vcglib/vcg/complex/algorithms/update/topology.h

625 lines
18 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_TOPOLOGY
#define __VCG_TRI_UPDATE_TOPOLOGY
namespace vcg {
namespace tri {
/// \ingroup trimesh
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
/// \brief Generation of per-vertex and per-face topological information.
template <class UpdateMeshType>
class UpdateTopology
{
public:
typedef UpdateMeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgePointer EdgePointer;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
/// \brief Auxiliairy data structure for computing face face adjacency information.
/**
It identifies and edge storing two vertex pointer and a face pointer where it belong.
*/
class PEdge
{
public:
VertexPointer v[2]; // the two Vertex pointer are ordered!
FacePointer f; // the face where this edge belong
int z; // index in [0..2] of the edge of the face
bool isBorder;
PEdge() {}
PEdge(FacePointer pf, const int nz) { this->Set(pf,nz); }
void Set( FacePointer pf, const int nz )
{
assert(pf!=0);
assert(nz>=0);
assert(nz<pf->VN());
v[0] = pf->V(nz);
v[1] = pf->V(pf->Next(nz));
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
if( v[0] > v[1] ) std::swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const PEdge & pe ) const
{
if( v[0]<pe.v[0] ) return true;
else if( v[0]>pe.v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const PEdge & pe ) const
{
return v[0]==pe.v[0] && v[1]==pe.v[1];
}
/// Convert from edge barycentric coord to the face baricentric coord a point on the current edge.
/// Face barycentric coordinates are relative to the edge face.
inline Point3<ScalarType> EdgeBarycentricToFaceBarycentric(ScalarType u) const
{
Point3<ScalarType> interp(0,0,0);
interp[ this->z ] = u;
interp[(this->z+1)%3] = 1.0f-u;
return interp;
}
};
/// Fill a vector with all the edges of the mesh.
/// each edge is stored in the vector the number of times that it appears in the mesh, with the referring face.
/// optionally it can skip the faux edges (to retrieve only the real edges of a triangulated polygonal mesh)
static void FillEdgeVector(MeshType &m, std::vector<PEdge> &edgeVec, bool includeFauxEdge=true)
{
edgeVec.reserve(m.fn*3);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if( ! (*fi).IsD() )
for(int j=0;j<(*fi).VN();++j)
if(includeFauxEdge || !(*fi).IsF(j))
edgeVec.push_back(PEdge(&*fi,j));
}
static void FillUniqueEdgeVector(MeshType &m, std::vector<PEdge> &edgeVec, bool includeFauxEdge=true, bool computeBorderFlag=false)
{
FillEdgeVector(m,edgeVec,includeFauxEdge);
sort(edgeVec.begin(), edgeVec.end()); // oredering by vertex
if (computeBorderFlag) {
for (size_t i=0; i<edgeVec.size(); i++)
edgeVec[ i ].isBorder = true;
for (size_t i=1; i<edgeVec.size(); i++) {
if (edgeVec[i]==edgeVec[i-1])
edgeVec[i-1].isBorder = edgeVec[i-1].isBorder = false;
}
}
typename std::vector< PEdge>::iterator newEnd = std::unique(edgeVec.begin(), edgeVec.end());
edgeVec.resize(newEnd-edgeVec.begin()); // redundant! remove?
}
/*! \brief Initialize the edge vector all the edges that can be inferred from current face vector, setting up all the current adjacency relations
*
*
*/
static void AllocateEdge(MeshType &m)
{
// Delete all the edges (if any)
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
tri::Allocator<MeshType>::DeleteEdge(m,*ei);
tri::Allocator<MeshType>::CompactEdgeVector(m);
// Compute and add edges
std::vector<PEdge> Edges;
FillUniqueEdgeVector(m,Edges,true,tri::HasPerEdgeFlags(m) );
assert(m.edge.empty());
tri::Allocator<MeshType>::AddEdges(m,Edges.size());
assert(m.edge.size()==Edges.size());
// Setup adjacency relations
if(tri::HasEVAdjacency(m))
{
for(size_t i=0; i< Edges.size(); ++i)
{
m.edge[i].V(0) = Edges[i].v[0];
m.edge[i].V(1) = Edges[i].v[1];
}
}
if (tri::HasPerEdgeFlags(m)){
for(size_t i=0; i< Edges.size(); ++i) {
if (Edges[i].isBorder) m.edge[i].SetB(); else m.edge[i].ClearB();
}
}
if(tri::HasEFAdjacency(m)) // Note it is an unordered relation.
{
for(size_t i=0; i< Edges.size(); ++i)
{
std::vector<FacePointer> fpVec;
std::vector<int> eiVec;
face::EFStarFF(Edges[i].f,Edges[i].z,fpVec,eiVec);
m.edge[i].EFp() = Edges[i].f;
m.edge[i].EFi() = Edges[i].z;
}
}
if(tri::HasFEAdjacency(m))
{
for(size_t i=0; i< Edges.size(); ++i)
{
std::vector<FacePointer> fpVec;
std::vector<int> eiVec;
face::EFStarFF(Edges[i].f,Edges[i].z,fpVec,eiVec);
for(size_t j=0;j<fpVec.size();++j)
fpVec[j]->FEp(eiVec[j])=&(m.edge[i]);
// Edges[i].f->FE(Edges[i].z) = &(m.edge[i]);
// Connect in loop the non manifold
// FaceType* fpit=fp;
// int eit=ei;
// do
// {
// faceVec.push_back(fpit);
// indVed.push_back(eit);
// FaceType *new_fpit = fpit->FFp(eit);
// int new_eit = fpit->FFi(eit);
// fpit=new_fpit;
// eit=new_eit;
// } while(fpit != fp);
// m.edge[i].EFp() = Edges[i].f;
// m.edge[i].EFi() = ;
}
}
}
/// \brief Clear the Face-Face topological relation setting each involved pointer to null.
/// useful when you passed a mesh with ff adjacency to an algorithm that does not use it and could have messed it.
static void ClearFaceFace(MeshType &m)
{
RequireFFAdjacency(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if( ! (*fi).IsD() )
{
for(int j=0;j<fi->VN();++j)
{
fi->FFp(j)=0;
fi->FFi(j)=-1;
}
}
}
}
/// \brief Update the Face-Face topological relation by allowing to retrieve for each face what other faces shares their edges.
static void FaceFace(MeshType &m)
{
RequireFFAdjacency(m);
if( m.fn == 0 ) return;
std::vector<PEdge> e;
FillEdgeVector(m,e);
sort(e.begin(), e.end()); // Lo ordino per vertici
int ne = 0; // Numero di edge reali
typename std::vector<PEdge>::iterator pe,ps;
ps = e.begin();pe=e.begin();
//for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario
do
{
if( pe==e.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali
{
typename std::vector<PEdge>::iterator q,q_next;
for (q=ps;q<pe-1;++q) // Scansione facce associate
{
assert((*q).z>=0);
//assert((*q).z< 3);
q_next = q;
++q_next;
assert((*q_next).z>=0);
assert((*q_next).z< (*q_next).f->VN());
(*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce
(*q).f->FFi(q->z) = (*q_next).z;
}
assert((*q).z>=0);
assert((*q).z< (*q).f->VN());
(*q).f->FFp((*q).z) = ps->f;
(*q).f->FFi((*q).z) = ps->z;
ps = pe;
++ne; // Aggiorno il numero di edge
}
if(pe==e.end()) break;
++pe;
} while(true);
}
/// \brief Update the Vertex-Face topological relation.
/**
The function allows to retrieve for each vertex the list of faces sharing this vertex.
After this call all the VF component are initialized. Isolated vertices have a null list of faces.
\sa vcg::vertex::VFAdj
\sa vcg::face::VFAdj
*/
static void VertexFace(MeshType &m)
{
RequireVFAdjacency(m);
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
(*vi).VFp() = 0;
(*vi).VFi() = 0; // note that (0,-1) means uninitiazlied while 0,0 is the valid initialized values for isolated vertices.
}
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if( ! (*fi).IsD() )
{
for(int j=0;j<(*fi).VN();++j)
{
(*fi).VFp(j) = (*fi).V(j)->VFp();
(*fi).VFi(j) = (*fi).V(j)->VFi();
(*fi).V(j)->VFp() = &(*fi);
(*fi).V(j)->VFi() = j;
}
}
}
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
/// \brief Auxiliairy data structure for computing face face adjacency information.
/**
It identifies and edge storing two vertex pointer and a face pointer where it belong.
*/
class PEdgeTex
{
public:
typename FaceType::TexCoordType v[2]; // the two TexCoord are ordered!
FacePointer f; // the face where this edge belong
int z; // index in [0..2] of the edge of the face
PEdgeTex() {}
void Set( FacePointer pf, const int nz )
{
assert(pf!=0);
assert(nz>=0);
assert(nz<3);
v[0] = pf->WT(nz);
v[1] = pf->WT(pf->Next(nz));
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
if( v[1] < v[0] ) std::swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const PEdgeTex & pe ) const
{
if( v[0]<pe.v[0] ) return true;
else if( pe.v[0]<v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const PEdgeTex & pe ) const
{
return (v[0]==pe.v[0]) && (v[1]==pe.v[1]);
}
inline bool operator != ( const PEdgeTex & pe ) const
{
return (v[0]!=pe.v[0]) || (v[1]!=pe.v[1]);
}
};
/// \brief Update the Face-Face topological relation so that it reflects the per-wedge texture connectivity
/**
Using this function two faces are adjacent along the FF relation IFF the two faces have matching texture coords along the involved edge.
In other words F1->FFp(i) == F2 iff F1 and F2 have the same tex coords along edge i
*/
static void FaceFaceFromTexCoord(MeshType &m)
{
RequireFFAdjacency(m);
RequirePerFaceWedgeTexCoord(m);
vcg::tri::UpdateTopology<MeshType>::FaceFace(m);
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
{
if (!(*fi).IsD())
{
for (int i = 0; i < (*fi).VN(); i++)
{
if (!vcg::face::IsBorder((*fi), i))
{
typename MeshType::FacePointer nextFace = (*fi).FFp(i);
int nextEdgeIndex = (*fi).FFi(i);
bool border = false;
if ((*fi).cV(i) == nextFace->cV(nextEdgeIndex))
{
if ((*fi).WT(i) != nextFace->WT(nextEdgeIndex) || (*fi).WT((*fi).Next(i)) != nextFace->WT(nextFace->Next(nextEdgeIndex)))
border = true;
}
else
{
if ((*fi).WT(i) != nextFace->WT(nextFace->Next(nextEdgeIndex)) || (*fi).WT((*fi).Next(i)) != nextFace->WT(nextEdgeIndex))
border = true;
}
if (border)
vcg::face::FFDetach((*fi), i);
}
}
}
}
}
/// \brief Test correctness of VEtopology
static void TestVertexEdge(MeshType &m)
{
std::vector<int> numVertex(m.vert.size(),0);
tri::RequireVEAdjacency(m);
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
{
if (!(*ei).IsD())
{
assert(tri::IsValidPointer(m,ei->V(0)));
assert(tri::IsValidPointer(m,ei->V(1)));
if(ei->VEp(0)) assert(tri::IsValidPointer(m,ei->VEp(0)));
if(ei->VEp(1)) assert(tri::IsValidPointer(m,ei->VEp(1)));
numVertex[tri::Index(m,(*ei).V(0))]++;
numVertex[tri::Index(m,(*ei).V(1))]++;
}
}
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if (!vi->IsD())
{
int cnt =0;
for(edge::VEIterator<EdgeType> vei(&*vi);!vei.End();++vei)
cnt++;
EdgeType *vep = vi->VEp();
assert((numVertex[tri::Index(m,*vi)] == 0) == (vi->VEp()==0) );
assert(cnt==numVertex[tri::Index(m,*vi)]);
}
}
}
/// \brief Test correctness of VFtopology
static void TestVertexFace(MeshType &m)
{
SimpleTempData<typename MeshType::VertContainer, int > numVertex(m.vert,0);
assert(tri::HasPerVertexVFAdjacency(m));
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if (!(*fi).IsD())
{
numVertex[(*fi).V0(0)]++;
numVertex[(*fi).V1(0)]++;
numVertex[(*fi).V2(0)]++;
}
}
vcg::face::VFIterator<FaceType> VFi;
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if (!vi->IsD())
if(vi->VFp()!=0) // unreferenced vertices MUST have VF == 0;
{
int num=0;
assert(tri::IsValidPointer(m, vi->VFp()));
VFi.f=vi->VFp();
VFi.z=vi->VFi();
while (!VFi.End())
{
num++;
assert(!VFi.F()->IsD());
assert((VFi.F()->V(VFi.I()))==&(*vi));
++VFi;
}
assert(num==numVertex[&(*vi)]);
}
}
}
/// \brief Test correctness of FFtopology (only for 2Manifold Meshes!)
static void TestFaceFace(MeshType &m)
{
assert(HasFFAdjacency(m));
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if (!fi->IsD())
{
for (int i=0;i<(*fi).VN();i++)
{
FaceType *ffpi=fi->FFp(i);
int e=fi->FFi(i);
//invariant property of FF topology for two manifold meshes
assert(ffpi->FFp(e) == &(*fi));
assert(ffpi->FFi(e) == i);
// Test that the two faces shares the same edge
// Vertices of the i-th edges of the first face
VertexPointer v0i= fi->V0(i);
VertexPointer v1i= fi->V1(i);
// Vertices of the corresponding edge on the other face
VertexPointer ffv0i= ffpi->V0(e);
VertexPointer ffv1i= ffpi->V1(e);
assert( (ffv0i==v0i) || (ffv0i==v1i) );
assert( (ffv1i==v0i) || (ffv1i==v1i) );
}
}
}
}
/// Auxiliairy data structure for computing edge edge adjacency information.
/// It identifies an edge storing a vertex pointer and a edge pointer where it belong.
class PVertexEdge
{
public:
VertexPointer v; // the two Vertex pointer are ordered!
EdgePointer e; // the edge where this vertex belong
int z; // index in [0..1] of the vertex of the edge
PVertexEdge( ) {}
PVertexEdge( EdgePointer pe, const int nz )
{
assert(pe!=0);
assert(nz>=0);
assert(nz<2);
v= pe->V(nz);
e = pe;
z = nz;
}
inline bool operator < ( const PVertexEdge & pe ) const { return ( v<pe.v ); }
inline bool operator == ( const PVertexEdge & pe ) const { return ( v==pe.v ); }
inline bool operator != ( const PVertexEdge & pe ) const { return ( v!=pe.v ); }
};
static void EdgeEdge(MeshType &m)
{
RequireEEAdjacency(m);
std::vector<PVertexEdge> v;
if( m.en == 0 ) return;
// printf("Inserting Edges\n");
for(EdgeIterator pf=m.edge.begin(); pf!=m.edge.end(); ++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<2;++j)
{
// printf("egde %i ind %i (%i %i)\n",tri::Index(m,&*pf),j,tri::Index(m,pf->V(0)),tri::Index(m,pf->V(1)));
v.push_back(PVertexEdge(&*pf,j));
}
// printf("en = %i (%i)\n",m.en,m.edge.size());
sort(v.begin(), v.end()); // Lo ordino per vertici
int ne = 0; // Numero di edge reali
typename std::vector<PVertexEdge>::iterator pe,ps;
// for(ps = v.begin(),pe=v.begin();pe<=v.end();++pe) // Scansione vettore ausiliario
ps = v.begin();pe=v.begin();
do
{
// printf("v %i -> e %i\n",tri::Index(m,(*ps).v),tri::Index(m,(*ps).e));
if( pe==v.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali
{
typename std::vector<PVertexEdge>::iterator q,q_next;
for (q=ps;q<pe-1;++q) // Scansione edge associati
{
assert((*q).z>=0);
assert((*q).z< 2);
q_next = q;
++q_next;
assert((*q_next).z>=0);
assert((*q_next).z< 2);
(*q).e->EEp(q->z) = (*q_next).e; // Collegamento in lista delle facce
(*q).e->EEi(q->z) = (*q_next).z;
}
assert((*q).z>=0);
assert((*q).z< 2);
(*q).e->EEp((*q).z) = ps->e;
(*q).e->EEi((*q).z) = ps->z;
ps = pe;
++ne; // Aggiorno il numero di edge
}
if(pe==v.end()) break;
++pe;
} while(true);
}
static void VertexEdge(MeshType &m)
{
RequireVEAdjacency(m);
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
(*vi).VEp() = 0;
(*vi).VEi() = 0;
}
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
if( ! (*ei).IsD() )
{
for(int j=0;j<2;++j)
{ assert(tri::IsValidPointer(m,ei->V(j)));
(*ei).VEp(j) = (*ei).V(j)->VEp();
(*ei).VEi(j) = (*ei).V(j)->VEi();
(*ei).V(j)->VEp() = &(*ei);
(*ei).V(j)->VEi() = j;
}
}
}
}; // end class
} // End namespace
} // End namespace
#endif