3.1fk \n ",i,VN.size(),t1-t0,TotRay,HitRay,float(TotRay)/(clock()-t00));
|
|
}
|
|
|
|
printf("Tot Time %i msec TotRays %i, HitRays %i, ray/sec %3.1fk \n ",clock()-t00,TotRay,HitRay,float(TotRay)/(clock()-t00));
|
|
RestoreGL();
|
|
}
|
|
|
|
void ComputeHalf(int nn, Point3x &dir, CallBack *cb)
|
|
{
|
|
std::string buf;
|
|
|
|
VN.clear();
|
|
std::vector<Point3x> nvt;
|
|
assert(0 && "This is only my guess (to compile). (Ponchio)");
|
|
assert(0 && "Was: GenNormal(nn*2, nvt);");
|
|
GenNormal<ScalarType>::Uniform(nn*2,nvt);
|
|
for(int i=0;i<nvt.size();++i)
|
|
if(dir*nvt[i]>0) VN.push_back(nvt[i]);
|
|
|
|
printf("Asked %i normal, got %i normals\n",nn,VN.size());
|
|
Compute(cb);
|
|
}
|
|
|
|
void ComputeUniformCone(int nn, std::vector<Point3x> &vv, ScalarType AngleRad, Point3x &ConeDir, CallBack *cb)
|
|
{
|
|
VN.clear();
|
|
GenNormal<ScalarType>::UniformCone(nn,VN,AngleRad,ConeDir);
|
|
typename std::vector<Point3x>::iterator vi;
|
|
for(vi=VN.begin();vi!=VN.end();++vi)
|
|
vv.push_back(*vi);
|
|
|
|
char buf[256];
|
|
sprintf(buf,"Asked %i normal, got %i normals\n",nn,VN.size());
|
|
cb(buf);
|
|
Compute(cb);
|
|
}
|
|
void ComputeUniform(int nn, std::vector<Point3x> &vv, CallBack *cb)
|
|
{
|
|
VN.clear();
|
|
GenNormal<ScalarType>::Uniform(nn,VN);
|
|
typename std::vector<Point3x>::iterator vi;
|
|
for(vi=VN.begin();vi!=VN.end();++vi)
|
|
vv.push_back(*vi);
|
|
|
|
char buf[256];
|
|
sprintf(buf,"Asked %i normal, got %i normals\n",nn,VN.size());
|
|
cb(buf);
|
|
Compute(cb);
|
|
}
|
|
|
|
void ComputeSingle(Point3x &dir, std::vector<Point3x> &vv,CallBack *cb)
|
|
{
|
|
VN.clear();
|
|
VN.push_back(dir);
|
|
vv.push_back(dir);
|
|
printf("Computing one direction (%f %f %f)\n",dir[0],dir[1],dir[2]);
|
|
Compute(cb);
|
|
}
|
|
|
|
/**********************************************************/
|
|
|
|
int SplittedRendering(Point3x &ViewDir, std::vector<int> &PixSeen, CallBack *cb=DummyCallBack)
|
|
{
|
|
int tt=0;
|
|
int i,j;
|
|
for(i=0;i<SplitNum;++i)
|
|
for(j=0;j<SplitNum;++j){
|
|
SetupOrthoViewMatrix(ViewDir, i,j,SplitNum);
|
|
tt+=GLAccumPixel(PixSeen);
|
|
}
|
|
return tt;
|
|
}
|
|
|
|
// Compute a rotation matrix that bring Axis parallel to Z.
|
|
void GenMatrix(Matrix44d &a, Point3d Axis, double angle)
|
|
{
|
|
const double eps=1e-3;
|
|
Point3d RotAx = Axis ^ Point3d(0,0,1);
|
|
double RotAngle = Angle(Axis,Point3d(0,0,1));
|
|
|
|
if(math::Abs(RotAx.Norm())<eps) { // in questo caso Axis e' collineare con l'asse z
|
|
RotAx=Axis ^ Point3d(0,1,0);
|
|
double RotAngle = Angle(Axis,Point3d(0,1,0));
|
|
}
|
|
|
|
//printf("Rotating around (%5.3f %5.3f %5.3f) %5.3f\n",RotAx[0],RotAx[1],RotAx[2],RotAngle);
|
|
RotAx.Normalize();
|
|
a.SetRotate(RotAngle,RotAx);
|
|
//Matrix44d rr;
|
|
//rr.SetRotate(-angle, Point3d(0,0,1));
|
|
//a=rr*a;
|
|
}
|
|
|
|
|
|
// Genera la matrice di proj e model nel caso di un rendering ortogonale.
|
|
// subx e suby indicano la sottoparte che si vuole
|
|
void SetupOrthoViewMatrix(Point3x &ViewDir, int subx, int suby,int LocSplit)
|
|
{
|
|
glMatrixMode (GL_PROJECTION);
|
|
glLoadIdentity ();
|
|
float dlt=2.0f/LocSplit;
|
|
|
|
glOrtho(-1+subx*dlt, -1+(subx+1)*dlt, -1+suby*dlt, -1+(suby+1)*dlt,-2,2);
|
|
glMatrixMode (GL_MODELVIEW);
|
|
glLoadIdentity ();
|
|
Matrix44d rot;
|
|
Point3d qq; qq.Import(ViewDir);
|
|
GenMatrix(rot,qq,0);
|
|
glMultMatrix(rot);
|
|
double d=2.0/m.bbox.Diag();
|
|
glScalef(d,d,d);
|
|
glTranslate(-m.bbox.Center());
|
|
}
|
|
|
|
void ComputeSingleDirection(Point3x BaseDir, std::vector<int> &PixSeen, CallBack *cb=DummyCallBack)
|
|
{
|
|
int t0=clock();
|
|
std::string buf;
|
|
|
|
int added=SplittedRendering(BaseDir, PixSeen,cb);
|
|
int t1=clock();
|
|
printf("ComputeSingleDir %i msec\n",t1-t0);
|
|
}
|
|
|
|
void ComputeAverageVisibilityDirection()
|
|
{
|
|
int i,j;
|
|
VD.resize(VM.size());
|
|
for(j=0;j<VM.size();++j)
|
|
{
|
|
Point3x &nn=VD[j];
|
|
nn=Point3x(0,0,0);
|
|
bitset<VisMax> &msk=VM[j];
|
|
for(i=0;i<VN.size();++i)
|
|
if(msk[i]) nn+=VN[i];
|
|
}
|
|
for(j=0;j<VM.size();++j)
|
|
VD[j].Normalize();
|
|
|
|
}
|
|
|
|
// calcola un LightingEnvironment direzionale, cioe'un vettore di pesi per l'insieme di normali
|
|
// corrente tale che
|
|
// mette a 1 tutti i vettori che sono entro un angolo DegAngle1
|
|
// a 0 tutti quelli oltre DegAngle2 e
|
|
// sfuma linearmente nel mezzo.
|
|
void DirectionalLightingEnvironment(std::vector<float> &LE, Point3x dir, ScalarType DegAngle1, ScalarType DegAngle2)
|
|
{
|
|
LE.clear();
|
|
LE.resize(VN.size(),0);
|
|
int i;
|
|
for(i=0;i<VN.size();++i)
|
|
{
|
|
ScalarType a=ToDeg(Angle(dir,VN[i]));
|
|
if(a<DegAngle1) { LE[i]=1; continue; }
|
|
if(a>DegAngle2) { LE[i]=0; continue; }
|
|
LE[i] = 1.0-(a-DegAngle1)/(DegAngle2-DegAngle1);
|
|
|
|
}
|
|
// last step normalize the weights;
|
|
ScalarType sum=0;
|
|
for(i=0;i<VN.size();++i)
|
|
sum+=LE[i];
|
|
for(i=0;i<VN.size();++i)
|
|
LE[i]/=sum;
|
|
}
|
|
|
|
|
|
};
|
|
/***************************************************************************/
|
|
/***************************************************************************/
|
|
/***************************************************************************/
|
|
|
|
template <class MESH_TYPE> class VertexVisShader : public VisShader<MESH_TYPE>
|
|
{
|
|
public :
|
|
|
|
// Function Members
|
|
VertexVisShader(MESH_TYPE &me):VisShader<MESH_TYPE>(me)
|
|
{
|
|
// la mesh DEVE avere colore per vertice
|
|
if(! m.HasPerVertexColor()) assert(0);
|
|
}
|
|
|
|
void Init() { VV.resize(m.vert.size()); }
|
|
void Compute(int nn);
|
|
|
|
void DrawFill (MESH_TYPE &mm)
|
|
{
|
|
static GLuint dl=0;
|
|
if(mm.face.empty())
|
|
{ AMesh::VertexIterator vi;
|
|
glBegin(GL_POINTS);
|
|
for(vi=mm.vert.begin();vi!=mm.vert.end();++vi)
|
|
{
|
|
if(ColorFlag) glColor((*vi).C());
|
|
glVertex((*vi).P());
|
|
}
|
|
glEnd();
|
|
}
|
|
else
|
|
{
|
|
glBegin(GL_TRIANGLES);
|
|
FaceIterator fi;
|
|
for(fi=mm.face.begin();fi!=mm.face.end();++fi)
|
|
{
|
|
glVertex((*fi).V(0)->P());
|
|
glVertex((*fi).V(1)->P());
|
|
glVertex((*fi).V(2)->P());
|
|
}
|
|
glEnd();
|
|
}
|
|
}
|
|
|
|
/***************************************************************************/
|
|
|
|
//VertexVisibility
|
|
// Funzione Principale restituisce per ogni entita' quanti px si vedono o no.
|
|
|
|
int GLAccumPixel( std::vector<int> &PixSeen)
|
|
{
|
|
SimplePic<float> snapZ;
|
|
SimplePic<Color4b> snapC;
|
|
|
|
glClearColor(Color4b::Black);
|
|
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
glPushAttrib(GL_CURRENT_BIT | GL_ENABLE_BIT | GL_LIGHTING_BIT | GL_POLYGON_BIT );
|
|
glDisable(GL_LIGHTING);
|
|
glDepthRange(0.0f,1.0f);
|
|
glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);
|
|
glDepthMask(GL_TRUE);
|
|
glDrawBuffer(GL_BACK);
|
|
glReadBuffer(GL_BACK);
|
|
|
|
/////** Si disegnano le front face **/////
|
|
glDepthRange(2.0*ZTWIST,1.0f);
|
|
if(IsClosedFlag) glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE);
|
|
glEnable(GL_CULL_FACE);
|
|
glCullFace(GL_BACK);
|
|
glColor(Color4b::Red);
|
|
DrawFill(m);
|
|
|
|
if(!IsClosedFlag) {
|
|
glCullFace(GL_FRONT);
|
|
glColor(Color4b::Black);
|
|
DrawFill(m);
|
|
snapC.OpenGLSnap();
|
|
}
|
|
|
|
int cnt=0;
|
|
snapZ.OpenGLSnap(GL_DEPTH_COMPONENT);
|
|
|
|
glDepthRange(0,1.0f-2.0*ZTWIST);
|
|
double MM[16];
|
|
glGetDoublev(GL_MODELVIEW_MATRIX,MM);
|
|
double MP[16];
|
|
glGetDoublev(GL_PROJECTION_MATRIX,MP);
|
|
int VP[4];
|
|
glGetIntegerv(GL_VIEWPORT,VP);
|
|
double tx,ty,tz;
|
|
|
|
for(unsigned int i=0;i<m.vert.size();++i)
|
|
{
|
|
gluProject(m.vert[i].P()[0],m.vert[i].P()[1],m.vert[i].P()[2],
|
|
MM,MP,VP,
|
|
&tx,&ty,&tz);
|
|
int col=1;
|
|
|
|
if(tx>=0 && tx<snapZ.sx && ty>=0 && ty<snapZ.sy)
|
|
{
|
|
int txi=floor(tx),tyi=floor(ty);
|
|
float sd=snapZ.Pix(tx,ty);
|
|
if(!IsClosedFlag) {
|
|
col = max( max(snapC.Pix(txi+0,tyi+0)[0],snapC.Pix(txi+1,tyi+0)[0]),
|
|
max(snapC.Pix(txi+0,tyi+1)[0],snapC.Pix(txi+1,tyi+1)[0]));
|
|
|
|
// col=snapC.Pix(txi+0,tyi+0)[0];
|
|
}
|
|
if(col!=0 && tz<sd) {
|
|
PixSeen[i]++;
|
|
cnt++;
|
|
}
|
|
}
|
|
}
|
|
glPopAttrib();
|
|
//printf("Seen %i vertexes on %i\n",cnt,m.vert.size());
|
|
return cnt;
|
|
}
|
|
|
|
void SmoothVisibility(bool Enhance=false)
|
|
{
|
|
FaceIterator fi;
|
|
std::vector<float> VV2;
|
|
std::vector<int> VC(VV.size(),1);
|
|
VV2=VV;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
VV2[(*fi).V(i)-&*m.vert.begin()] += VV[(*fi).V1(i)-&*m.vert.begin()];
|
|
++VC[(*fi).V(i)-&*m.vert.begin()];
|
|
}
|
|
|
|
if(!Enhance)
|
|
for(unsigned int i=0;i<VV2.size();++i)
|
|
VV[i]=VV2[i]/VC[i];
|
|
else
|
|
for(unsigned int i=0;i<VV2.size();++i)
|
|
VV[i]=VV[i]+ (VV[i]-VV2[i]/VC[i])*.5;
|
|
}
|
|
|
|
|
|
void MapFalseColor()
|
|
{
|
|
float minv=*min_element(VV.begin(),VV.end());
|
|
float maxv=*max_element(VV.begin(),VV.end());
|
|
printf("Visibility Range %f %f\n", minv,maxv);
|
|
MapFalseColor(minv, maxv);
|
|
}
|
|
|
|
void MapFalseColor(float minv, float maxv)
|
|
{
|
|
VertexIterator vi;
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi){
|
|
float gval=(VV[vi-m.vert.begin()]-minv)/(maxv-minv);
|
|
math::Clamp(gval,0.0f,1.0f);
|
|
(*vi).C().ColorRamp(1.0,0.0,gval);
|
|
}
|
|
}
|
|
|
|
/*
|
|
The visibility is mapped in [0..1]
|
|
then clamped to [low,high]
|
|
this value is mapped again in [0.1] and gamma corrected;
|
|
and at the end is scaled for 'Scale'
|
|
*/
|
|
|
|
void MapVisibility(float Gamma=1, float LowPass=0, float HighPass=1, float Scale= 1.0)
|
|
{
|
|
float minv=*min_element(VV.begin(),VV.end());
|
|
float maxv=*max_element(VV.begin(),VV.end());
|
|
printf("Visibility Range %f %f\n", minv,maxv);
|
|
|
|
VertexIterator vi;
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi){
|
|
float gval=(VV[vi-m.vert.begin()]-minv)/(maxv-minv);
|
|
if(gval<LowPass) gval=LowPass;
|
|
if(gval>HighPass) gval=HighPass;
|
|
(*vi).C().SetGrayShade(Scale*pow((gval-LowPass)/(HighPass-LowPass),Gamma));
|
|
}
|
|
}
|
|
|
|
//void ApplyLightingEnvironment(std::vector<float> &W, float Gamma=1)
|
|
// {
|
|
// assert(W.size()==VN.size());
|
|
// MESH_TYPE::VertexIterator vi;
|
|
//
|
|
// for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
// {
|
|
// float gray=0;
|
|
// bitset<VisMax> &msk=VM[vi-m.vert.begin()];
|
|
// for(int i=0;i<VN.size();++i)
|
|
// if(msk[i]) gray+=W[i];
|
|
//
|
|
// (*vi).C().SetGrayShade(gray);
|
|
// }
|
|
// }
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
#endif // __VCG_MESH_VISIBILITY
|