vcglib/wrap/io_trimesh/import_obj.h

1184 lines
33 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.4 2006/03/29 09:27:07 cignoni
Added managemnt of non critical errors
Revision 1.3 2006/03/29 08:51:16 corsini
reset to zero warnings
Revision 1.2 2006/03/27 07:18:22 cignoni
added missing std::
Revision 1.1 2006/03/07 13:19:29 cignoni
First Release with OBJ import support
Initial Working version coded by Buzzelli.
****************************************************************************/
#ifndef __VCGLIB_IMPORT_OBJ
#define __VCGLIB_IMPORT_OBJ
#include <wrap/callback.h>
#include <vcg/complex/trimesh/allocate.h>
#include <wrap/io_trimesh/io_mask.h>
#include <fstream>
#include <string>
#include <vector>
namespace vcg {
namespace tri {
namespace io {
/**
This class encapsulate a filter for importing obj (Alias Wavefront) meshes.
Warning: this code assume little endian (PC) architecture!!!
*/
template <class OpenMeshType>
class ImporterOBJ
{
public:
typedef typename OpenMeshType::VertexPointer VertexPointer;
typedef typename OpenMeshType::ScalarType ScalarType;
typedef typename OpenMeshType::VertexType VertexType;
typedef typename OpenMeshType::FaceType FaceType;
typedef typename OpenMeshType::VertexIterator VertexIterator;
typedef typename OpenMeshType::FaceIterator FaceIterator;
typedef typename OpenMeshType::CoordType CoordType;
class Info
{
public:
Info()
{
mask = 0;
cb = 0;
}
/// It returns a bit mask describing the field preesnt in the ply file
int mask;
/// a Simple callback that can be used for long obj parsing.
// it returns the current position, and formats a string with a description of what th efunction is doing (loading vertexes, faces...)
CallBackPos *cb;
/// number of vertices
int numVertices;
/// number of triangles
int numTriangles;
}; // end class
struct OBJFacet
{
CoordType n;
CoordType t;
CoordType v[3];
short attr; // material index
};
struct TexCoord
{
float u;
float v;
};
struct Material
{
Material()
{
strcpy(name, "default_material");
ambient = Point3f( .2f, .2f, .2f);
diffuse = Point3f(1.0f, 1.0f, 1.0f);
specular = Point3f(1.0f, 1.0f, 1.0f);
shininess = 0;
alpha = 1.0f;
strcpy(textureFileName, "");
textureIdx = -1;
};
char name[FILENAME_MAX];
Point3f ambient;
Point3f diffuse;
Point3f specular;
int shininess;
float alpha;
bool bSpecular;
char textureFileName[FILENAME_MAX];
short textureIdx;
};
enum OBJError {
// Successfull opening
E_NOERROR = 0x000, // 0 (position of correspondig string in the array)
// Non Critical Errors (only odd numbers)
E_NON_CRITICAL_ERROR = 0x001,
E_MATERIAL_FILE_NOT_FOUND = 0x003, // 1
E_MATERIAL_NOT_FOUND = 0x005, // 2
E_TEXTURE_NOT_FOUND = 0x007, // 3
E_VERTICES_WITH_SAME_IDX_IN_FACE = 0x009, // 4
// Critical Opening Errors (only even numbers)
E_CANTOPEN = 0x00A, // 5
E_UNESPECTEDEOF = 0x00C, // 6
E_ABORTED = 0x00E, // 7
E_NO_VERTEX = 0x010, // 8
E_NO_FACE = 0x012, // 9
E_BAD_VERTEX_STATEMENT = 0x014, // 10
E_BAD_VERT_TEX_STATEMENT = 0x016, // 11
E_BAD_VERT_NORMAL_STATEMENT = 0x018, // 12
E_LESS_THAN_3VERTINFACE = 0x01A, // 13
E_BAD_VERT_INDEX = 0x01C, // 14
E_BAD_VERT_TEX_INDEX = 0x01E, // 15
E_BAD_VERT_NORMAL_INDEX = 0x020 // 16
};
// to check if a given error is critical or not.
static bool ErrorCritical(int err)
{
if(err<0x00A && err>=0) return false;
return true;
}
static const char* ErrorMsg(int error)
{
static const char* obj_error_msg[] =
{
"No errors", // 0
"Material library file not found, a default white material is used", // 1
"Some materials definitions were not found, a default white material is used where no material was available", // 2
"Texture file not found", // 3
"Identical index vertices found in the same face", // 4
"Can't open file", // 5
"Premature End of file", // 6
"File opening aborted", // 7
"No vertex field found", // 8
"No face field found", // 9
"Vertex statement with less than 3 coords", // 10
"Texture coords statement with less than 2 coords", // 11
"Vertex normal statement with less than 3 coords", // 12
"Face with less than 3 vertices", // 13
"Bad vertex index in face", // 14
"Bad texture coords index in face", // 15
"Bad vertex normal index in face" // 16
};
// due to approximation, following line works well for either even (critical err codes)
// or odd (non critical ones) numbers
error = (int) error/2;
if(error>15 || error<0) return "Unknown error";
else return obj_error_msg[error];
};
static int Open(OpenMeshType &mesh, const char *filename, int &loadmask, CallBackPos *cb=0)
{
Info oi;
oi.mask=-1;
oi.cb=cb;
int ret=Open(mesh,filename,oi);
loadmask=oi.mask;
return ret;
}
/*!
* Opens an object file (in ascii format) and populates the mesh passed as first
* accordingly to read data
* \param m The mesh model to be populated with data stored into the file
* \param filename The name of the file to be opened
* \param oi A structure containing infos about the object to be opened
*/
static int Open( OpenMeshType &m, const char * filename, Info &oi)
{
int result = E_NOERROR;
m.Clear();
CallBackPos *cb = oi.cb;
// if LoadMask has not been called yet, we call it here
if (oi.mask == -1)
LoadMask(filename, oi);
if (oi.numVertices == 0)
return E_NO_VERTEX;
if (oi.numTriangles == 0)
return E_NO_FACE;
std::ifstream stream(filename);
if (stream.fail())
return E_CANTOPEN;
std::vector<Material> materials; // materials vector
std::vector<TexCoord> texCoords; // texture coordinates
std::vector<CoordType> normals; // vertex normals
std::vector< std::string > tokens;
std::string header;
short currentMaterialIdx = 0; // index of current material into materials vector
Material defaultMaterial; // default material: white
materials.push_back(defaultMaterial);
int numVertices = 0; // stores the number of vertices been read till now
int numTriangles = 0; // stores the number of faces been read till now
int numTexCoords = 0; // stores the number of texture coordinates been read till now
int numVNormals = 0; // stores the number of vertex normals been read till now
int numVerticesPlusFaces = oi.numVertices + oi.numTriangles;
// vertices and faces allocatetion
VertexIterator vi = Allocator<OpenMeshType>::AddVertices(m,oi.numVertices);
FaceIterator fi = Allocator<OpenMeshType>::AddFaces(m,oi.numTriangles);
// parsing file
while (!stream.eof())
{
tokens.clear();
TokenizeNextLine(stream, tokens);
unsigned int numTokens = static_cast<unsigned int>(tokens.size());
if (numTokens > 0)
{
header.clear();
header = tokens[0];
if (header.compare("v")==0) // vertex
{
if (numTokens < 4) return E_BAD_VERTEX_STATEMENT;
(*vi).P()[0] = (ScalarType) atof(tokens[1].c_str());
(*vi).P()[1] = (ScalarType) atof(tokens[2].c_str());
(*vi).P()[2] = (ScalarType) atof(tokens[3].c_str());
++numVertices;
// assigning vertex color
// ----------------------
if( oi.mask & vcg::tri::io::Mask::IOM_VERTCOLOR)
{
Material material = materials[currentMaterialIdx];
Point3f diffuseColor = material.diffuse;
unsigned char r = (unsigned char) (diffuseColor[0] * 255.0);
unsigned char g = (unsigned char) (diffuseColor[1] * 255.0);
unsigned char b = (unsigned char) (diffuseColor[2] * 255.0);
unsigned char alpha = (unsigned char) (material.alpha * 255.0);
Color4b vertexColor = Color4b(r, g, b, alpha);
(*vi).C()[0] = vertexColor[0];
(*vi).C()[1] = vertexColor[1];
(*vi).C()[2] = vertexColor[2];
(*vi).C()[3] = vertexColor[3];
}
++vi; // move to next vertex iterator
// callback invocation, abort loading process if the call returns false
if ((cb !=NULL) && (((numTriangles + numVertices)%100)==0) && !(*cb)((100*(numTriangles + numVertices))/numVerticesPlusFaces, "Vertex Loading"))
return E_ABORTED;
}
else if (header.compare("vt")==0) // vertex texture coords
{
if (numTokens < 3) return E_BAD_VERT_TEX_STATEMENT;
TexCoord t;
t.u = static_cast<float>(atof(tokens[1].c_str()));
t.v = static_cast<float>(atof(tokens[2].c_str()));
texCoords.push_back(t);
numTexCoords++;
}
else if (header.compare("vn")==0) // vertex normal
{
if (numTokens != 4) return E_BAD_VERT_NORMAL_STATEMENT;
CoordType n;
n[0] = (ScalarType) atof(tokens[1].c_str());
n[1] = (ScalarType) atof(tokens[2].c_str());
n[2] = (ScalarType) atof(tokens[3].c_str());
normals.push_back(n);
numVNormals++;
}
else if (header.compare("f")==0) // face
{
if (numTokens < 4) return E_LESS_THAN_3VERTINFACE;
int v1_index, v2_index, v3_index;
int vt1_index, vt2_index, vt3_index;
int vn1_index, vn2_index, vn3_index;
if (( oi.mask & vcg::tri::io::Mask::IOM_WEDGTEXCOORD ) &&
( oi.mask & vcg::tri::io::Mask::IOM_WEDGNORMAL ) )
{
std::string vertex;
std::string texcoord;
std::string normal;
SplitVVTVNToken(tokens[1], vertex, texcoord, normal);
v1_index = atoi(vertex.c_str());
vt1_index = atoi(texcoord.c_str());
vn1_index = atoi(normal.c_str());
SplitVVTVNToken(tokens[2], vertex, texcoord, normal);
v2_index = atoi(vertex.c_str());
vt2_index = atoi(texcoord.c_str());
vn2_index = atoi(normal.c_str());
SplitVVTVNToken(tokens[3], vertex, texcoord, normal);
v3_index = atoi(vertex.c_str());
vt3_index = atoi(texcoord.c_str());
vn3_index = atoi(normal.c_str());
}
else if ( oi.mask & vcg::tri::io::Mask::IOM_WEDGTEXCOORD )
{
std::string vertex;
std::string texcoord;
SplitVVTToken(tokens[1], vertex, texcoord);
v1_index = atoi(vertex.c_str());
vt1_index = atoi(texcoord.c_str());
SplitVVTToken(tokens[2], vertex, texcoord);
v2_index = atoi(vertex.c_str());
vt2_index = atoi(texcoord.c_str());
SplitVVTToken(tokens[3], vertex, texcoord);
v3_index = atoi(vertex.c_str());
vt3_index = atoi(texcoord.c_str());
}
else if ( oi.mask & vcg::tri::io::Mask::IOM_WEDGNORMAL )
{
std::string vertex;
std::string normal;
SplitVVNToken(tokens[1], vertex, normal);
v1_index = atoi(vertex.c_str());
vn1_index = atoi(normal.c_str());
SplitVVNToken(tokens[2], vertex, normal);
v2_index = atoi(vertex.c_str());
vn2_index = atoi(normal.c_str());
SplitVVNToken(tokens[3], vertex, normal);
v3_index = atoi(vertex.c_str());
vn3_index = atoi(normal.c_str());
}
else
{
v1_index = atoi(tokens[1].c_str());
v2_index = atoi(tokens[2].c_str());
v3_index = atoi(tokens[3].c_str());
}
if ( oi.mask & vcg::tri::io::Mask::IOM_WEDGTEXCOORD )
{
// verifying validity of texture coords indices
// --------------------------------------------
if (vt1_index < 0)
{
vt1_index += numTexCoords;
if (vt1_index < 0) return E_BAD_VERT_TEX_INDEX;
}
else if (vt1_index > numTexCoords) return E_BAD_VERT_TEX_INDEX;
else --vt1_index;
if (vt2_index < 0)
{
vt2_index += numTexCoords;
if (vt2_index < 0) return E_BAD_VERT_TEX_INDEX;
}
else if (vt2_index > numTexCoords) return E_BAD_VERT_TEX_INDEX;
else --vt2_index;
if (vt3_index < 0)
{
vt3_index += numTexCoords;
if (vt3_index < 0) return E_BAD_VERT_TEX_INDEX;
}
else if (vt3_index > numTexCoords) return E_BAD_VERT_TEX_INDEX;
else --vt3_index;
// assigning wedge texture coordinates
// -----------------------------------
Material material = materials[currentMaterialIdx];
TexCoord t = texCoords[vt1_index];
(*fi).WT(0).u() = t.u;
(*fi).WT(0).v() = t.v;
(*fi).WT(0).n() = material.textureIdx;
t = texCoords[vt2_index];
(*fi).WT(1).u() = t.u;
(*fi).WT(1).v() = t.v;
(*fi).WT(1).n() = material.textureIdx;
t = texCoords[vt3_index];
(*fi).WT(2).u() = t.u;
(*fi).WT(2).v() = t.v;
(*fi).WT(2).n() = material.textureIdx;
}
// verifying validity of vertex indices
// ------------------------------------
if (v1_index < 0)
{
v1_index += numVertices;
if (v1_index < 0) return E_BAD_VERT_INDEX;
}
else if (v1_index > numVertices) return E_BAD_VERT_INDEX;
else v1_index--; // since index starts from 1 instead of 0
if (v2_index < 0)
{
v2_index += numVertices;
if (v2_index < 0) return E_BAD_VERT_INDEX;
}
else if (v2_index > numVertices) return E_BAD_VERT_INDEX;
else v2_index--; // since index starts from 1 instead of 0
if (v3_index < 0)
{
v3_index += numVertices;
if (v3_index < 0) return E_BAD_VERT_INDEX;
}
else if (v3_index > numVertices) return E_BAD_VERT_INDEX;
else v3_index--; // since index starts from 1 instead of 0
if ((v1_index == v2_index) ||
(v1_index == v3_index) ||
(v2_index == v3_index))
result = E_VERTICES_WITH_SAME_IDX_IN_FACE;
// assigning face vertices
// -----------------------
(*fi).V(0) = &(m.vert[ v1_index ]);
(*fi).V(1) = &(m.vert[ v2_index ]);
(*fi).V(2) = &(m.vert[ v3_index ]);
// assigning face normal
// ---------------------
if ( oi.mask & vcg::tri::io::Mask::IOM_WEDGNORMAL )
{
// verifying validity of vertex normal indices
// -------------------------------------------
if (vn1_index < 0)
{
vn1_index += numVNormals;
if (vn1_index < 0) return E_BAD_VERT_NORMAL_INDEX;
}
else if (vn1_index > numVNormals) return E_BAD_VERT_NORMAL_INDEX;
else vn1_index--;
if (vn2_index < 0)
{
vn2_index += numVNormals;
if (vn2_index < 0) return E_BAD_VERT_NORMAL_INDEX;
}
else if (vn2_index > numVNormals) return E_BAD_VERT_NORMAL_INDEX;
else vn2_index--;
if (vn3_index < 0)
{
vn3_index += numVNormals;
if (vn3_index < 0) return E_BAD_VERT_NORMAL_INDEX;
}
else if (vn3_index > numVNormals) return E_BAD_VERT_NORMAL_INDEX;
else vn3_index--;
// face normal is computed as an average of wedge normals
CoordType n = (normals[vn1_index] + normals[vn2_index] + normals[vn3_index]);
n.Normalize();
(*fi).N() = n;
(*fi).WN(0) = normals[vn1_index];
(*fi).WN(1) = normals[vn2_index];
(*fi).WN(2) = normals[vn3_index];
}
else // computing face normal from position of face vertices
face::ComputeNormalizedNormal(*fi);
// assigning face color
// --------------------
Color4b faceColor; // we declare this outside code block since other
// triangles of this face will share the same color
if( oi.mask & vcg::tri::io::Mask::IOM_FACECOLOR)
{
Material material = materials[currentMaterialIdx];
Point3f diffuseColor = material.diffuse;
unsigned char r = (unsigned char) (diffuseColor[0] * 255.0);
unsigned char g = (unsigned char) (diffuseColor[1] * 255.0);
unsigned char b = (unsigned char) (diffuseColor[2] * 255.0);
unsigned char alpha = (unsigned char) (material.alpha * 255.0);
faceColor = Color4b(r, g, b, alpha);
(*fi).C()[0] = faceColor[0];
(*fi).C()[1] = faceColor[1];
(*fi).C()[2] = faceColor[2];
(*fi).C()[3] = faceColor[3];
}
++fi;
++numTriangles;
int vertexesPerFace = static_cast<int>(tokens.size()-1);
int iVertex = 3;
while (iVertex < vertexesPerFace) // add other triangles
{
int v4_index;
int vt4_index;
int vn4_index;
if (( oi.mask & vcg::tri::io::Mask::IOM_WEDGTEXCOORD ) &&
( oi.mask & vcg::tri::io::Mask::IOM_WEDGNORMAL ) )
{
std::string vertex;
std::string texcoord;
std::string normal;
SplitVVTVNToken(tokens[++iVertex], vertex, texcoord, normal);
v4_index = atoi(vertex.c_str());
vt4_index = atoi(texcoord.c_str());
vn4_index = atoi(normal.c_str());
}
else if ( oi.mask & vcg::tri::io::Mask::IOM_WEDGTEXCOORD )
{
std::string vertex;
std::string texcoord;
SplitVVTToken(tokens[++iVertex], vertex, texcoord);
v4_index = atoi(vertex.c_str());
vt4_index = atoi(texcoord.c_str());
}
else if ( oi.mask & vcg::tri::io::Mask::IOM_WEDGNORMAL )
{
std::string vertex;
std::string normal;
SplitVVNToken(tokens[++iVertex], vertex, normal);
v4_index = atoi(vertex.c_str());
vn4_index = atoi(normal.c_str());
}
else
v4_index = atoi(tokens[++iVertex].c_str());
// assigning wedge texture coordinates
// -----------------------------------
if( oi.mask & vcg::tri::io::Mask::IOM_WEDGTEXCOORD )
{
// verifying validity of texture coords index
// ------------------------------------------
if (vt4_index < 0)
{
vt4_index += numTexCoords;
if (vt4_index < 0) return E_BAD_VERT_TEX_INDEX;
}
else if (vt4_index > numTexCoords) return E_BAD_VERT_TEX_INDEX;
else --vt4_index;
Material material = materials[currentMaterialIdx];
TexCoord t = texCoords[vt1_index];
(*fi).WT(0).u() = t.u;
(*fi).WT(0).v() = t.v;
(*fi).WT(0).n() = material.textureIdx;
t = texCoords[vt3_index];
(*fi).WT(1).u() = t.u;
(*fi).WT(1).v() = t.v;
(*fi).WT(1).n() = material.textureIdx;
t = texCoords[vt4_index];
(*fi).WT(2).u() = t.u;
(*fi).WT(2).v() = t.v;
(*fi).WT(2).n() = material.textureIdx;
vt3_index = vt4_index;
}
// verifying validity of vertex index
// ----------------------------------
if (v4_index < 0)
{
v4_index += numVertices;
if (v4_index < 0) return E_BAD_VERT_INDEX;
}
else if (v4_index > numVertices) return E_BAD_VERT_INDEX;
else v4_index--; // since index starts from 1 instead of 0
if ((v1_index == v4_index) ||
(v3_index == v4_index))
result = E_VERTICES_WITH_SAME_IDX_IN_FACE;
// assigning face vertices
// -----------------------
(*fi).V(0) = &(m.vert[ v1_index ]);
(*fi).V(1) = &(m.vert[ v3_index ]);
(*fi).V(2) = &(m.vert[ v4_index ]);
// assigning face normal
// ---------------------
if ( oi.mask & vcg::tri::io::Mask::IOM_WEDGNORMAL )
{
// verifying validity of vertex normal index
// -----------------------------------------
if (vn4_index < 0)
{
vn4_index += numVNormals;
if (vn4_index < 0) return E_BAD_VERT_NORMAL_INDEX;
}
else if (vn4_index > numVNormals) return E_BAD_VERT_NORMAL_INDEX;
else vn4_index--;
// face normal is computed as an average of wedge normals
CoordType n = (normals[vn1_index] + normals[vn3_index] + normals[vn4_index]);
n.Normalize();
(*fi).N() = n;
(*fi).WN(0) = normals[vn1_index];
(*fi).WN(1) = normals[vn3_index];
(*fi).WN(2) = normals[vn4_index];
vn3_index = vn4_index;
}
else // computing face normal from position of face vertices
face::ComputeNormalizedNormal(*fi);
// assigning face color
// --------------------
if( oi.mask & vcg::tri::io::Mask::IOM_FACECOLOR)
{
(*fi).C()[0] = faceColor[0];
(*fi).C()[1] = faceColor[1];
(*fi).C()[2] = faceColor[2];
(*fi).C()[3] = faceColor[3];
}
/*
// A face polygon composed of more than three vertices is triangulated
// according to the following schema:
// v5
// / \
// / \
// / \
// v1------v4
// |\ /
// | \ /
// | \ /
// v2---v3
//
// As shown above, the 5 vertices polygon (v1,v2,v3,v4,v5)
// has been split into the triangles (v1,v2,v3), (v1,v3,v4) e (v1,v4,v5).
// This way vertex v1 becomes the common vertex of all newly generated
// triangles, and this may lead to the creation of very thin triangles.
*/
++fi;
++numTriangles;
v3_index = v4_index;
}
// callback invocation, abort loading process if the call returns false
if ((cb !=NULL) && (((numTriangles + numVertices)%100)==0) &&
!(*cb)(static_cast<int>(100.0f * static_cast<float>(numTriangles +
numVertices) / static_cast<float>(numVerticesPlusFaces)), "Face Loading"))
return E_ABORTED;
}
else if (header.compare("mtllib")==0) // material library
{
// obtain the name of the file containing materials library
std::string materialFileName = tokens[1];
if (!LoadMaterials( materialFileName.c_str(), materials, m.textures))
result = E_MATERIAL_FILE_NOT_FOUND;
}
else if (header.compare("usemtl")==0) // material usage
{
std::string materialName = tokens[1];
bool found = false;
unsigned i = 0;
while (!found && (i < materials.size()))
{
std::string currentMaterialName = materials[i].name;
if (currentMaterialName == materialName)
{
currentMaterialIdx = i;
found = true;
}
++i;
}
if (!found)
{
currentMaterialIdx = 0;
result = E_MATERIAL_NOT_FOUND;
}
}
// we simply ignore other situations
}
}
return result;
} // end of Open
/*!
* Read the next valid line and parses it into "tokens", allowing
* the tokens to be read one at a time.
* \param stream The object providing the input stream
* \param tokens The "tokens" in the next line
*/
inline static const void TokenizeNextLine(std::ifstream &stream, std::vector< std::string > &tokens)
{
std::string line;
do
std::getline(stream, line, '\n');
while ((line[0] == '#' || line.length()==0) && !stream.eof()); // skip comments and empty lines
if ((line[0] == '#') || (line.length() == 0)) // can be true only on last line of file
return;
size_t from = 0;
size_t to = 0;
size_t length = line.size();
tokens.clear();
do
{
while ((line[from]==' ' || line[from]=='\t') && from!=length)
from++;
if(from!=length)
{
to = from+1;
while (line[to]!=' ' && to!=length)
to++;
tokens.push_back(line.substr(from, to-from).c_str());
from = to;
}
}
while (from<length);
} // end TokenizeNextLine
inline static const void SplitVVTToken(std::string token, std::string &vertex, std::string &texcoord)
{
vertex.clear();
texcoord.clear();
size_t from = 0;
size_t to = 0;
size_t length = token.size();
if(from!=length)
{
char c = token[from];
vertex.push_back(c);
to = from+1;
while (to!=length && ((c = token[to]) !='/'))
{
vertex.push_back(c);
++to;
}
++to;
while (to!=length && ((c = token[to]) !=' '))
{
texcoord.push_back(c);
++to;
}
}
} // end of SplitVVTToken
inline static const void SplitVVNToken(std::string token, std::string &vertex, std::string &normal)
{
vertex.clear();
normal.clear();
size_t from = 0;
size_t to = 0;
size_t length = token.size();
if(from!=length)
{
char c = token[from];
vertex.push_back(c);
to = from+1;
while (to!=length && ((c = token[to]) !='/'))
{
vertex.push_back(c);
++to;
}
++to;
++to; // should be the second '/'
while (to!=length && ((c = token[to]) !=' '))
{
normal.push_back(c);
++to;
}
}
} // end of SplitVVNToken
inline static const void SplitVVTVNToken(std::string token, std::string &vertex, std::string &texcoord, std::string &normal)
{
vertex.clear();
texcoord.clear();
normal.clear();
size_t from = 0;
size_t to = 0;
size_t length = token.size();
if(from!=length)
{
char c = token[from];
vertex.push_back(c);
to = from+1;
while (to!=length && ((c = token[to]) !='/'))
{
vertex.push_back(c);
++to;
}
++to;
while (to!=length && ((c = token[to]) !='/'))
{
texcoord.push_back(c);
++to;
}
++to;
while (to!=length && ((c = token[to]) !=' '))
{
normal.push_back(c);
++to;
}
}
} // end of SplitVVTVNToken
static bool LoadMask(const char * filename, int &mask)
{
Info oi;
bool ret=LoadMask(filename, oi);
mask= oi.mask;
return ret;
}
/*!
* Retrieves infos about kind of data stored into the file and fills a mask appropriately
* \param filename The name of the file to open
* \param mask A mask which will be filled according to type of data found in the object
* \param oi A structure which will be filled with infos about the object to be opened
*/
static bool LoadMask(const char * filename, Info &oi)
{
std::ifstream stream(filename);
if (stream.fail())
return false;
// obtain length of file:
stream.seekg (0, std::ios::end);
int length = stream.tellg();
if (length == 0) return false;
stream.seekg (0, std::ios::beg);
bool bHasPerWedgeTexCoord = false;
bool bHasPerWedgeNormal = false;
bool bUsingMaterial = false;
bool bHasPerVertexColor = false;
bool bHasPerFaceColor = false;
std::string header;
std::vector<std::string> tokens;
int numVertices = 0; // stores the number of vertexes been read till now
int numTriangles = 0; // stores the number of triangular faces been read till now
const int deltaPos = 100;
int currPos = 0;
int lastPos = currPos;
// cycle till we encounter first face
while (!stream.eof())
{
tokens.clear();
header.clear();
TokenizeNextLine(stream, tokens);
if (tokens.size() > 0)
{
header = tokens[0];
if (header.compare("v")==0)
{
++numVertices;
if (bUsingMaterial) bHasPerVertexColor = true;
}
else if (header.compare("f")==0)
{
numTriangles += (static_cast<int>(tokens.size()) - 3);
std::string remainingText = tokens[1];
// we base our assumption on the fact that the way vertex data is
// referenced into faces must be consistent among the entire file
int charIdx = 0;
size_t length = remainingText.size();
char c;
while((charIdx != length) && ((c = remainingText[charIdx])!='/') && (c != ' '))
++charIdx;
if (c == '/')
{
++charIdx;
if ((charIdx != length) && ((c = remainingText[charIdx])!='/'))
{
bHasPerWedgeTexCoord = true;
++charIdx;
while((charIdx != length) && ((c = remainingText[charIdx])!='/') && (c != ' '))
++charIdx;
if (c == '/')
bHasPerWedgeNormal = true;
break;
}
else
{
bHasPerWedgeNormal = true;
break;
}
}
if (bUsingMaterial) bHasPerFaceColor = true;
}
else if (header.compare("usemtl")==0)
bUsingMaterial = true;
}
// callback invocation, abort loading process if the call returns false
if (oi.cb !=NULL)
{
currPos = stream.tellg();
if ((currPos - lastPos) > deltaPos)
{
if (!(*oi.cb)((100 * currPos)/length, "Loading mask..."))
return false;
lastPos = currPos;
}
}
}
// after the encounter of first face we avoid to do additional tests
while (!stream.eof())
{
tokens.clear();
header.clear();
TokenizeNextLine(stream, tokens);
if (tokens.size() > 0)
{
header = tokens[0];
if (header.compare("v")==0)
{
++numVertices;
if (bUsingMaterial) bHasPerVertexColor = true;
}
else if (header.compare("f")==0)
{
numTriangles += (static_cast<int>(tokens.size()) - 3);
if (bUsingMaterial) bHasPerFaceColor = true;
}
else if (header.compare("usemtl")==0)
bUsingMaterial = true;
}
// callback invocation, abort loading process if the call returns false
if (oi.cb !=NULL)
{
currPos = stream.tellg();
if ((currPos - lastPos) > deltaPos)
{
if (!(*oi.cb)((100 * currPos)/length, "Loading mask..."))
return false;
lastPos = currPos;
}
}
}
int mask = 0;
if (bHasPerWedgeTexCoord)
mask |= vcg::tri::io::Mask::IOM_WEDGTEXCOORD;
if (bHasPerWedgeNormal)
mask |= vcg::tri::io::Mask::IOM_WEDGNORMAL;
if (bHasPerVertexColor)
mask |= vcg::tri::io::Mask::IOM_VERTCOLOR;
if (bHasPerFaceColor)
mask |= vcg::tri::io::Mask::IOM_FACECOLOR;
oi.mask = mask;
oi.numVertices = numVertices;
oi.numTriangles = numTriangles;
return true;
}
static bool LoadMaterials(const char * filename, std::vector<Material> &materials, std::vector<std::string> &textures)
{
// assumes we are in the right directory
std::ifstream stream(filename);
if (stream.fail())
return false;
std::vector< std::string > tokens;
std::string header;
materials.clear();
Material currentMaterial;
bool first = true;
while (!stream.eof())
{
tokens.clear();
TokenizeNextLine(stream, tokens);
if (tokens.size() > 0)
{
header.clear();
header = tokens[0];
if (header.compare("newmtl")==0)
{
if (!first)
{
materials.push_back(currentMaterial);
currentMaterial = Material();
}
else
first = false;
strcpy(currentMaterial.name, tokens[1].c_str());
}
else if (header.compare("Ka")==0)
{
float r = (float) atof(tokens[1].c_str());
float g = (float) atof(tokens[2].c_str());
float b = (float) atof(tokens[3].c_str());
currentMaterial.ambient = Point3f(r, g, b);
}
else if (header.compare("Kd")==0)
{
float r = (float) atof(tokens[1].c_str());
float g = (float) atof(tokens[2].c_str());
float b = (float) atof(tokens[3].c_str());
currentMaterial.diffuse = Point3f(r, g, b);
}
else if (header.compare("Ks")==0)
{
float r = (float) atof(tokens[1].c_str());
float g = (float) atof(tokens[2].c_str());
float b = (float) atof(tokens[3].c_str());
currentMaterial.specular = Point3f(r, g, b);
}
else if ( (header.compare("d")==0) ||
(header.compare("Tr")==0) ) // alpha
{
currentMaterial.alpha = (float) atof(tokens[1].c_str());
}
else if (header.compare("Ns")==0) // shininess
{
currentMaterial.shininess = atoi(tokens[1].c_str());
}
else if (header.compare("illum")==0) // specular illumination on/off
{
int illumination = atoi(tokens[1].c_str());
currentMaterial.bSpecular = (illumination == 2);
}
else if (header.compare("map_Kd")==0) // texture name
{
std::string textureName = tokens[1];
strcpy(currentMaterial.textureFileName, textureName.c_str());
// adding texture name into textures vector (if not already present)
// avoid adding the same name twice
bool found = false;
unsigned int size = static_cast<unsigned int>(textures.size());
unsigned j = 0;
while (!found && (j < size))
{
if (textureName.compare(textures[j])==0)
{
currentMaterial.textureIdx = (int)j;
found = true;
}
++j;
}
if (!found)
{
textures.push_back(textureName);
currentMaterial.textureIdx = (int)size;
}
}
// we simply ignore other situations
}
}
materials.push_back(currentMaterial); // add last read material
stream.close();
return true;
}
}; // end class
} // end Namespace tri
} // end Namespace io
} // end Namespace vcg
#endif // ndef __VCGLIB_IMPORT_OBJ