1139 lines
34 KiB
C++
1139 lines
34 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef _VCG_FACE_TOPOLOGY
|
|
#define _VCG_FACE_TOPOLOGY
|
|
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <set>
|
|
|
|
namespace vcg {
|
|
namespace face {
|
|
/** \addtogroup face */
|
|
/*@{*/
|
|
|
|
/** Return a boolean that indicate if the face is complex.
|
|
@param j Index of the edge
|
|
@return true se la faccia e' manifold, false altrimenti
|
|
*/
|
|
template <class FaceType>
|
|
inline bool IsManifold( FaceType const & f, const int j )
|
|
{
|
|
assert(f.cFFp(j) != 0); // never try to use this on uncomputed topology
|
|
if(FaceType::HasFFAdjacency())
|
|
return ( f.cFFp(j) == &f || &f == f.cFFp(j)->cFFp(f.cFFi(j)) );
|
|
else
|
|
return true;
|
|
}
|
|
|
|
/** Return a boolean that indicate if the j-th edge of the face is a border.
|
|
@param j Index of the edge
|
|
@return true if j is an edge of border, false otherwise
|
|
*/
|
|
template <class FaceType>
|
|
inline bool IsBorder(FaceType const & f, const int j )
|
|
{
|
|
if(FaceType::HasFFAdjacency())
|
|
return f.cFFp(j)==&f;
|
|
//return f.IsBorder(j);
|
|
|
|
assert(0);
|
|
return true;
|
|
}
|
|
|
|
/*! \brief Compute the signed dihedral angle between the normals of two adjacent faces
|
|
*
|
|
* The angle between the normal is signed according to the concavity/convexity of the
|
|
* dihedral angle: negative if the edge shared between the two faces is concave, positive otherwise.
|
|
* The surface it is assumend to be oriented.
|
|
* It simply use the projection of the opposite vertex onto the plane of the other one.
|
|
* It does not assume anything on face normals.
|
|
*
|
|
* v0 ___________ vf1
|
|
* |\ |
|
|
* | \i1 f1 |
|
|
* | \ |
|
|
* |f0 i0\ |
|
|
* | \ |
|
|
* |__________\|
|
|
* vf0 v1
|
|
*/
|
|
|
|
template <class FaceType>
|
|
inline typename FaceType::ScalarType DihedralAngleRad(FaceType & f, const int i )
|
|
{
|
|
typedef typename FaceType::ScalarType ScalarType;
|
|
typedef typename FaceType::CoordType CoordType;
|
|
typedef typename FaceType::VertexType VertexType;
|
|
|
|
FaceType *f0 = &f;
|
|
FaceType *f1 = f.FFp(i);
|
|
int i0=i;
|
|
int i1=f.FFi(i);
|
|
VertexType *vf0 = f0->V2(i0);
|
|
VertexType *vf1 = f1->V2(i1);
|
|
|
|
CoordType n0 = TriangleNormal(*f0).Normalize();
|
|
CoordType n1 = TriangleNormal(*f1).Normalize();
|
|
ScalarType off0 = n0*vf0->P();
|
|
ScalarType off1 = n1*vf1->P();
|
|
|
|
ScalarType dist01 = off0 - n0*vf1->P();
|
|
ScalarType dist10 = off1 - n1*vf0->P();
|
|
|
|
// just to be sure use the sign of the largest in absolute value;
|
|
ScalarType sign;
|
|
if(fabs(dist01) > fabs(dist10)) sign = dist01;
|
|
else sign=dist10;
|
|
|
|
ScalarType angleRad=AngleN(n0,n1);
|
|
|
|
if(sign > 0 ) return angleRad;
|
|
else return -angleRad;
|
|
}
|
|
|
|
/// Count border edges of the face
|
|
template <class FaceType>
|
|
inline int BorderCount(FaceType const & f)
|
|
{
|
|
if(FaceType::HasFFAdjacency())
|
|
{
|
|
int t = 0;
|
|
if( IsBorder(f,0) ) ++t;
|
|
if( IsBorder(f,1) ) ++t;
|
|
if( IsBorder(f,2) ) ++t;
|
|
return t;
|
|
}
|
|
else return 3;
|
|
}
|
|
|
|
|
|
/// Counts the number of incident faces in a complex edge
|
|
template <class FaceType>
|
|
inline int ComplexSize(FaceType & f, const int e)
|
|
{
|
|
if(FaceType::HasFFAdjacency())
|
|
{
|
|
if(face::IsBorder<FaceType>(f,e)) return 1;
|
|
if(face::IsManifold<FaceType>(f,e)) return 2;
|
|
|
|
// Non manifold case
|
|
Pos< FaceType > fpos(&f,e);
|
|
int cnt=0;
|
|
do
|
|
{
|
|
fpos.NextF();
|
|
assert(!fpos.IsBorder());
|
|
assert(!fpos.IsManifold());
|
|
++cnt;
|
|
}
|
|
while(fpos.f!=&f);
|
|
assert (cnt>2);
|
|
return cnt;
|
|
}
|
|
assert(0);
|
|
return 2;
|
|
}
|
|
|
|
|
|
/** This function check the FF topology correctness for an edge of a face.
|
|
It's possible to use it also in non-two manifold situation.
|
|
The function cannot be applicated if the adjacencies among faces aren't defined.
|
|
@param f the face to be checked
|
|
@param e Index of the edge to be checked
|
|
*/
|
|
template <class FaceType>
|
|
bool FFCorrectness(FaceType & f, const int e)
|
|
{
|
|
if(f.FFp(e)==0) return false; // Not computed or inconsistent topology
|
|
|
|
if(f.FFp(e)==&f) // Border
|
|
{
|
|
if(f.FFi(e)==e) return true;
|
|
else return false;
|
|
}
|
|
|
|
if(f.FFp(e)->FFp(f.FFi(e))==&f) // plain two manifold
|
|
{
|
|
if(f.FFp(e)->FFi(f.FFi(e))==e) return true;
|
|
else return false;
|
|
}
|
|
|
|
// Non Manifold Case
|
|
// all the faces must be connected in a loop.
|
|
|
|
Pos< FaceType > curFace(&f,e); // Build the half edge
|
|
int cnt=0;
|
|
do
|
|
{
|
|
if(curFace.IsManifold()) return false;
|
|
if(curFace.IsBorder()) return false;
|
|
curFace.NextF();
|
|
cnt++;
|
|
assert(cnt<100);
|
|
}
|
|
while ( curFace.f != &f);
|
|
return true;
|
|
}
|
|
|
|
|
|
/** This function detach the face from the adjacent face via the edge e.
|
|
It's possible to use this function it ONLY in non-two manifold situation.
|
|
The function cannot be applicated if the adjacencies among faces aren't defined.
|
|
@param f the face to be detached
|
|
@param e Index of the edge to be detached
|
|
\note it updates border flag and faux flags (the detached edge has it border bit flagged and faux bit cleared)
|
|
*/
|
|
template <class FaceType>
|
|
void FFDetachManifold(FaceType & f, const int e)
|
|
{
|
|
assert(FFCorrectness<FaceType>(f,e));
|
|
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge!
|
|
FaceType *ffp = f.FFp(e);
|
|
//int ffi=f.FFp(e);
|
|
int ffi=f.FFi(e);
|
|
|
|
f.FFp(e)=&f;
|
|
f.FFi(e)=e;
|
|
ffp->FFp(ffi)=ffp;
|
|
ffp->FFi(ffi)=ffi;
|
|
|
|
f.SetB(e);
|
|
f.ClearF(e);
|
|
ffp->SetB(ffi);
|
|
ffp->ClearF(ffi);
|
|
|
|
assert(FFCorrectness<FaceType>(f,e));
|
|
assert(FFCorrectness<FaceType>(*ffp,ffi));
|
|
}
|
|
|
|
/** This function detach the face from the adjacent face via the edge e.
|
|
It's possible to use it also in non-two manifold situation.
|
|
The function cannot be applicated if the adjacencies among faces aren't defined.
|
|
@param f the face to be detached
|
|
@param e Index of the edge to be detached
|
|
*/
|
|
|
|
template <class FaceType>
|
|
void FFDetach(FaceType & f, const int e)
|
|
{
|
|
assert(FFCorrectness<FaceType>(f,e));
|
|
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge!
|
|
int complexity=ComplexSize(f,e);
|
|
(void) complexity;
|
|
assert(complexity>0);
|
|
|
|
Pos< FaceType > FirstFace(&f,e); // Build the half edge
|
|
Pos< FaceType > LastFace(&f,e); // Build the half edge
|
|
FirstFace.NextF();
|
|
LastFace.NextF();
|
|
int cnt=0;
|
|
|
|
// then in case of non manifold face continue to advance LastFace
|
|
// until I find it become the one that
|
|
// preceed the face I want to erase
|
|
|
|
while ( LastFace.f->FFp(LastFace.z) != &f)
|
|
{
|
|
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity);
|
|
assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge
|
|
assert(!LastFace.IsBorder());
|
|
LastFace.NextF();
|
|
cnt++;
|
|
assert(cnt<100);
|
|
}
|
|
|
|
assert(LastFace.f->FFp(LastFace.z)==&f);
|
|
assert(f.FFp(e)== FirstFace.f);
|
|
|
|
// Now we link the last one to the first one, skipping the face to be detached;
|
|
LastFace.f->FFp(LastFace.z) = FirstFace.f;
|
|
LastFace.f->FFi(LastFace.z) = FirstFace.z;
|
|
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity-1);
|
|
|
|
// At the end selfconnect the chosen edge to make a border.
|
|
f.FFp(e) = &f;
|
|
f.FFi(e) = e;
|
|
assert(ComplexSize(f,e)==1);
|
|
|
|
assert(FFCorrectness<FaceType>(*LastFace.f,LastFace.z));
|
|
assert(FFCorrectness<FaceType>(f,e));
|
|
}
|
|
|
|
|
|
/** This function attach the face (via the edge z1) to another face (via the edge z2). It's possible to use it also in non-two manifold situation.
|
|
The function cannot be applicated if the adjacencies among faces aren't define.
|
|
@param z1 Index of the edge
|
|
@param f2 Pointer to the face
|
|
@param z2 The edge of the face f2
|
|
*/
|
|
template <class FaceType>
|
|
void FFAttach(FaceType * &f, int z1, FaceType *&f2, int z2)
|
|
{
|
|
//typedef FEdgePosB< FACE_TYPE > ETYPE;
|
|
Pos< FaceType > EPB(f2,z2);
|
|
Pos< FaceType > TEPB;
|
|
TEPB = EPB;
|
|
EPB.NextF();
|
|
while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2
|
|
{
|
|
TEPB = EPB;
|
|
EPB.NextF();
|
|
}
|
|
//Salvo i dati di f1 prima di sovrascrivere
|
|
FaceType *f1prec = f->FFp(z1);
|
|
int z1prec = f->FFi(z1);
|
|
//Aggiorno f1
|
|
f->FFp(z1) = TEPB.f->FFp(TEPB.z);
|
|
f->FFi(z1) = TEPB.f->FFi(TEPB.z);
|
|
//Aggiorno la faccia che precede f2
|
|
TEPB.f->FFp(TEPB.z) = f1prec;
|
|
TEPB.f->FFi(TEPB.z) = z1prec;
|
|
}
|
|
|
|
/** This function attach the face (via the edge z1) to another face (via the edge z2).
|
|
It is not possible to use it also in non-two manifold situation.
|
|
The function cannot be applicated if the adjacencies among faces aren't define.
|
|
@param z1 Index of the edge
|
|
@param f2 Pointer to the face
|
|
@param z2 The edge of the face f2
|
|
*/
|
|
template <class FaceType>
|
|
void FFAttachManifold(FaceType * &f1, int z1, FaceType *&f2, int z2)
|
|
{
|
|
assert(IsBorder<FaceType>(*f1,z1));
|
|
assert(IsBorder<FaceType>(*f2,z2));
|
|
assert(f1->V0(z1) == f2->V0(z2) || f1->V0(z1) == f2->V1(z2));
|
|
assert(f1->V1(z1) == f2->V0(z2) || f1->V1(z1) == f2->V1(z2));
|
|
f1->FFp(z1) = f2;
|
|
f1->FFi(z1) = z2;
|
|
f2->FFp(z2) = f1;
|
|
f2->FFi(z2) = z1;
|
|
}
|
|
|
|
// This one should be called only on uniitialized faces.
|
|
template <class FaceType>
|
|
void FFSetBorder(FaceType * &f1, int z1)
|
|
{
|
|
assert(f1->FFp(z1)==0 || IsBorder(*f1,z1));
|
|
|
|
f1->FFp(z1)=f1;
|
|
f1->FFi(z1)=z1;
|
|
}
|
|
|
|
template <class FaceType>
|
|
void AssertAdj(FaceType & f)
|
|
{
|
|
(void)f;
|
|
assert(f.FFp(0)->FFp(f.FFi(0))==&f);
|
|
assert(f.FFp(1)->FFp(f.FFi(1))==&f);
|
|
assert(f.FFp(2)->FFp(f.FFi(2))==&f);
|
|
|
|
assert(f.FFp(0)->FFi(f.FFi(0))==0);
|
|
assert(f.FFp(1)->FFi(f.FFi(1))==1);
|
|
assert(f.FFp(2)->FFi(f.FFi(2))==2);
|
|
}
|
|
|
|
/**
|
|
* Check if the given face is oriented as the one adjacent to the specified edge.
|
|
* @param f Face to check the orientation
|
|
* @param z Index of the edge
|
|
*/
|
|
template <class FaceType>
|
|
bool CheckOrientation(FaceType &f, int z)
|
|
{
|
|
if (IsBorder(f, z))
|
|
return true;
|
|
else
|
|
{
|
|
FaceType *g = f.FFp(z);
|
|
int gi = f.FFi(z);
|
|
if (f.V0(z) == g->V1(gi))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* This function change the orientation of the face by inverting the index of two vertex.
|
|
* @param z Index of the edge
|
|
*/
|
|
template <class FaceType>
|
|
void SwapEdge(FaceType &f, const int z) { SwapEdge<FaceType,true>(f,z); }
|
|
|
|
template <class FaceType, bool UpdateTopology>
|
|
void SwapEdge(FaceType &f, const int z)
|
|
{
|
|
// swap V0(z) with V1(z)
|
|
std::swap(f.V0(z), f.V1(z));
|
|
|
|
// Managemnt of faux edge information (edge z is not affected)
|
|
bool Faux1 = f.IsF((z+1)%3);
|
|
bool Faux2 = f.IsF((z+2)%3);
|
|
if(Faux1) f.SetF((z+2)%3); else f.ClearF((z+2)%3);
|
|
if(Faux2) f.SetF((z+1)%3); else f.ClearF((z+1)%3);
|
|
|
|
if(f.HasFFAdjacency() && UpdateTopology)
|
|
{
|
|
// store information to preserve topology
|
|
int z1 = (z+1)%3;
|
|
int z2 = (z+2)%3;
|
|
FaceType *g1p = f.FFp(z1);
|
|
FaceType *g2p = f.FFp(z2);
|
|
int g1i = f.FFi(z1);
|
|
int g2i = f.FFi(z2);
|
|
|
|
// g0 face topology is not affected by the swap
|
|
|
|
if (g1p != &f)
|
|
{
|
|
g1p->FFi(g1i) = z2;
|
|
f.FFi(z2) = g1i;
|
|
}
|
|
else
|
|
{
|
|
f.FFi(z2) = z2;
|
|
}
|
|
|
|
if (g2p != &f)
|
|
{
|
|
g2p->FFi(g2i) = z1;
|
|
f.FFi(z1) = g2i;
|
|
}
|
|
else
|
|
{
|
|
f.FFi(z1) = z1;
|
|
}
|
|
|
|
// finalize swap
|
|
f.FFp(z1) = g2p;
|
|
f.FFp(z2) = g1p;
|
|
}
|
|
}
|
|
|
|
/*! Perform a simple edge collapse
|
|
* Basic link conditions
|
|
*
|
|
*/
|
|
template <class FaceType>
|
|
bool FFLinkCondition(FaceType &f, const int z)
|
|
{
|
|
typedef typename FaceType::VertexType VertexType;
|
|
typedef typename vcg::face::Pos< FaceType > PosType;
|
|
|
|
VertexType *v0=f.V0(z);
|
|
VertexType *v1=f.V1(z);
|
|
|
|
PosType p0(&f,v0);
|
|
PosType p1(&f,v1);
|
|
std::vector<VertexType *>v0Vec;
|
|
std::vector<VertexType *>v1Vec;
|
|
VVOrderedStarFF(p0,v0Vec);
|
|
VVOrderedStarFF(p1,v1Vec);
|
|
std::set<VertexType *> v0set;
|
|
v0set.insert(v0Vec.begin(),v0Vec.end());
|
|
assert(v0set.size() == v0Vec.size());
|
|
int cnt =0;
|
|
for(size_t i=0;i<v1Vec.size();++i)
|
|
if(v0set.find(v1Vec[i]) != v0set.end())
|
|
cnt++;
|
|
|
|
if(face::IsBorder(f,z) && (cnt==1)) return true;
|
|
if(!face::IsBorder(f,z) && (cnt==2)) return true;
|
|
//assert(0);
|
|
return false;
|
|
}
|
|
|
|
/*! Perform a simple edge collapse
|
|
* The edge z is collapsed and the vertex V(z) is collapsed onto the vertex V1(Z)
|
|
* vertex V(z) is deleted and vertex V1(z) survives.
|
|
* It assumes that the mesh is Manifold.
|
|
* Note that it preserves manifoldness only if FFLinkConditions are satisfied
|
|
* If the mesh is not manifold it will crash (there will be faces with deleted vertexes around)
|
|
* f12
|
|
* surV ___________
|
|
* |\ |
|
|
* | \ f1 |
|
|
* f01 | \ z1 | f11
|
|
* | f0 z0\ |
|
|
* | \ |
|
|
* |__________\|
|
|
* f02 delV
|
|
*/
|
|
template <class MeshType>
|
|
void FFEdgeCollapse(MeshType &m, typename MeshType::FaceType &f, const int z)
|
|
{
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename vcg::face::Pos< FaceType > PosType;
|
|
FaceType *f0 = &f;
|
|
int z0=z;
|
|
FaceType *f1 = f.FFp(z);
|
|
int z1=f.FFi(z);
|
|
|
|
VertexType *delV=f.V0(z);
|
|
VertexType *surV=f.V1(z);
|
|
|
|
// Collect faces that have to be updated
|
|
PosType delPos(f0,delV);
|
|
std::vector<PosType> faceToBeChanged;
|
|
VFOrderedStarFF(delPos,faceToBeChanged);
|
|
|
|
// Topology Stitching
|
|
FaceType *f01= 0,*f02= 0,*f11= 0,*f12= 0;
|
|
int i01=-1, i02=-1, i11=-1, i12=-1;
|
|
// Note that the faux bit is preserved only if both of the edges to be stiched are faux.
|
|
bool f0Faux = f0->IsF((z0+1)%3) && f0->IsF((z0+2)%3);
|
|
bool f1Faux = f1->IsF((z1+1)%3) && f1->IsF((z1+2)%3);
|
|
|
|
if(!face::IsBorder(*f0,(z0+1)%3)) { f01 = f0->FFp((z0+1)%3); i01=f0->FFi((z0+1)%3); FFDetachManifold(*f0,(z0+1)%3);}
|
|
if(!face::IsBorder(*f0,(z0+2)%3)) { f02 = f0->FFp((z0+2)%3); i02=f0->FFi((z0+2)%3); FFDetachManifold(*f0,(z0+2)%3);}
|
|
if(!face::IsBorder(*f1,(z1+1)%3)) { f11 = f1->FFp((z1+1)%3); i11=f1->FFi((z1+1)%3); FFDetachManifold(*f1,(z1+1)%3);}
|
|
if(!face::IsBorder(*f1,(z1+2)%3)) { f12 = f1->FFp((z1+2)%3); i12=f1->FFi((z1+2)%3); FFDetachManifold(*f1,(z1+2)%3);}
|
|
|
|
// Final Pass to update the vertex ptrs in all the involved faces
|
|
for(size_t i=0;i<faceToBeChanged.size();++i) {
|
|
assert(faceToBeChanged[i].V() == delV);
|
|
faceToBeChanged[i].F()->V(faceToBeChanged[i].VInd()) =surV;
|
|
}
|
|
|
|
if(f01 && f02)
|
|
{
|
|
FFAttachManifold(f01,i01,f02,i02);
|
|
if(f0Faux) {f01->SetF(i01); f02->SetF(i02);}
|
|
}
|
|
if(f11 && f12) {
|
|
FFAttachManifold(f11,i11,f12,i12);
|
|
if(f1Faux) {f11->SetF(i11); f12->SetF(i12);}
|
|
}
|
|
tri::Allocator<MeshType>::DeleteFace(m,*f0);
|
|
if(f1!=f0) tri::Allocator<MeshType>::DeleteFace(m,*f1);
|
|
tri::Allocator<MeshType>::DeleteVertex(m,*delV);
|
|
}
|
|
|
|
/*!
|
|
* Perform a Geometric Check about the normals of a edge flip.
|
|
* return trues if after the flip the normals does not change more than the given threshold angle;
|
|
* it assumes that the flip is topologically correct.
|
|
*
|
|
* \param f the face
|
|
* \param z the edge index
|
|
* \param angleRad the threshold angle
|
|
*
|
|
* oldD1 ___________ newD1
|
|
* |\ |
|
|
* | \ |
|
|
* | \ |
|
|
* | f z\ |
|
|
* | \ |
|
|
* |__________\|
|
|
* newD0 oldD0
|
|
*/
|
|
|
|
template <class FaceType>
|
|
bool CheckFlipEdgeNormal(FaceType &f, const int z, const float angleRad)
|
|
{
|
|
typedef typename FaceType::VertexType VertexType;
|
|
typedef typename VertexType::CoordType CoordType;
|
|
|
|
VertexType *OldDiag0 = f.V0(z);
|
|
VertexType *OldDiag1 = f.V1(z);
|
|
|
|
VertexType *NewDiag0 = f.V2(z);
|
|
VertexType *NewDiag1 = f.FFp(z)->V2(f.FFi(z));
|
|
|
|
assert((NewDiag1 != NewDiag0) && (NewDiag1 != OldDiag0) && (NewDiag1 != OldDiag1));
|
|
|
|
CoordType oldN0 = NormalizedNormal( NewDiag0->cP(),OldDiag0->cP(),OldDiag1->cP());
|
|
CoordType oldN1 = NormalizedNormal( NewDiag1->cP(),OldDiag1->cP(),OldDiag0->cP());
|
|
CoordType newN0 = NormalizedNormal( OldDiag0->cP(),NewDiag1->cP(),NewDiag0->cP());
|
|
CoordType newN1 = NormalizedNormal( OldDiag1->cP(),NewDiag0->cP(),NewDiag1->cP());
|
|
if(AngleN(oldN0,newN0) > angleRad) return false;
|
|
if(AngleN(oldN0,newN1) > angleRad) return false;
|
|
if(AngleN(oldN1,newN0) > angleRad) return false;
|
|
if(AngleN(oldN1,newN1) > angleRad) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* Perform a Topological check to see if the z-th edge of the face f can be flipped.
|
|
* No Geometric test are done. (see CheckFlipEdgeNormal)
|
|
* \param f pointer to the face
|
|
* \param z the edge index
|
|
*/
|
|
template <class FaceType>
|
|
bool CheckFlipEdge(FaceType &f, int z)
|
|
{
|
|
typedef typename FaceType::VertexType VertexType;
|
|
typedef typename vcg::face::Pos< FaceType > PosType;
|
|
|
|
if (z<0 || z>2) return false;
|
|
|
|
// boundary edges cannot be flipped
|
|
if (face::IsBorder(f, z)) return false;
|
|
|
|
FaceType *g = f.FFp(z);
|
|
int w = f.FFi(z);
|
|
|
|
// check if the vertices of the edge are the same
|
|
// e.g. the mesh has to be well oriented
|
|
if (g->V(w)!=f.V1(z) || g->V1(w)!=f.V(z) )
|
|
return false;
|
|
|
|
// check if the flipped edge is already present in the mesh
|
|
// f_v2 and g_v2 are the vertices of the new edge
|
|
VertexType *f_v2 = f.V2(z);
|
|
VertexType *g_v2 = g->V2(w);
|
|
|
|
// just a sanity check. If this happens the mesh is not manifold.
|
|
if (f_v2 == g_v2) return false;
|
|
|
|
// Now walk around f_v2, one of the two vertexes of the new edge
|
|
// and check that it does not already exists.
|
|
|
|
PosType pos(&f, (z+2)%3, f_v2);
|
|
PosType startPos=pos;
|
|
do
|
|
{
|
|
pos.NextE();
|
|
if (g_v2 == pos.VFlip())
|
|
return false;
|
|
}
|
|
while (pos != startPos);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* Flip the z-th edge of the face f.
|
|
* Check for topological correctness first using <CODE>CheckFlipFace()</CODE>.
|
|
* \param f pointer to the face
|
|
* \param z the edge index
|
|
*
|
|
* Note: For <em>edge flip</em> we intend the swap of the diagonal of the rectangle
|
|
* formed by the face \a f and the face adjacent to the specified edge.
|
|
*/
|
|
template <class FaceType>
|
|
void FlipEdge(FaceType &f, const int z)
|
|
{
|
|
assert(z>=0);
|
|
assert(z<3);
|
|
assert( !IsBorder(f,z) );
|
|
assert( face::IsManifold<FaceType>(f, z));
|
|
|
|
FaceType *g = f.FFp(z);
|
|
int w = f.FFi(z);
|
|
|
|
assert( g->V(w) == f.V1(z) );
|
|
assert( g->V1(w)== f.V(z) );
|
|
assert( g->V2(w)!= f.V(z) );
|
|
assert( g->V2(w)!= f.V1(z) );
|
|
assert( g->V2(w)!= f.V2(z) );
|
|
|
|
f.V1(z) = g->V2(w);
|
|
g->V1(w) = f.V2(z);
|
|
|
|
f.FFp(z) = g->FFp((w+1)%3);
|
|
f.FFi(z) = g->FFi((w+1)%3);
|
|
g->FFp(w) = f.FFp((z+1)%3);
|
|
g->FFi(w) = f.FFi((z+1)%3);
|
|
f.FFp((z+1)%3) = g;
|
|
f.FFi((z+1)%3) = (w+1)%3;
|
|
g->FFp((w+1)%3) = &f;
|
|
g->FFi((w+1)%3) = (z+1)%3;
|
|
|
|
if(f.FFp(z)==g)
|
|
{
|
|
f.FFp(z) = &f;
|
|
f.FFi(z) = z;
|
|
}
|
|
else
|
|
{
|
|
f.FFp(z)->FFp( f.FFi(z) ) = &f;
|
|
f.FFp(z)->FFi( f.FFi(z) ) = z;
|
|
}
|
|
if(g->FFp(w)==&f)
|
|
{
|
|
g->FFp(w)=g;
|
|
g->FFi(w)=w;
|
|
}
|
|
else
|
|
{
|
|
g->FFp(w)->FFp( g->FFi(w) ) = g;
|
|
g->FFp(w)->FFi( g->FFi(w) ) = w;
|
|
}
|
|
}
|
|
|
|
template <class FaceType>
|
|
void VFDetach(FaceType & f)
|
|
{
|
|
VFDetach(f,0);
|
|
VFDetach(f,1);
|
|
VFDetach(f,2);
|
|
}
|
|
|
|
// Stacca la faccia corrente dalla catena di facce incidenti sul vertice z,
|
|
// NOTA funziona SOLO per la topologia VF!!!
|
|
// usata nelle classi di collapse
|
|
template <class FaceType>
|
|
void VFDetach(FaceType & f, int z)
|
|
{
|
|
if(f.V(z)->VFp()==&f ) //if it is the first face detach from the begin
|
|
{
|
|
int fz = f.V(z)->VFi();
|
|
f.V(z)->VFp() = f.VFp(fz);
|
|
f.V(z)->VFi() = f.VFi(fz);
|
|
}
|
|
else // scan the list of faces in order to finde the current face f to be detached
|
|
{
|
|
VFIterator<FaceType> x(f.V(z)->VFp(),f.V(z)->VFi());
|
|
VFIterator<FaceType> y;
|
|
|
|
for(;;)
|
|
{
|
|
y = x;
|
|
++x;
|
|
assert(x.f!=0);
|
|
if(x.f==&f) // found!
|
|
{
|
|
y.f->VFp(y.z) = f.VFp(z);
|
|
y.f->VFi(y.z) = f.VFi(z);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Append a face in VF list of vertex f->V(z)
|
|
template <class FaceType>
|
|
void VFAppend(FaceType* & f, int z)
|
|
{
|
|
typename FaceType::VertexType *v = f->V(z);
|
|
if (v->VFp()!=0)
|
|
{
|
|
FaceType *f0=v->VFp();
|
|
int z0=v->VFi();
|
|
//append
|
|
f->VFp(z)=f0;
|
|
f->VFi(z)=z0;
|
|
}
|
|
v->VFp()=f;
|
|
v->VFi()=z;
|
|
}
|
|
|
|
/*!
|
|
* \brief Compute the set of vertices adjacent to a given vertex using VF adjacency
|
|
*
|
|
* \param vp pointer to the vertex whose star has to be computed.
|
|
* \param starVec a std::vector of Vertex pointer that is filled with the adjacent vertices.
|
|
*
|
|
*/
|
|
|
|
template <class FaceType>
|
|
void VVStarVF( typename FaceType::VertexType* vp, std::vector<typename FaceType::VertexType *> &starVec)
|
|
{
|
|
typedef typename FaceType::VertexType* VertexPointer;
|
|
starVec.clear();
|
|
face::VFIterator<FaceType> vfi(vp);
|
|
while(!vfi.End())
|
|
{
|
|
starVec.push_back(vfi.F()->V1(vfi.I()));
|
|
starVec.push_back(vfi.F()->V2(vfi.I()));
|
|
++vfi;
|
|
}
|
|
|
|
std::sort(starVec.begin(),starVec.end());
|
|
typename std::vector<VertexPointer>::iterator new_end = std::unique(starVec.begin(),starVec.end());
|
|
starVec.resize(new_end-starVec.begin());
|
|
}
|
|
|
|
/*!
|
|
* \brief Compute the set of vertices adjacent to a given vertex using VF adjacency.
|
|
*
|
|
* The set is faces is extended of a given number of step
|
|
* \param vp pointer to the vertex whose star has to be computed.
|
|
* \param num_step the number of step to extend the star
|
|
* \param vertVec a std::vector of Ve pointer that is filled with the adjacent faces.
|
|
*/
|
|
template <class FaceType>
|
|
void VVExtendedStarVF(typename FaceType::VertexType* vp,
|
|
const int num_step,
|
|
std::vector<typename FaceType::VertexType *> &vertVec)
|
|
{
|
|
typedef typename FaceType::VertexType VertexType;
|
|
///initialize front
|
|
vertVec.clear();
|
|
vcg::face::VVStarVF<FaceType>(vp,vertVec);
|
|
///then dilate front
|
|
///for each step
|
|
for (int step=0;step<num_step-1;step++)
|
|
{
|
|
std::vector<VertexType *> toAdd;
|
|
for (unsigned int i=0;i<vertVec.size();i++)
|
|
{
|
|
std::vector<VertexType *> Vtemp;
|
|
vcg::face::VVStarVF<FaceType>(vertVec[i],Vtemp);
|
|
toAdd.insert(toAdd.end(),Vtemp.begin(),Vtemp.end());
|
|
}
|
|
vertVec.insert(vertVec.end(),toAdd.begin(),toAdd.end());
|
|
std::sort(vertVec.begin(),vertVec.end());
|
|
typename std::vector<typename FaceType::VertexType *>::iterator new_end=std::unique(vertVec.begin(),vertVec.end());
|
|
int dist=distance(vertVec.begin(),new_end);
|
|
vertVec.resize(dist);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Compute the set of faces adjacent to a given vertex using VF adjacency.
|
|
*
|
|
* \param vp pointer to the vertex whose star has to be computed.
|
|
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces.
|
|
* \param indexes a std::vector of integer of the vertex as it is seen from the faces
|
|
*/
|
|
template <class FaceType>
|
|
void VFStarVF( typename FaceType::VertexType* vp,
|
|
std::vector<FaceType *> &faceVec,
|
|
std::vector<int> &indexes)
|
|
{
|
|
faceVec.clear();
|
|
indexes.clear();
|
|
face::VFIterator<FaceType> vfi(vp);
|
|
while(!vfi.End())
|
|
{
|
|
faceVec.push_back(vfi.F());
|
|
indexes.push_back(vfi.I());
|
|
++vfi;
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
* \brief Compute the set of faces incident onto a given edge using FF adjacency.
|
|
*
|
|
* \param fp pointer to the face whose star has to be computed
|
|
* \param ei the index of the edge
|
|
* \param faceVec a std::vector of Face pointer that is filled with the faces incident on that edge.
|
|
* \param indexes a std::vector of integer of the edge position as it is seen from the faces
|
|
*/
|
|
template <class FaceType>
|
|
void EFStarFF( FaceType* fp, int ei,
|
|
std::vector<FaceType *> &faceVec,
|
|
std::vector<int> &indVed)
|
|
{
|
|
assert(fp->FFp(ei)!=0);
|
|
faceVec.clear();
|
|
indVed.clear();
|
|
FaceType* fpit=fp;
|
|
int eit=ei;
|
|
do
|
|
{
|
|
faceVec.push_back(fpit);
|
|
indVed.push_back(eit);
|
|
FaceType *new_fpit = fpit->FFp(eit);
|
|
int new_eit = fpit->FFi(eit);
|
|
fpit=new_fpit;
|
|
eit=new_eit;
|
|
} while(fpit != fp);
|
|
}
|
|
|
|
|
|
/* Compute the set of faces adjacent to a given face using FF adjacency.
|
|
* The set is faces is extended of a given number of step
|
|
* \param fp pointer to the face whose star has to be computed.
|
|
* \param num_step the number of step to extend the star
|
|
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces.
|
|
*/
|
|
template <class FaceType>
|
|
static void FFExtendedStarFF(FaceType *fp,
|
|
const int num_step,
|
|
std::vector<FaceType*> &faceVec)
|
|
{
|
|
///initialize front
|
|
faceVec.push_back(fp);
|
|
///then dilate front
|
|
///for each step
|
|
for (int step=0;step<num_step;step++)
|
|
{
|
|
std::vector<FaceType*> toAdd;
|
|
for (unsigned int i=0;i<faceVec.size();i++)
|
|
{
|
|
FaceType *f=faceVec[i];
|
|
for (int k=0;k<3;k++)
|
|
{
|
|
FaceType *f1=f->FFp(k);
|
|
if (f1==f)continue;
|
|
toAdd.push_back(f1);
|
|
}
|
|
}
|
|
faceVec.insert(faceVec.end(),toAdd.begin(),toAdd.end());
|
|
std::sort(faceVec.begin(),faceVec.end());
|
|
typename std::vector<FaceType*>::iterator new_end=std::unique(faceVec.begin(),faceVec.end());
|
|
int dist=distance(faceVec.begin(),new_end);
|
|
faceVec.resize(dist);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Compute the set of faces adjacent to a given vertex using VF adjacency.
|
|
*
|
|
* The set is faces is extended of a given number of step
|
|
* \param vp pointer to the vertex whose star has to be computed.
|
|
* \param num_step the number of step to extend the star
|
|
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces.
|
|
*/
|
|
template <class FaceType>
|
|
void VFExtendedStarVF(typename FaceType::VertexType* vp,
|
|
const int num_step,
|
|
std::vector<FaceType*> &faceVec)
|
|
{
|
|
///initialize front
|
|
faceVec.clear();
|
|
std::vector<int> indexes;
|
|
vcg::face::VFStarVF<FaceType>(vp,faceVec,indexes);
|
|
///then dilate front
|
|
///for each step
|
|
for (int step=0;step<num_step;step++)
|
|
{
|
|
std::vector<FaceType*> toAdd;
|
|
for (unsigned int i=0;i<faceVec.size();i++)
|
|
{
|
|
FaceType *f=faceVec[i];
|
|
for (int k=0;k<3;k++)
|
|
{
|
|
FaceType *f1=f->FFp(k);
|
|
if (f1==f)continue;
|
|
toAdd.push_back(f1);
|
|
}
|
|
}
|
|
faceVec.insert(faceVec.end(),toAdd.begin(),toAdd.end());
|
|
std::sort(faceVec.begin(),faceVec.end());
|
|
typename std::vector<FaceType*>::iterator new_end=std::unique(faceVec.begin(),faceVec.end());
|
|
int dist=distance(faceVec.begin(),new_end);
|
|
faceVec.resize(dist);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Compute the ordered set of vertices adjacent to a given vertex using FF adiacency
|
|
*
|
|
* \param startPos a Pos<FaceType> indicating the vertex whose star has to be computed.
|
|
* \param vertexVec a std::vector of VertexPtr filled vertices around the given vertex.
|
|
*
|
|
*/
|
|
template <class FaceType>
|
|
void VVOrderedStarFF(Pos<FaceType> &startPos,
|
|
std::vector<typename FaceType::VertexType *> &vertexVec)
|
|
{
|
|
vertexVec.clear();
|
|
std::vector<Pos<FaceType> > posVec;
|
|
VFOrderedStarFF(startPos,posVec);
|
|
for(size_t i=0;i<posVec.size();++i)
|
|
vertexVec.push_back(posVec[i].VFlip());
|
|
}
|
|
|
|
/*!
|
|
* \brief Compute the ordered set of faces adjacent to a given vertex using FF adiacency
|
|
*
|
|
* \param startPos a Pos<FaceType> indicating the vertex whose star has to be computed.
|
|
* \param posVec a std::vector of Pos filled with Pos arranged around the passed vertex.
|
|
*
|
|
*/
|
|
template <class FaceType>
|
|
void VFOrderedStarFF(const Pos<FaceType> &startPos,
|
|
std::vector<Pos<FaceType> > &posVec)
|
|
{
|
|
posVec.clear();
|
|
bool foundBorder=false;
|
|
size_t firstBorderInd;
|
|
Pos<FaceType> curPos=startPos;
|
|
do
|
|
{
|
|
assert(curPos.IsManifold());
|
|
if(curPos.IsBorder() && !foundBorder) {
|
|
foundBorder=true;
|
|
firstBorderInd = posVec.size();
|
|
}
|
|
posVec.push_back(curPos);
|
|
curPos.FlipF();
|
|
curPos.FlipE();
|
|
} while(curPos!=startPos);
|
|
// if we found a border we visited each face exactly twice,
|
|
// and we have to extract the border-to-border pos sequence
|
|
if(foundBorder)
|
|
{
|
|
size_t halfSize=posVec.size()/2;
|
|
assert((posVec.size()%2)==0);
|
|
posVec.erase(posVec.begin()+firstBorderInd+1+halfSize, posVec.end());
|
|
posVec.erase(posVec.begin(),posVec.begin()+firstBorderInd+1);
|
|
assert(posVec.size()==halfSize);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Compute the ordered set of faces adjacent to a given vertex using FF adiacency
|
|
*
|
|
* \param startPos a Pos<FaceType> indicating the vertex whose star has to be computed.
|
|
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces.
|
|
* \param edgeVec a std::vector of indexes filled with the indexes of the corresponding edges shared between the faces.
|
|
*
|
|
*/
|
|
|
|
template <class FaceType>
|
|
void VFOrderedStarFF(const Pos<FaceType> &startPos,
|
|
std::vector<FaceType*> &faceVec,
|
|
std::vector<int> &edgeVec)
|
|
{
|
|
std::vector<Pos<FaceType> > posVec;
|
|
VFOrderedStarFF(startPos,posVec);
|
|
faceVec.clear();
|
|
edgeVec.clear();
|
|
for(size_t i=0;i<posVec.size();++i)
|
|
{
|
|
faceVec.push_back(posVec[i].F());
|
|
edgeVec.push_back(posVec[i].E());
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* Check if two faces share and edge through the FF topology.
|
|
* \param f0,f1 the two face to be checked
|
|
* \param i0,i1 the index of the shared edge;
|
|
*/
|
|
|
|
template <class FaceType>
|
|
bool ShareEdgeFF(FaceType *f0,FaceType *f1, int *i0=0, int *i1=0)
|
|
{
|
|
assert((!f0->IsD())&&(!f1->IsD()));
|
|
for (int i=0;i<3;i++)
|
|
if (f0->FFp(i)==f1)
|
|
{
|
|
if((i0!=0) && (i1!=0)) {
|
|
*i0=i;
|
|
*i1=f0->FFi(i);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*!
|
|
* Count the number of vertices shared between two faces.
|
|
* \param f0,f1 the two face to be checked
|
|
* ;
|
|
*/
|
|
template <class FaceType>
|
|
int CountSharedVertex(FaceType *f0,FaceType *f1)
|
|
{
|
|
int sharedCnt=0;
|
|
for (int i=0;i<3;i++)
|
|
for (int j=0;j<3;j++)
|
|
if (f0->V(i)==f1->V(j)) {
|
|
sharedCnt++;
|
|
}
|
|
return sharedCnt;
|
|
}
|
|
|
|
/*!
|
|
* find the first shared vertex between two faces.
|
|
* \param f0,f1 the two face to be checked
|
|
* \param i,j the indexes of the shared vertex in the two faces. Meaningful only if there is one single shared vertex
|
|
* ;
|
|
*/
|
|
template <class FaceType>
|
|
bool FindSharedVertex(FaceType *f0,FaceType *f1, int &i, int &j)
|
|
{
|
|
for (i=0;i<3;i++)
|
|
for (j=0;j<3;j++)
|
|
if (f0->V(i)==f1->V(j)) return true;
|
|
|
|
i=-1;j=-1;
|
|
return false;
|
|
}
|
|
|
|
/*!
|
|
* find the first shared edge between two faces.
|
|
* \param f0,f1 the two face to be checked
|
|
* \param i,j the indexes of the shared edge in the two faces. Meaningful only if there is a shared edge
|
|
*
|
|
*/
|
|
template <class FaceType>
|
|
bool FindSharedEdge(FaceType *f0,FaceType *f1, int &i, int &j)
|
|
{
|
|
for (i=0;i<3;i++)
|
|
for (j=0;j<3;j++)
|
|
if( ( f0->V0(i)==f1->V0(j) || f0->V0(i)==f1->V1(j) ) &&
|
|
( f0->V1(i)==f1->V0(j) || f0->V1(i)==f1->V1(j) ) )
|
|
return true;
|
|
i=-1;j=-1;
|
|
return false;
|
|
}
|
|
|
|
/*!
|
|
* find the faces that shares the two vertices
|
|
* \param v0,v1 the two vertices
|
|
* \param f0,f1 the two faces , counterclokwise order
|
|
*
|
|
*/
|
|
template <class FaceType>
|
|
bool FindSharedFaces(typename FaceType::VertexType *v0,
|
|
typename FaceType::VertexType *v1,
|
|
FaceType *&f0,
|
|
FaceType *&f1,
|
|
int &e0,
|
|
int &e1)
|
|
{
|
|
std::vector<FaceType*> faces0;
|
|
std::vector<FaceType*> faces1;
|
|
std::vector<int> index0;
|
|
std::vector<int> index1;
|
|
VFStarVF<FaceType>(v0,faces0,index0);
|
|
VFStarVF<FaceType>(v1,faces1,index1);
|
|
///then find the intersection
|
|
std::sort(faces0.begin(),faces0.end());
|
|
std::sort(faces1.begin(),faces1.end());
|
|
std::vector<FaceType*> Intersection;
|
|
std::set_intersection(faces0.begin(),faces0.end(),faces1.begin(),faces1.end(),std::back_inserter(Intersection));
|
|
if (Intersection.size()<2)return false; ///no pair of faces share the 2 vertices
|
|
assert(Intersection.size()==2);//otherwhise non manifoldess
|
|
f0=Intersection[0];
|
|
f1=Intersection[1];
|
|
FindSharedEdge(f0,f1,e0,e1);
|
|
///and finally check if the order is right
|
|
if (f0->V(e0)!=v0)
|
|
{
|
|
std::swap(f0,f1);
|
|
std::swap(e0,e1);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*@}*/
|
|
} // end namespace
|
|
} // end namespace
|
|
|
|
#endif
|
|
|