1493 lines
48 KiB
C++
1493 lines
48 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
#ifndef __VCGLIB_CURVE_ON_SURF_H
|
|
#define __VCGLIB_CURVE_ON_SURF_H
|
|
|
|
#include<vcg/complex/complex.h>
|
|
#include<vcg/simplex/face/topology.h>
|
|
#include<vcg/complex/algorithms/update/topology.h>
|
|
#include<vcg/complex/algorithms/update/color.h>
|
|
#include<vcg/complex/algorithms/update/normal.h>
|
|
#include<vcg/complex/algorithms/update/quality.h>
|
|
#include<vcg/complex/algorithms/clean.h>
|
|
#include<vcg/complex/algorithms/refine.h>
|
|
#include<vcg/complex/algorithms/create/platonic.h>
|
|
#include <vcg/space/index/grid_static_ptr.h>
|
|
#include <vcg/space/index/kdtree/kdtree.h>
|
|
#include <vcg/math/histogram.h>
|
|
#include<vcg/space/distance3.h>
|
|
#include<Eigen/Core>
|
|
#include <vcg/complex/algorithms/attribute_seam.h>
|
|
#include <wrap/io_trimesh/export_ply.h>
|
|
|
|
namespace vcg {
|
|
namespace tri {
|
|
/// \ingroup trimesh
|
|
/// \brief A class for managing curves on a 2manifold.
|
|
/**
|
|
This class is used to project/simplify/smooth polylines over a triangulated surface.
|
|
|
|
*/
|
|
|
|
template <class MeshType>
|
|
class CoM
|
|
{
|
|
public:
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::EdgeIterator EdgeIterator;
|
|
typedef typename MeshType::EdgeType EdgeType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef Box3 <ScalarType> Box3Type;
|
|
typedef typename vcg::GridStaticPtr<FaceType, ScalarType> MeshGrid;
|
|
typedef typename vcg::GridStaticPtr<EdgeType, ScalarType> EdgeGrid;
|
|
typedef typename face::Pos<FaceType> PosType;
|
|
|
|
class Param
|
|
{
|
|
public:
|
|
|
|
ScalarType surfDistThr; // Distance between surface and curve; used in simplify and refine
|
|
ScalarType polyDistThr; // Distance between the
|
|
ScalarType minRefEdgeLen; // Minimal admitted Edge Lenght (used in refine: never make edge shorther than this value)
|
|
ScalarType maxSimpEdgeLen; // Minimal admitted Edge Lenght (used in simplify: never make edges longer than this value)
|
|
ScalarType maxSmoothDelta; // The maximum movement that is admitted during smoothing.
|
|
ScalarType maxSnapThr; // The maximum distance allowed when snapping a vertex of the polyline onto a mesh vertex
|
|
ScalarType gridBailout; // The maximum distance bailout used in grid sampling
|
|
|
|
Param(MeshType &m) { Default(m);}
|
|
|
|
void Default(MeshType &m)
|
|
{
|
|
surfDistThr = m.bbox.Diag()/1000.0;
|
|
polyDistThr = m.bbox.Diag()/5000.0;
|
|
minRefEdgeLen = m.bbox.Diag()/16000.0;
|
|
maxSimpEdgeLen = m.bbox.Diag()/1000.0;
|
|
maxSmoothDelta = m.bbox.Diag()/100.0;
|
|
maxSnapThr = m.bbox.Diag()/10000.0;
|
|
gridBailout = m.bbox.Diag()/20.0;
|
|
}
|
|
void Dump() const
|
|
{
|
|
printf("surfDistThr = %6.4f\n",surfDistThr );
|
|
printf("polyDistThr = %6.4f\n",polyDistThr );
|
|
printf("minRefEdgeLen = %6.4f\n",minRefEdgeLen );
|
|
printf("maxSimpEdgeLen = %6.4f\n",maxSimpEdgeLen );
|
|
printf("maxSmoothDelta = %6.4f\n",maxSmoothDelta);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
// The Data Members
|
|
|
|
MeshType &base;
|
|
MeshGrid uniformGrid;
|
|
|
|
Param par;
|
|
CoM(MeshType &_m) :base(_m),par(_m){}
|
|
|
|
|
|
//******** CUT TREE GENERATION
|
|
|
|
|
|
// Given two points return true if on the base mesh there exist an edge with that two coords
|
|
// if return true the pos indicate the found edge.
|
|
bool ExistEdge(KdTree<ScalarType> &kdtree, CoordType &p0, CoordType &p1, PosType &fpos)
|
|
{
|
|
ScalarType locEps = SquaredDistance(p0,p1)/100000.0;
|
|
|
|
VertexType *v0=0,*v1=0;
|
|
unsigned int veInd;
|
|
ScalarType sqdist;
|
|
kdtree.doQueryClosest(p0,veInd,sqdist);
|
|
if(sqdist<locEps)
|
|
v0 = &base.vert[veInd];
|
|
kdtree.doQueryClosest(p1,veInd,sqdist);
|
|
if(sqdist<locEps)
|
|
v1 = &base.vert[veInd];
|
|
if(v0 && v1)
|
|
{
|
|
face::VFIterator<FaceType> vfi(v0);
|
|
while(!vfi.End())
|
|
{
|
|
if(vfi.V1()==v1)
|
|
{
|
|
fpos = PosType(vfi.F(),vfi.I(), v0);
|
|
return true;
|
|
}
|
|
if(vfi.V2()==v1)
|
|
{
|
|
fpos = PosType(vfi.F(),(vfi.I()+1)%3, v1);
|
|
return true;
|
|
}
|
|
++vfi;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool OptimizeTree(MeshType &t)
|
|
{
|
|
tri::Allocator<MeshType>::CompactEveryVector(t);
|
|
tri::UpdateTopology<MeshType>::VertexEdge(t);
|
|
tri::UpdateTopology<MeshType>::VertexFace(base);
|
|
VertexConstDataWrapper<MeshType > vdw(base);
|
|
KdTree<ScalarType> kdtree(vdw);
|
|
|
|
// First simple loop that search for 2->1 moves.
|
|
for(VertexIterator vi=t.vert.begin();vi!=t.vert.end();++vi)
|
|
{
|
|
std::vector<VertexType *> starVec;
|
|
edge::VVStarVE(&*vi,starVec);
|
|
if(starVec.size()==2)
|
|
{
|
|
PosType pos;
|
|
if(ExistEdge(kdtree,starVec[0]->P(),starVec[1]->P(),pos))
|
|
edge::VEEdgeCollapse(t,&*vi);
|
|
}
|
|
}
|
|
return (t.en < t.edge.size());
|
|
}
|
|
|
|
int findNonVisitedEdgesDuringRetract(VertexType * vp, EdgeType * &ep)
|
|
{
|
|
std::vector<EdgeType *> starVec;
|
|
edge::VEStarVE(&*vp,starVec);
|
|
int cnt =0;
|
|
for(size_t i=0;i<starVec.size();++i) {
|
|
if(!starVec[i]->IsV()) {
|
|
cnt++;
|
|
ep = starVec[i];
|
|
}
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
void Retract(MeshType &t)
|
|
{
|
|
tri::Clean<MeshType>::RemoveDuplicateVertex(t);
|
|
printf("Retracting a tree of %i edges and %i vertices\n",t.en,t.vn);
|
|
tri::UpdateTopology<MeshType>::VertexEdge(t);
|
|
|
|
std::stack<VertexType *> vertStack;
|
|
|
|
// Put on the stack all the vertex with just a single incident edge.
|
|
for(VertexIterator vi=t.vert.begin();vi!=t.vert.end();++vi)
|
|
{
|
|
std::vector<EdgeType *> starVec;
|
|
edge::VEStarVE(&*vi,starVec);
|
|
if(starVec.size()==1)
|
|
vertStack.push(&*vi);
|
|
}
|
|
|
|
tri::UpdateFlags<MeshType>::EdgeClearV(t);
|
|
tri::UpdateFlags<MeshType>::VertexClearV(t);
|
|
|
|
int unvisitedEdgeNum = t.en;
|
|
while((!vertStack.empty()) && (unvisitedEdgeNum > 2) )
|
|
{
|
|
VertexType *vp = vertStack.top();
|
|
vertStack.pop();
|
|
vp->C()=Color4b::Blue;
|
|
EdgeType *ep=0;
|
|
int eCnt = findNonVisitedEdgesDuringRetract(vp,ep);
|
|
if(eCnt==1) // We have only one non visited edge over vp
|
|
{
|
|
assert(!ep->IsV());
|
|
ep->SetV();
|
|
--unvisitedEdgeNum;
|
|
VertexType *otherVertP;
|
|
if(ep->V(0)==vp) otherVertP = ep->V(1);
|
|
else otherVertP = ep->V(0);
|
|
vertStack.push(otherVertP);
|
|
}
|
|
}
|
|
assert(unvisitedEdgeNum >0);
|
|
|
|
for(size_t i =0; i<t.edge.size();++i)
|
|
if(t.edge[i].IsV()) tri::Allocator<MeshType>::DeleteEdge(t,t.edge[i]);
|
|
assert(t.en >0);
|
|
tri::Clean<MeshType>::RemoveUnreferencedVertex(t);
|
|
tri::Allocator<MeshType>::CompactEveryVector(t);
|
|
}
|
|
|
|
void CleanSpuriousDanglingEdges(MeshType &poly)
|
|
{
|
|
EdgeGrid edgeGrid;
|
|
edgeGrid.Set(poly.edge.begin(), poly.edge.end());
|
|
std::vector< std::pair<VertexType *, VertexType *> > mergeVec;
|
|
UpdateFlags<MeshType>::FaceClearV(base);
|
|
UpdateTopology<MeshType>::FaceFace(base);
|
|
for(int i=0;i<base.fn;++i)
|
|
{
|
|
FaceType *fp=&base.face[i];
|
|
if(!fp->IsV())
|
|
{
|
|
for(int j=0;j<3;++j)
|
|
if(face::IsBorder(*fp,j))
|
|
{
|
|
face::Pos<FaceType> startPos(fp,int(j));
|
|
assert(startPos.IsBorder());
|
|
face::Pos<FaceType> curPos=startPos;
|
|
face::Pos<FaceType> prevPos=startPos;
|
|
int edgeCnt=0;
|
|
do
|
|
{
|
|
prevPos=curPos;
|
|
curPos.F()->SetV();
|
|
curPos.NextB();
|
|
edgeCnt++;
|
|
if(Distance(curPos.V()->P(),prevPos.VFlip()->P())<0.000000001f)
|
|
{
|
|
Point3f endp = curPos.VFlip()->P();
|
|
float minDist=par.gridBailout;
|
|
Point3f closestP;
|
|
EdgeType *cep = vcg::tri::GetClosestEdgeBase(poly,edgeGrid,endp,par.gridBailout,minDist,closestP);
|
|
if(minDist > par.polyDistThr){
|
|
mergeVec.push_back(std::make_pair(curPos.V(),prevPos.VFlip()));
|
|
printf("Vertex %i and %i should be merged\n",tri::Index(base,curPos.V()),tri::Index(base,prevPos.VFlip()));
|
|
}
|
|
}
|
|
|
|
} while(curPos!=startPos);
|
|
printf("walked along a border of %i edges\n",edgeCnt);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
printf("Found %i vertex pairs to be merged\n",mergeVec.size());
|
|
for(int k=0;k<mergeVec.size();++k)
|
|
{
|
|
VertexType *vdel=mergeVec[k].first;
|
|
VertexType *vmerge=mergeVec[k].second;
|
|
for(int i=0;i<base.fn;++i)
|
|
{
|
|
FaceType *fp=&base.face[i];
|
|
for(int j=0;j<3;++j)
|
|
if(fp->V(j)==vdel) fp->V(j)=vmerge;
|
|
}
|
|
Allocator<MeshType>::DeleteVertex(base,*vdel);
|
|
}
|
|
Allocator<MeshType>::CompactEveryVector(base);
|
|
|
|
|
|
for(int i=0;i<base.fn;++i)
|
|
{
|
|
FaceType *fp=&base.face[i];
|
|
for(int j=0;j<3;++j)
|
|
if(fp->V0(j)==fp->V1(j))
|
|
{
|
|
Allocator<MeshType>::DeleteFace(base,*fp);
|
|
printf("Deleted face %i\n",tri::Index(base,fp));
|
|
}
|
|
|
|
}
|
|
Allocator<MeshType>::CompactEveryVector(base);
|
|
}
|
|
|
|
|
|
// \brief This function build a cut tree.
|
|
//
|
|
// First we make a bread first FF face visit.
|
|
// Each time that we encounter a visited face we cut add to the tree the edge
|
|
// that brings to the already visited face.
|
|
// this structure build a dense graph and we retract this graph retracting each
|
|
// leaf until we remains with just the loops that cuts the object.
|
|
|
|
void BuildVisitTree(MeshType &dualMesh)
|
|
{
|
|
tri::UpdateTopology<MeshType>::FaceFace(base);
|
|
tri::UpdateFlags<MeshType>::FaceClearV(base);
|
|
|
|
std::vector<face::Pos<FaceType> > visitStack; // the stack contain the pos on the 'starting' face.
|
|
|
|
|
|
MeshType treeMesh; // this mesh will contain the set of the non traversed edge
|
|
|
|
base.face[0].SetV();
|
|
for(int i=0;i<3;++i)
|
|
visitStack.push_back(PosType(&(base.face[0]),i,base.face[0].V(i)));
|
|
|
|
int cnt=1;
|
|
|
|
while(!visitStack.empty())
|
|
{
|
|
std::swap(visitStack.back(),visitStack[rand()%visitStack.size()]);
|
|
PosType c = visitStack.back();
|
|
visitStack.pop_back();
|
|
assert(c.F()->IsV());
|
|
c.F()->C() = Color4b::ColorRamp(0,base.fn,cnt);
|
|
c.FlipF();
|
|
if(!c.F()->IsV())
|
|
{
|
|
tri::Allocator<MeshType>::AddEdge(treeMesh,Barycenter(*(c.FFlip())),Barycenter(*(c.F())));
|
|
++cnt;
|
|
c.F()->SetV();
|
|
c.FlipE();c.FlipV();
|
|
visitStack.push_back(c);
|
|
c.FlipE();c.FlipV();
|
|
visitStack.push_back(c);
|
|
}
|
|
else
|
|
{
|
|
tri::Allocator<MeshType>::AddEdge(dualMesh,c.V()->P(),c.VFlip()->P());
|
|
}
|
|
}
|
|
assert(cnt==base.fn);
|
|
|
|
Retract(dualMesh);
|
|
}
|
|
|
|
/*
|
|
* Given a mesh <m> and a polyline <e> whose edges are a subset of edges of m
|
|
* This function marks the edges of m as non-faux when they coincide with the polyline ones.
|
|
*
|
|
* Use this function toghether with the CutMeshAlongCrease function to actually cut the mesh.
|
|
*/
|
|
|
|
void MarkFauxEdgeWithPolyLine(MeshType &m, MeshType &e)
|
|
{
|
|
tri::UpdateFlags<MeshType>::FaceSetF(m);
|
|
tri::UpdateTopology<MeshType>::VertexEdge(e);
|
|
VertexConstDataWrapper<MeshType > vdw(e);
|
|
KdTree<ScalarType> edgeTree(vdw);
|
|
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
ScalarType locEps = SquaredDistance(fi->P0(i), fi->P1(i))/100000.0;
|
|
unsigned int veInd;
|
|
ScalarType sqdist;
|
|
edgeTree.doQueryClosest(fi->P(i),veInd,sqdist);
|
|
if(sqdist<locEps)
|
|
{
|
|
std::vector<VertexPointer> starVecVp;
|
|
edge::VVStarVE(&(e.vert[veInd]),starVecVp);
|
|
for(size_t j=0;j<starVecVp.size();++j)
|
|
{
|
|
if(SquaredDistance(starVecVp[j]->P(),fi->P1(i))< locEps)
|
|
fi->ClearF(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void SnapPolyline(MeshType &t)
|
|
{
|
|
printf("Selected vert num %i\n",tri::UpdateSelection<MeshType>::VertexCount(t));
|
|
|
|
tri::UpdateFlags<MeshType>::VertexClearS(base);
|
|
tri::UpdateFlags<MeshType>::VertexClearS(t);
|
|
tri::Allocator<MeshType>::CompactEveryVector(t);
|
|
VertexConstDataWrapper<MeshType > vdw(base);
|
|
KdTree<ScalarType> kdtree(vdw);
|
|
|
|
for(VertexIterator vi=t.vert.begin();vi!=t.vert.end();++vi)
|
|
{
|
|
unsigned int veInd;
|
|
ScalarType sqdist;
|
|
kdtree.doQueryClosest(vi->P(),veInd,sqdist);
|
|
VertexPointer vp = &base.vert[veInd];
|
|
if(!vp->IsS())
|
|
{
|
|
ScalarType dist = sqrt(sqdist);
|
|
std::vector<VertexPointer> starVecVp;
|
|
face::VVStarVF<FaceType>(vp,starVecVp);
|
|
ScalarType minEdgeLen = std::numeric_limits<ScalarType>::max();
|
|
for(int i=0;i<starVecVp.size();++i)
|
|
minEdgeLen = std::min(Distance(vp->P(),starVecVp[i]->P()),minEdgeLen);
|
|
if(dist < minEdgeLen/3.0)
|
|
{
|
|
vi->P() = vp->P();
|
|
vi->SetS();
|
|
vp->SetS();
|
|
}
|
|
}
|
|
}
|
|
printf("Selected vert num %i\n",tri::UpdateSelection<MeshType>::VertexCount(t));
|
|
}
|
|
|
|
|
|
|
|
|
|
float MinDistOnEdge(Point3f samplePnt, EdgeGrid &edgeGrid, MeshType &poly, Point3f &closestPoint)
|
|
{
|
|
float polyDist;
|
|
EdgeType *cep = vcg::tri::GetClosestEdgeBase(poly,edgeGrid,samplePnt,par.gridBailout,polyDist,closestPoint);
|
|
return polyDist;
|
|
}
|
|
|
|
// Given an edge of a mesh, supposedly intersecting the polyline,
|
|
// we search on it the closest point to the polyline
|
|
static float MinDistOnEdge(VertexType *v0,VertexType *v1, EdgeGrid &edgeGrid, MeshType &poly, Point3f &closestPoint)
|
|
{
|
|
float minPolyDist = std::numeric_limits<ScalarType>::max();
|
|
const float sampleNum = 50;
|
|
const float maxDist = poly.bbox.Diag()/10.0;
|
|
for(float k = 0;k<sampleNum+1;++k)
|
|
{
|
|
float polyDist;
|
|
Point3f closestPPoly;
|
|
Point3f samplePnt = (v0->P()*k +v1->P()*(sampleNum-k))/sampleNum;
|
|
|
|
EdgeType *cep = vcg::tri::GetClosestEdgeBase(poly,edgeGrid,samplePnt,maxDist,polyDist,closestPPoly);
|
|
|
|
if(polyDist < minPolyDist)
|
|
{
|
|
minPolyDist = polyDist;
|
|
closestPoint = samplePnt;
|
|
// closestPoint = closestPPoly;
|
|
}
|
|
}
|
|
return minPolyDist;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief ExtractVertex
|
|
* must extract an unambiguous representation of a vertex
|
|
* to be used with attribute_seam.h
|
|
*
|
|
*/
|
|
static inline void ExtractVertex(const MeshType & srcMesh, const FaceType & f, int whichWedge, const MeshType & dstMesh, VertexType & v)
|
|
{
|
|
(void)srcMesh;
|
|
(void)dstMesh;
|
|
// This is done to preserve every single perVertex property
|
|
// perVextex Texture Coordinate is instead obtained from perWedge one.
|
|
v.ImportData(*f.cV(whichWedge));
|
|
v.C() = f.cC();
|
|
}
|
|
|
|
static inline bool CompareVertex(const MeshType & m, const VertexType & vA, const VertexType & vB)
|
|
{
|
|
(void)m;
|
|
|
|
if(vA.C() == Color4b(Color4b::Red) && vB.C() == Color4b(Color4b::Blue) ) return false;
|
|
if(vA.C() == Color4b(Color4b::Blue) && vB.C() == Color4b(Color4b::Red) ) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
static Point3f QLerp(VertexType *v0, VertexType *v1)
|
|
{
|
|
|
|
float qSum = fabs(v0->Q())+fabs(v1->Q());
|
|
float w0 = (qSum - fabs(v0->Q()))/qSum;
|
|
float w1 = (qSum - fabs(v1->Q()))/qSum;
|
|
return v0->P()*w0 + v1->P()*w1;
|
|
}
|
|
|
|
class QualitySign
|
|
{
|
|
public:
|
|
EdgeGrid &edgeGrid;
|
|
MeshType &poly;
|
|
CoM &com;
|
|
QualitySign(EdgeGrid &_e,MeshType &_poly, CoM &_com):edgeGrid(_e),poly(_poly),com(_com) {};
|
|
bool operator()(face::Pos<FaceType> ep) const
|
|
{
|
|
VertexType *v0 = ep.V();
|
|
VertexType *v1 = ep.VFlip();
|
|
if(v0->Q() * v1->Q() < 0)
|
|
{
|
|
Point3f pp = QLerp(v0,v1);
|
|
Point3f closestP;
|
|
if(com.MinDistOnEdge(pp,edgeGrid,poly,closestP)<com.par.polyDistThr) return true;
|
|
float minDist = com.MinDistOnEdge(v0,v1,edgeGrid,poly,closestP);
|
|
if(minDist < com.par.polyDistThr) return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
struct QualitySignSplit : public std::unary_function<face::Pos<FaceType> , Point3f>
|
|
{
|
|
EdgeGrid &edgeGrid;
|
|
MeshType &poly;
|
|
CoM &com;
|
|
vector<int> &newVertVec;
|
|
|
|
QualitySignSplit(EdgeGrid &_e,MeshType &_p, CoM &_com, vector<int> &_vec):edgeGrid(_e),poly(_p),com(_com),newVertVec(_vec) {};
|
|
void operator()(VertexType &nv, face::Pos<FaceType> ep)
|
|
{
|
|
VertexType *v0 = ep.V();
|
|
VertexType *v1 = ep.VFlip();
|
|
Point3f pp = QLerp(v0,v1);
|
|
Point3f closestP;
|
|
com.MinDistOnEdge(pp,edgeGrid,poly,closestP);
|
|
|
|
// float minDist = MinDistOnEdge(v0,v1,edgeGrid,poly,closestP);
|
|
nv.P()=closestP;
|
|
nv.Q()=0;
|
|
newVertVec.push_back(tri::Index(com.base,&nv));
|
|
// nv.P() = CoS::QLerp(v0,v1);
|
|
}
|
|
Color4b WedgeInterp(Color4b &c0, Color4b &c1)
|
|
{
|
|
Color4b cc;
|
|
cc.lerp(c0,c1,0.5f);
|
|
return Color4b::Red;
|
|
}
|
|
TexCoord2f WedgeInterp(TexCoord2f &t0, TexCoord2f &t1)
|
|
{
|
|
TexCoord2f tmp;
|
|
assert(t0.n()== t1.n());
|
|
tmp.n()=t0.n();
|
|
tmp.t()=(t0.t()+t1.t())/2.0;
|
|
return tmp;
|
|
}
|
|
};
|
|
|
|
class EdgePointPred
|
|
{
|
|
public:
|
|
CoM &com;
|
|
KdTree<ScalarType> &kdtree;
|
|
|
|
EdgePointPred(CoM &_com, KdTree<ScalarType> &_kdtree):com(_com),kdtree(_kdtree) {};
|
|
bool operator()(face::Pos<FaceType> ep) const
|
|
{
|
|
CoordType p0 = ep.V()->P();
|
|
CoordType p1 = ep.VFlip()->P();
|
|
float stepNum=100.0;
|
|
float locEps = Distance(p0,p1)/stepNum;
|
|
for(float j=0;j<stepNum;++j)
|
|
{
|
|
CoordType qp = (p0*j+p1*(stepNum-j))/stepNum;
|
|
unsigned int veInd;
|
|
ScalarType sqdist;
|
|
kdtree.doQueryClosest(qp,veInd,sqdist);
|
|
if(sqrt(sqdist)<locEps) return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
struct EdgePointSplit : public std::unary_function<face::Pos<FaceType> , Point3f>
|
|
{
|
|
CoM &com;
|
|
KdTree<ScalarType> &kdtree;
|
|
MeshType &poly;
|
|
|
|
EdgePointSplit(CoM &_com, KdTree<ScalarType> &_kdtree, MeshType &_poly):com(_com),kdtree(_kdtree),poly(_poly) {};
|
|
void operator()(VertexType &nv, face::Pos<FaceType> ep)
|
|
{
|
|
CoordType p0 = ep.V()->P();
|
|
CoordType p1 = ep.VFlip()->P();
|
|
float stepNum=100.0;
|
|
float locEps = Distance(p0,p1)/stepNum;
|
|
for(float j=0;j<stepNum;++j)
|
|
{
|
|
CoordType qp = (p0*j+p1*(stepNum-j))/stepNum;
|
|
unsigned int veInd;
|
|
ScalarType sqdist;
|
|
kdtree.doQueryClosest(qp,veInd,sqdist);
|
|
if(sqrt(sqdist)<locEps)
|
|
nv.P() = poly.vert[veInd].P();
|
|
}
|
|
return;
|
|
}
|
|
Color4b WedgeInterp(Color4b &c0, Color4b &c1)
|
|
{
|
|
Color4b cc;
|
|
cc.lerp(c0,c1,0.5f);
|
|
return Color4b::Red;
|
|
}
|
|
TexCoord2f WedgeInterp(TexCoord2f &t0, TexCoord2f &t1)
|
|
{
|
|
TexCoord2f tmp;
|
|
assert(t0.n()== t1.n());
|
|
tmp.n()=t0.n();
|
|
tmp.t()=(t0.t()+t1.t())/2.0;
|
|
return tmp;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
|
|
void DumpPlaneMesh(MeshType &poly, std::vector<Plane3f> &planeVec, int i =0)
|
|
{
|
|
MeshType full;
|
|
for(int i=0;i<planeVec.size();++i)
|
|
{
|
|
float radius=edge::Length(poly.edge[i])/2.0;
|
|
MeshType t;
|
|
OrientedDisk(t,16,edge::Center(poly.edge[i]),planeVec[i].Direction(),radius);
|
|
tri::Append<MeshType,MeshType>::Mesh(full,t);
|
|
}
|
|
char buf[100];
|
|
sprintf(buf,"planes%03i.ply",i);
|
|
tri::io::ExporterPLY<MeshType>::Save(full,buf);
|
|
}
|
|
|
|
Plane3f ComputeEdgePlane(VertexType *v0, VertexType *v1)
|
|
{
|
|
Plane3f pl;
|
|
Point3f mid = (v0->P()+v1->P())/2.0;
|
|
Point3f delta = (v1->P()-v0->P()).Normalize();
|
|
Point3f n0 = (v0->N() ^ delta).Normalize();
|
|
Point3f n1 = (v1->N() ^ delta).Normalize();
|
|
Point3f n = (n0+n1)/2.0;
|
|
pl.Init(mid,n);
|
|
return pl;
|
|
}
|
|
|
|
|
|
void ComputePlaneField(MeshType &poly, EdgeGrid &edgeGrid, int ind)
|
|
{
|
|
// First Compute per-edge planes
|
|
std::vector<Plane3f> planeVec(poly.en);
|
|
for(int i=0;i<poly.en;++i)
|
|
{
|
|
planeVec[i] = ComputeEdgePlane(poly.edge[i].V(0), poly.edge[i].V(1));
|
|
}
|
|
|
|
DumpPlaneMesh(poly,planeVec,ind);
|
|
edgeGrid.Set(poly.edge.begin(), poly.edge.end());
|
|
|
|
for(VertexIterator vi=base.vert.begin();vi!=base.vert.end();++vi)
|
|
{
|
|
Point3<ScalarType> p = vi->P();
|
|
|
|
float minDist=par.gridBailout;
|
|
Point3f closestP;
|
|
EdgeType *cep = vcg::tri::GetClosestEdgeBase(poly,edgeGrid,p,par.gridBailout,minDist,closestP);
|
|
if(cep)
|
|
{
|
|
int ind = tri::Index(poly,cep);
|
|
vi->Q() = SignedDistancePlanePoint(planeVec[ind],p);
|
|
Point3f proj = planeVec[ind].Projection(p);
|
|
|
|
// if(Distance(proj,closestP)>edge::Length(*cep))
|
|
// {
|
|
// vi->Q() =1;
|
|
// vi->SetS();
|
|
// }
|
|
}
|
|
else {
|
|
vi->Q() =1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CutAlongPolyLineUsingField(MeshType &poly,EdgeGrid &edgeGrid,std::vector<int> &newVertVec)
|
|
{
|
|
QualitySign qsPred(edgeGrid,poly,*this);
|
|
QualitySignSplit qsSplit(edgeGrid,poly,*this,newVertVec);
|
|
tri::UpdateTopology<MeshType>::FaceFace(base);
|
|
tri::RefineE(base,qsSplit,qsPred);
|
|
tri::UpdateTopology<MeshType>::FaceFace(base);
|
|
|
|
|
|
for(int i=0;i<base.fn;++i)
|
|
{
|
|
FaceType *fp = &base.face[i];
|
|
if(!fp->IsD())
|
|
{
|
|
for(int j=0;j<3;++j)
|
|
{
|
|
if(Distance(fp->P0(j),fp->P1(j)) < par.polyDistThr)
|
|
{
|
|
if(face::FFLinkCondition(*fp,j))
|
|
{
|
|
// if(fp->V0(j)->Q()==0) fp->V1(j)->Q()=0;
|
|
// face::FFEdgeCollapse(base,*fp,j);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
tri::Allocator<MeshType>::CompactEveryVector(base);
|
|
|
|
for(int i=0;i<base.fn;++i)
|
|
{
|
|
FaceType *fp = &base.face[i];
|
|
if( (fp->V(0)->Q()==0) &&
|
|
(fp->V(1)->Q()==0) &&
|
|
(fp->V(2)->Q()==0) )
|
|
{
|
|
ScalarType maxDist = 0;
|
|
int maxInd = -1;
|
|
for(int j=0;j<3;++j)
|
|
{
|
|
Point3f closestPt;
|
|
ScalarType d = MinDistOnEdge(fp->P(j),edgeGrid,poly,closestPt);
|
|
if(d>maxDist)
|
|
{
|
|
maxDist= d;
|
|
maxInd=j;
|
|
}
|
|
}
|
|
// assert(maxInd!=-1);
|
|
// if(maxInd>=0 && maxDist > par.surfDistThr)
|
|
// fp->V(maxInd)->Q() = maxDist;
|
|
}
|
|
}
|
|
|
|
for(int i=0;i<base.fn;++i)
|
|
{
|
|
FaceType *fp = &base.face[i];
|
|
if( (fp->V(0)->Q()>=0) &&
|
|
(fp->V(1)->Q()>=0) &&
|
|
(fp->V(2)->Q()>=0) )
|
|
fp->C() = Color4b::Blue;
|
|
if( (fp->V(0)->Q()<=0) &&
|
|
(fp->V(1)->Q()<=0) &&
|
|
(fp->V(2)->Q()<=0) )
|
|
fp->C() = Color4b::Red;
|
|
if( (fp->V(0)->Q()==0) &&
|
|
(fp->V(1)->Q()==0) &&
|
|
(fp->V(2)->Q()==0) )
|
|
fp->C() = Color4b::Green;
|
|
|
|
if( (fp->V(0)->Q()>0) &&
|
|
(fp->V(1)->Q()>0) &&
|
|
(fp->V(2)->Q()>0) )
|
|
fp->C() = Color4b::White;
|
|
if( (fp->V(0)->Q()<0) &&
|
|
(fp->V(1)->Q()<0) &&
|
|
(fp->V(2)->Q()<0) )
|
|
fp->C() = Color4b::White;
|
|
}
|
|
tri::AttributeSeam::SplitVertex(base, ExtractVertex, CompareVertex);
|
|
|
|
}
|
|
|
|
void WalkAlongPolyLine(MeshType &poly, std::vector<VertexType *> &ptVec)
|
|
{
|
|
// Search a starting vertex
|
|
VertexType *startVert;
|
|
for(int i=0;i<base.vn;++i)
|
|
{
|
|
if(Distance(base.vert[i].P(),ptVec[0]->P()) < par.polyDistThr)
|
|
{
|
|
startVert = &base.vert[i];
|
|
break;
|
|
}
|
|
}
|
|
tri::UpdateTopology<MeshType>::VertexFace(base);
|
|
tri::UpdateTopology<MeshType>::FaceFace(base);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// }
|
|
// }
|
|
|
|
/**
|
|
*
|
|
*
|
|
*/
|
|
|
|
void CutWithPolyLine(MeshType &poly)
|
|
{
|
|
std::vector<int> newVertVec;
|
|
SnapPolyline(poly, &newVertVec);
|
|
tri::io::ExporterPLY<MeshType>::Save(poly,"poly_snapped.ply",tri::io::Mask::IOM_EDGEINDEX+tri::io::Mask::IOM_VERTCOLOR+tri::io::Mask::IOM_VERTQUALITY);
|
|
|
|
DecomposeNonManifoldPolyline(poly);
|
|
tri::io::ExporterPLY<MeshType>::Save(poly,"poly_manif.ply",tri::io::Mask::IOM_EDGEINDEX+tri::io::Mask::IOM_VERTCOLOR+tri::io::Mask::IOM_VERTQUALITY);
|
|
std::vector< std::vector< int> > ccVec;
|
|
BuildConnectedComponentVectors(poly,ccVec);
|
|
printf("PolyLine of %i edges decomposed into %i manifold components\n",poly.en,ccVec.size());
|
|
Reorient(poly,ccVec);
|
|
char buf[1024];
|
|
for(int i=0;i<ccVec.size();++i)
|
|
// for(int i=0;i<10;++i)
|
|
{
|
|
MeshType subPoly;
|
|
ExtractSubMesh(poly,ccVec[i],subPoly);
|
|
std::vector< VertexType *> ptVec;
|
|
FindTerminalPoints(subPoly,ptVec);
|
|
printf("Component %i (%i edges) has %i terminal points\n",i,subPoly.en, ptVec.size());fflush(stdout);
|
|
SplitMeshWithPoints(base,ptVec,newVertVec);
|
|
// sprintf(buf,"CuttingPoly%02i.ply",i);
|
|
// tri::io::ExporterPLY<MeshType>::Save(subPoly, buf,tri::io::Mask::IOM_EDGEINDEX+tri::io::Mask::IOM_VERTCOLOR+tri::io::Mask::IOM_VERTQUALITY);
|
|
EdgeGrid edgeGrid;
|
|
ComputePlaneField(subPoly, edgeGrid,i);
|
|
sprintf(buf,"PlaneField%02i.ply",i);
|
|
tri::io::ExporterPLY<MeshType>::Save(base,buf,tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
|
|
CutAlongPolyLineUsingField(subPoly,edgeGrid,newVertVec);
|
|
sprintf(buf,"PlaneCut%02i.ply",i);
|
|
tri::io::ExporterPLY<MeshType>::Save(base,buf,tri::io::Mask::IOM_FACECOLOR + tri::io::Mask::IOM_VERTQUALITY );
|
|
}
|
|
|
|
// printf("Added %i vertices\n",newVertVec.size());
|
|
// for(int i=0;i<newVertVec.size();++i)
|
|
// base.vert[newVertVec[i]].C()=Color4b::Red;
|
|
tri::io::ExporterPLY<MeshType>::Save(base,"base_cut.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
|
|
CleanSpuriousDanglingEdges(poly);
|
|
tri::io::ExporterPLY<MeshType>::Save(base,"base_cut_clean.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void SnapPolyline(MeshType &poly, std::vector<int> *newVertVec)
|
|
{
|
|
const float maxDist = base.bbox.Diag()/100.0;
|
|
const ScalarType interpEps = 0.0001;
|
|
int vertSnapCnt=0;
|
|
int edgeSnapCnt=0;
|
|
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
|
|
{
|
|
float closestDist;
|
|
Point3f closestP,closestN,ip;
|
|
FaceType *f = vcg::tri::GetClosestFaceBase(base,uniformGrid,vi->P(),maxDist, closestDist, closestP, closestN,ip);
|
|
assert(f);
|
|
VertexType *closestVp=0;
|
|
int indIp = -1;
|
|
ScalarType minDist = std::numeric_limits<ScalarType>::max();
|
|
ScalarType minIp = minDist;
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
if(Distance(vi->P(),f->P(i))<minDist)
|
|
{
|
|
minDist = Distance(vi->P(),f->P(i));
|
|
closestVp = f->V(i);
|
|
}
|
|
if(minIp > ip[i])
|
|
{
|
|
indIp = i;
|
|
minIp=ip[i];
|
|
}
|
|
}
|
|
assert(closestVp && (indIp!=-1));
|
|
|
|
|
|
if(minDist < par.maxSnapThr) { // First Case: Snap to vertex;
|
|
vi->P() = closestVp->P();
|
|
vertSnapCnt++;
|
|
if(newVertVec)
|
|
newVertVec->push_back(tri::Index(base,closestVp));
|
|
} else {
|
|
if(minIp < interpEps) { // Second Case: Snap to edge;
|
|
ScalarType T1 = ip[(indIp+1)%3];
|
|
ScalarType T2 = ip[(indIp+2)%3];
|
|
vi->P() = (f->V1(indIp)->P() * T1 + f->V2(indIp)->P() * T2)/(T1+T2);
|
|
edgeSnapCnt++;
|
|
}
|
|
}
|
|
}
|
|
printf("Snapped %i onto vert and %i onto edges\n",vertSnapCnt, edgeSnapCnt);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Make an edge mesh 1-manifold by splitting all the
|
|
* vertexes that have more than two incident edges
|
|
*
|
|
* It performs the split in three steps.
|
|
* - First it collects and counts the vertices to be splitten.
|
|
* - Then it adds the vertices to the mesh and
|
|
* - lastly it updates the poly with the newly added vertices.
|
|
*
|
|
* singSplitFlag allows to ubersplit each singularity in a number of vertex of the same order of its degree.
|
|
* This is not really necessary but helps the management of sharp turns in the poly mesh.
|
|
* \todo add corner detection and split.
|
|
*/
|
|
|
|
void DecomposeNonManifoldPolyline(MeshType &poly, bool singSplitFlag = true)
|
|
{
|
|
tri::Allocator<MeshType>::CompactEveryVector(poly);
|
|
std::vector<int> degreeVec(poly.vn, 0);
|
|
tri::UpdateTopology<MeshType>::VertexEdge(poly);
|
|
int neededVert=0;
|
|
int delta;
|
|
if(singSplitFlag) delta = 1;
|
|
else delta = 2;
|
|
|
|
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
|
|
{
|
|
std::vector<EdgeType *> starVec;
|
|
edge::VEStarVE(&*vi,starVec);
|
|
degreeVec[tri::Index(poly, *vi)] = starVec.size();
|
|
if(starVec.size()>2)
|
|
neededVert += starVec.size()-delta;
|
|
}
|
|
printf("DecomposeNonManifold Adding %i vert to a polyline of %i vert\n",neededVert,poly.vn);
|
|
VertexIterator firstVi = tri::Allocator<MeshType>::AddVertices(poly,neededVert);
|
|
|
|
for(size_t i=0;i<degreeVec.size();++i)
|
|
{
|
|
if(degreeVec[i]>2)
|
|
{
|
|
std::vector<EdgeType *> edgeStarVec;
|
|
edge::VEStarVE(&(poly.vert[i]),edgeStarVec);
|
|
assert(edgeStarVec.size() == degreeVec[i]);
|
|
for(size_t j=delta;j<edgeStarVec.size();++j)
|
|
{
|
|
EdgeType *ep = edgeStarVec[j];
|
|
int ind; // index of the vertex to be changed
|
|
if(tri::Index(poly,ep->V(0)) == i) ind = 0;
|
|
else ind = 1;
|
|
|
|
ep->V(ind) = &*firstVi;
|
|
ep->V(ind)->P() = poly.vert[i].P();
|
|
ep->V(ind)->N() = poly.vert[i].N();
|
|
++firstVi;
|
|
}
|
|
}
|
|
}
|
|
assert(firstVi == poly.vert.end());
|
|
}
|
|
|
|
/*
|
|
* Given a manifold edgemesh it returns the boundary/terminal endpoints.
|
|
*/
|
|
static void FindTerminalPoints(MeshType &poly, std::vector<VertexType *> &vec)
|
|
{
|
|
tri::UpdateTopology<MeshType>::VertexEdge(poly);
|
|
for(VertexIterator vi=poly.vert.begin(); vi!=poly.vert.end();++vi)
|
|
{
|
|
if(edge::VEDegree<EdgeType>(&*vi)==1)
|
|
vec.push_back(&*vi);
|
|
}
|
|
}
|
|
|
|
// This function will decompose the input edge mesh into a set of
|
|
// connected components.
|
|
// the vector will contain, for each connected component, a vector with all the edge indexes.
|
|
void BuildConnectedComponentVectors(MeshType &poly, std::vector< std::vector< int> > &ccVec)
|
|
{
|
|
UpdateTopology<MeshType>::VertexEdge(poly);
|
|
for(size_t i=0;i<poly.vn;++i)
|
|
{
|
|
assert(edge::VEDegree<EdgeType>(&(poly.vert[i])) <=2);
|
|
}
|
|
|
|
tri::UpdateTopology<MeshType>::EdgeEdge(poly);
|
|
tri::UpdateFlags<MeshType>::EdgeClearV(poly);
|
|
|
|
int visitedEdgeNum=0 ;
|
|
int ccCnt=0;
|
|
EdgeIterator eIt = poly.edge.begin();
|
|
|
|
while(visitedEdgeNum < poly.en)
|
|
{
|
|
ccVec.resize(ccVec.size()+1);
|
|
while(eIt->IsV()) ++eIt;
|
|
// printf("Starting component from edge %i\n",tri::Index(poly,&*eIt));
|
|
assert(eIt != poly.edge.end());
|
|
edge::Pos<EdgeType> startPos(&*eIt,0);
|
|
edge::Pos<EdgeType> curPos(&*eIt,0);
|
|
do
|
|
{
|
|
// printf("(%i %i %i)-",tri::Index(poly,curPos.VFlip()), tri::Index(poly,curPos.E()) ,tri::Index(poly,curPos.V()));
|
|
curPos.NextE();
|
|
}
|
|
while(curPos!=startPos && !curPos.IsBorder()) ;
|
|
|
|
curPos.FlipV();
|
|
assert(!curPos.IsBorder());
|
|
do
|
|
{
|
|
// printf("<%i %i %i>-",tri::Index(poly,curPos.VFlip()), tri::Index(poly,curPos.E()) ,tri::Index(poly,curPos.V()));
|
|
curPos.E()->SetV();
|
|
visitedEdgeNum++;
|
|
ccVec[ccCnt].push_back(tri::Index(poly,curPos.E()));
|
|
curPos.NextE();
|
|
} while(!curPos.E()->IsV());
|
|
printf("Completed component %i of %i edges\n",ccCnt, ccVec[ccCnt].size());
|
|
ccCnt++;
|
|
}
|
|
}
|
|
|
|
// This function will decompose the input edge mesh into a set of
|
|
// connected components.
|
|
// the vector will contain, for each connected component, a vector with all the edge indexes.
|
|
void BuildConnectedComponentVectorsOld(MeshType &poly, std::vector< std::vector< int> > &ccVec)
|
|
{
|
|
tri::UpdateTopology<MeshType>::EdgeEdge(poly);
|
|
tri::UpdateTopology<MeshType>::VertexEdge(poly);
|
|
tri::UpdateFlags<MeshType>::EdgeClearV(poly);
|
|
|
|
int visitedEdgeNum=0 ;
|
|
int ccCnt=0;
|
|
|
|
EdgeIterator eIt = poly.edge.begin();
|
|
while(visitedEdgeNum < poly.en)
|
|
{
|
|
ccVec.resize(ccVec.size()+1);
|
|
while((eIt != poly.edge.end()) && eIt->IsV()) ++eIt;
|
|
EdgeType *startE = &*eIt;
|
|
|
|
EdgeType *curEp = &*eIt;
|
|
int curEi = 0;
|
|
printf("Starting Visit of connected Component %i from edge %i\n",ccCnt,tri::Index(poly,*eIt));
|
|
while( (curEp->EEp(curEi) != startE) &&
|
|
(curEp->EEp(curEi) != curEp) )
|
|
{
|
|
EdgeType *nextEp = curEp->EEp(curEi);
|
|
int nextEi = (curEp->EEi(curEi)+1)%2;
|
|
curEp = nextEp;
|
|
curEi = nextEi;
|
|
}
|
|
|
|
curEp->SetV();
|
|
curEi = (curEi +1)%2; // Flip the visit direction!
|
|
visitedEdgeNum++;
|
|
ccVec[ccCnt].push_back(tri::Index(poly,curEp));
|
|
while(! curEp->EEp(curEi)->IsV())
|
|
{
|
|
EdgeType *nextEp = curEp->EEp(curEi);
|
|
int nextEi = (curEp->EEi(curEi)+1)%2;
|
|
curEp->SetV();
|
|
curEp = nextEp;
|
|
curEi = nextEi;
|
|
curEp->V(curEi)->C() = Color4b::Scatter(30,ccCnt%30);
|
|
if(!curEp->IsV()) {
|
|
ccVec[ccCnt].push_back(tri::Index(poly,curEp));
|
|
visitedEdgeNum++;
|
|
}
|
|
}
|
|
printf("Completed visit of component of size %i\n",ccVec[ccCnt].size());
|
|
ccCnt++;
|
|
}
|
|
printf("en %i - VisitedEdgeNum = %i\n",poly.en, visitedEdgeNum);
|
|
|
|
}
|
|
|
|
void ExtractSubMesh(MeshType &poly, std::vector<int> &ind, MeshType &subPoly)
|
|
{
|
|
subPoly.Clear();
|
|
std::vector<int> remap(poly.vert.size(),-1);
|
|
for(size_t i=0;i<ind.size();++i)
|
|
{
|
|
int v0 = tri::Index(poly,poly.edge[ind[i]].V(0));
|
|
int v1 = tri::Index(poly,poly.edge[ind[i]].V(1));
|
|
if(remap[v0]==-1)
|
|
{
|
|
remap[v0]=subPoly.vn;
|
|
tri::Allocator<MeshType>::AddVertex(subPoly,poly.vert[v0].P(),poly.vert[v0].N());
|
|
}
|
|
if(remap[v1]==-1)
|
|
{
|
|
remap[v1]=subPoly.vn;
|
|
tri::Allocator<MeshType>::AddVertex(subPoly,poly.vert[v1].P(),poly.vert[v1].N());
|
|
}
|
|
tri::Allocator<MeshType>::AddEdge(subPoly, &subPoly.vert[remap[v0]], &subPoly.vert[remap[v1]]);
|
|
}
|
|
}
|
|
|
|
// It takes a vector of vector of connected components and cohorently reorient each one of them.
|
|
// it usese the EE adjacency and requires that the input edgemesh is 1manifold.
|
|
|
|
void Reorient(MeshType &poly, std::vector< std::vector< int> > &ccVec)
|
|
{
|
|
UpdateTopology<MeshType>::VertexEdge(poly);
|
|
for(size_t i=0;i<poly.vn;++i)
|
|
{
|
|
assert(edge::VEDegree<EdgeType>(&(poly.vert[i])) <=2);
|
|
}
|
|
UpdateTopology<MeshType>::EdgeEdge(poly);
|
|
|
|
for(size_t i=0;i<ccVec.size();++i)
|
|
{
|
|
std::vector<bool> toFlipVec(ccVec[i].size(),false);
|
|
|
|
for(int j=0;j<ccVec[i].size();++j)
|
|
{
|
|
EdgeType *cur = & poly.edge[ccVec[i][j]];
|
|
EdgeType *prev;
|
|
if(j==0)
|
|
{
|
|
if(cur->EEp(0) == cur)
|
|
prev = cur; // boundary
|
|
else
|
|
prev = & poly.edge[ccVec[i].back()]; // cc is a loop
|
|
}
|
|
else prev = & poly.edge[ccVec[i][j-1]];
|
|
|
|
if(cur->EEp(0) != prev)
|
|
{
|
|
toFlipVec[j] = true;
|
|
assert(cur->EEp(1) == prev || j==0);
|
|
}
|
|
}
|
|
for(int j=0;j<ccVec[i].size();++j)
|
|
if(toFlipVec[j])
|
|
std::swap(poly.edge[ccVec[i][j]].V(0), poly.edge[ccVec[i][j]].V(1));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Given a mesh and vector of vertex pointers it splits the mesh with the given points.
|
|
* To avoid degeneracies it snaps the splitting points that came nearest than a given
|
|
* threshold to the edge or the vertex of the closest triangle. When an input vertex
|
|
* is snapped the passed vertex position is modiried accordingly
|
|
* (this is the reason for having a vector of vertex pointers instead just a vector of points)
|
|
*
|
|
*/
|
|
void SplitMeshWithPoints(MeshType &m, std::vector<VertexType *> &vec, std::vector<int> &newVertVec)
|
|
{
|
|
int faceToAdd=0;
|
|
int vertToAdd=0;
|
|
|
|
// For each splitting point we save the index of the face to be splitten and the "kind" of split to do:
|
|
// 3 -> means classical 1 to 3 face split
|
|
// 2 -> means edge split.
|
|
// 0 -> means no need of a split (e.g. the point is coincident with a vertex)
|
|
|
|
std::vector< std::pair<int,int> > toSplitVec(vec.size(), std::make_pair(0,0));
|
|
MeshGrid uniformGrid;
|
|
uniformGrid.Set(m.face.begin(), m.face.end());
|
|
|
|
for(size_t i =0; i<vec.size();++i)
|
|
{
|
|
Point3f newP = vec[i]->P();
|
|
float closestDist;
|
|
Point3f closestP;
|
|
FaceType *f = vcg::tri::GetClosestFaceBase(m,uniformGrid,newP,par.gridBailout, closestDist, closestP);
|
|
assert(f);
|
|
VertexType *closestVp=0;
|
|
ScalarType minDist = std::numeric_limits<ScalarType>::max();
|
|
for(int i=0;i<3;++i) {
|
|
if(Distance(newP,f->P(i))<minDist)
|
|
{
|
|
minDist = Distance(newP,f->P(i));
|
|
closestVp = f->V(i);
|
|
}
|
|
}
|
|
assert(closestVp);
|
|
if(minDist < par.maxSnapThr) {
|
|
vec[i]->P() = closestVp->P();
|
|
}
|
|
else
|
|
{
|
|
toSplitVec[i].first = tri::Index(m,f);
|
|
toSplitVec[i].second = 3;
|
|
faceToAdd += 2;
|
|
vertToAdd += 1;
|
|
}
|
|
}
|
|
// printf("Splitting with %i points: adding %i faces and %i vertices\n",vec.size(), faceToAdd,vertToAdd);
|
|
FaceIterator newFi = tri::Allocator<MeshType>::AddFaces(m,faceToAdd);
|
|
VertexIterator newVi = tri::Allocator<MeshType>::AddVertices(m,vertToAdd);
|
|
|
|
tri::UpdateColor<MeshType>::PerFaceConstant(m,Color4b::White);
|
|
|
|
for(size_t i =0; i<vec.size();++i)
|
|
{
|
|
if(toSplitVec[i].second==3)
|
|
{
|
|
FaceType *fp0 = &m.face[toSplitVec[i].first];
|
|
FaceType *fp1 = &*newFi; newFi++;
|
|
FaceType *fp2 = &*newFi; newFi++;
|
|
VertexType *vp = &*(newVi++);
|
|
newVertVec.push_back(tri::Index(base,vp));
|
|
vp->P() = vec[i]->P();
|
|
VertexType *vp0 = fp0->V(0);
|
|
VertexType *vp1 = fp0->V(1);
|
|
VertexType *vp2 = fp0->V(2);
|
|
|
|
fp0->V(0) = vp0; fp0->V(1) = vp1; fp0->V(2) = vp;
|
|
fp1->V(0) = vp1; fp1->V(1) = vp2; fp1->V(2) = vp;
|
|
fp2->V(0) = vp2; fp2->V(1) = vp0; fp2->V(2) = vp;
|
|
|
|
fp0->C() = Color4b::Green;
|
|
fp1->C() = Color4b::Green;
|
|
fp2->C() = Color4b::Green;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Init()
|
|
{
|
|
// Construction of the uniform grid
|
|
uniformGrid.Set(base.face.begin(), base.face.end());
|
|
UpdateNormal<MeshType>::PerFaceNormalized(base);
|
|
UpdateTopology<MeshType>::FaceFace(base);
|
|
uniformGrid.Set(base.face.begin(), base.face.end());
|
|
}
|
|
|
|
|
|
void Simplify( MeshType &poly)
|
|
{
|
|
int startEn = poly.en;
|
|
Distribution<ScalarType> hist;
|
|
for(int i =0; i<poly.en;++i)
|
|
hist.Add(edge::Length(poly.edge[i]));
|
|
|
|
UpdateTopology<MeshType>::VertexEdge(poly);
|
|
|
|
for(int i =0; i<poly.vn;++i)
|
|
{
|
|
std::vector<VertexPointer> starVecVp;
|
|
edge::VVStarVE(&(poly.vert[i]),starVecVp);
|
|
if( (starVecVp.size()==2) && (!poly.vert[i].IsS()))
|
|
{
|
|
float newSegLen = Distance(starVecVp[0]->P(), starVecVp[1]->P());
|
|
Segment3f seg(starVecVp[0]->P(),starVecVp[1]->P());
|
|
float segDist;
|
|
Point3f closestPSeg;
|
|
SegmentPointDistance(seg,poly.vert[i].cP(),closestPSeg,segDist);
|
|
Point3f fp,fn;
|
|
float maxSurfDist = MaxSegDist(starVecVp[0], starVecVp[1],fp,fn);
|
|
|
|
if(maxSurfDist < par.surfDistThr && (newSegLen < par.maxSimpEdgeLen) )
|
|
{
|
|
edge::VEEdgeCollapse(poly,&(poly.vert[i]));
|
|
|
|
}
|
|
}
|
|
}
|
|
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
|
|
tri::Allocator<MeshType>::CompactEveryVector(poly);
|
|
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
|
|
printf("Simplify %5i -> %5i (total len %5.2f)\n",startEn,poly.en,hist.Sum());
|
|
}
|
|
|
|
void EvaluateHausdorffDistance(MeshType &poly, Distribution<ScalarType> &dist)
|
|
{
|
|
dist.Clear();
|
|
tri::UpdateTopology<MeshType>::VertexEdge(poly);
|
|
tri::UpdateQuality<MeshType>::VertexConstant(poly,0);
|
|
for(int i =0; i<poly.edge.size();++i)
|
|
{
|
|
Point3f farthestP, farthestN;
|
|
float maxDist = MaxSegDist(poly.edge[i].V(0),poly.edge[i].V(1), farthestP, farthestN, &dist);
|
|
poly.edge[i].V(0)->Q()+= maxDist;
|
|
poly.edge[i].V(1)->Q()+= maxDist;
|
|
}
|
|
for(int i=0;i<poly.vn;++i)
|
|
{
|
|
ScalarType deg = edge::VEDegree<EdgeType>(&poly.vert[i]);
|
|
poly.vert[i].Q()/=deg;
|
|
}
|
|
tri::UpdateColor<MeshType>::PerVertexQualityRamp(poly,0,dist.Max());
|
|
}
|
|
|
|
|
|
|
|
// Given a segment find the maximum distance from it to the original surface.
|
|
float MaxSegDist(VertexType *v0, VertexType *v1, Point3f &farthestPointOnSurf, Point3f &farthestN, Distribution<ScalarType> *dist=0)
|
|
{
|
|
float maxSurfDist = 0;
|
|
const float sampleNum = 10;
|
|
const float maxDist = base.bbox.Diag()/10.0;
|
|
for(float k = 1;k<sampleNum;++k)
|
|
{
|
|
float surfDist;
|
|
Point3f closestPSurf;
|
|
Point3f samplePnt = (v0->P()*k +v1->P()*(sampleNum-k))/sampleNum;
|
|
FaceType *f = vcg::tri::GetClosestFaceBase(base,uniformGrid,samplePnt,maxDist, surfDist, closestPSurf);
|
|
if(dist)
|
|
dist->Add(surfDist);
|
|
assert(f);
|
|
if(surfDist > maxSurfDist)
|
|
{
|
|
maxSurfDist = surfDist;
|
|
farthestPointOnSurf = closestPSurf;
|
|
farthestN = f->N();
|
|
}
|
|
}
|
|
return maxSurfDist;
|
|
}
|
|
|
|
void Refine(MeshType &poly, bool uniformFlag = false)
|
|
{
|
|
tri::Allocator<MeshType>::CompactEveryVector(poly);
|
|
int startEdgeSize = poly.en;
|
|
for(int i =0; i<startEdgeSize;++i)
|
|
{
|
|
EdgeType &ei = poly.edge[i];
|
|
if(edge::Length(ei)>par.minRefEdgeLen)
|
|
{
|
|
Point3f farthestP, farthestN;
|
|
float maxDist = MaxSegDist(ei.V(0),ei.V(1),farthestP, farthestN);
|
|
if(maxDist > par.surfDistThr)
|
|
{
|
|
edge::VEEdgeSplit(poly, &ei, farthestP, farthestN);
|
|
}
|
|
else if(uniformFlag)
|
|
{
|
|
edge::VEEdgeSplit(poly,&ei,(ei.P(0)+ei.P(1))/2.0,(ei.V(0)->N()+ei.V(1)->N())/2.0);
|
|
}
|
|
}
|
|
}
|
|
// tri::Allocator<MeshType>::CompactEveryVector(poly);
|
|
printf("Refine %i -> %i\n",startEdgeSize,poly.en);fflush(stdout);
|
|
}
|
|
|
|
// Take a poly and find the position of edge -edge crossing.
|
|
void RefineBaseMesh(MeshType &poly)
|
|
{
|
|
std::vector<CoordType> newPtVec;
|
|
for(int i=0;i<poly.edge.size();++i)
|
|
{
|
|
{
|
|
Point3f p0 = poly.edge[i].P(0);
|
|
Point3f p1 = poly.edge[i].P(1);
|
|
float stepNum = 10;
|
|
FaceType *lastFace=0;
|
|
Point3f lastqp;
|
|
Segment3f seg(p0, p1);
|
|
for(float j=1;j<stepNum;++j)
|
|
{
|
|
Point3f qp = (p0*j + p1*(stepNum-j))/stepNum;
|
|
const float maxDist = base.bbox.Diag()/20.0;
|
|
float surfDist;
|
|
Point3f closestPSurf, normSur, ip;
|
|
FaceType *fp = vcg::tri::GetClosestFaceBase(base,uniformGrid,qp,maxDist, surfDist, closestPSurf, normSur, ip);
|
|
if((fp != lastFace) && (lastFace!=0) && (fp!=0) )
|
|
{
|
|
for(int ei =0 ; ei<3;++ei)
|
|
{
|
|
if(fp->FFp(ei) == lastFace)
|
|
{
|
|
Point3f ps0,ps1;
|
|
float segDist;
|
|
bool par;
|
|
Segment3f faceSeg(fp->P0(ei),fp->P1(ei));
|
|
float angDeg = fabs(math::ToDeg(Angle(faceSeg.Direction(),seg.Direction())));
|
|
|
|
SegmentSegmentDistance(seg,faceSeg,segDist,par,ps0,ps1);
|
|
if(!par && (angDeg > 5 && angDeg<175)) newPtVec.push_back(ps1);
|
|
}
|
|
}
|
|
}
|
|
lastFace=fp;
|
|
lastqp = qp;
|
|
}
|
|
}
|
|
}
|
|
MeshType meshPt; tri::BuildMeshFromCoordVector(meshPt,newPtVec);
|
|
tri::io::ExporterPLY<MeshType>::Save(meshPt,"newPoints.ply");
|
|
|
|
VertexConstDataWrapper<MeshType > vdw(meshPt);
|
|
KdTree<ScalarType> kdtree(vdw);
|
|
|
|
EdgePointPred epPred(*this,kdtree);
|
|
EdgePointSplit epSplit(*this,kdtree,meshPt);
|
|
tri::UpdateTopology<MeshType>::FaceFace(base);
|
|
tri::RefineE(base,epSplit,epPred);
|
|
tri::UpdateTopology<MeshType>::FaceFace(base);
|
|
tri::io::ExporterPLY<MeshType>::Save(base,"newbase.ply");
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief SmoothProject
|
|
* @param poly
|
|
* @param iterNum
|
|
* @param smoothWeight [0..1] range;
|
|
* @param projectWeight [0..1] range;
|
|
*
|
|
* The very important function to adapt a polyline onto the base mesh
|
|
* The projection process must be done slowly to guarantee some empirical convergence...
|
|
* For each iteration it choose a new position of each vertex of the polyline.
|
|
* The new position is a blend between the smoothed position, the closest point on the surface and the original position.
|
|
* You need a good balance...
|
|
* after each iteration the polyline is refined and simplified.
|
|
*/
|
|
void SmoothProject(MeshType &poly, int iterNum, ScalarType smoothWeight, ScalarType projectWeight)
|
|
{
|
|
tri::RequireCompactness(poly);
|
|
tri::UpdateTopology<MeshType>::VertexEdge(poly);
|
|
printf("SmoothProject: Selected vert num %i\n",tri::UpdateSelection<MeshType>::VertexCount(poly));
|
|
assert(poly.en>0 && base.fn>0);
|
|
for(int k=0;k<iterNum;++k)
|
|
{
|
|
std::vector<Point3f> posVec(poly.vn,Point3f(0,0,0));
|
|
std::vector<int> cntVec(poly.vn,0);
|
|
|
|
for(int i =0; i<poly.en;++i)
|
|
{
|
|
for(int j=0;j<2;++j)
|
|
{
|
|
int vertInd = tri::Index(poly,poly.edge[i].V(j));
|
|
posVec[vertInd] += poly.edge[i].V1(j)->P();
|
|
cntVec[vertInd] += 1;
|
|
}
|
|
}
|
|
|
|
const float maxDist = base.bbox.Diag()/10.0;
|
|
for(int i=0; i<poly.vn; ++i)
|
|
if(!poly.vert[i].IsS())
|
|
{
|
|
Point3f smoothPos = (poly.vert[i].P() + posVec[i])/float(cntVec[i]+1);
|
|
|
|
Point3f newP = poly.vert[i].P()*(1.0-smoothWeight) + smoothPos *smoothWeight;
|
|
|
|
Point3f delta = newP - poly.vert[i].P();
|
|
if(delta.Norm() > par.maxSmoothDelta)
|
|
{
|
|
newP = poly.vert[i].P() + ( delta / delta.Norm()) * maxDist*0.5;
|
|
}
|
|
|
|
float minDist;
|
|
Point3f closestP;
|
|
FaceType *f = vcg::tri::GetClosestFaceBase(base,uniformGrid,newP,maxDist, minDist, closestP);
|
|
assert(f);
|
|
poly.vert[i].P() = newP*(1.0-projectWeight) +closestP*projectWeight;
|
|
poly.vert[i].N() = f->N();
|
|
}
|
|
|
|
// Refine(poly);
|
|
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
|
|
Refine(poly);
|
|
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
|
|
Simplify(poly);
|
|
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
|
|
int dupVertNum = Clean<MeshType>::RemoveDuplicateVertex(poly);
|
|
if(dupVertNum) {
|
|
printf("****REMOVED %i Duplicated\n",dupVertNum);
|
|
tri::Allocator<MeshType>::CompactEveryVector(poly);
|
|
tri::UpdateTopology<MeshType>::VertexEdge(poly);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
};
|
|
} // end namespace tri
|
|
} // end namespace vcg
|
|
|
|
#endif // __VCGLIB_CURVE_ON_SURF_H
|