652 lines
24 KiB
C++
652 lines
24 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
#ifndef __VORONOI_VOLUME_SAMPLING_H
|
|
#define __VORONOI_VOLUME_SAMPLING_H
|
|
#include <vcg/complex/algorithms/voronoi_processing.h>
|
|
#include <vcg/complex/algorithms/create/marching_cubes.h>
|
|
#include <vcg/complex/algorithms/create/mc_trivial_walker.h>
|
|
#include <vcg/complex/algorithms/point_sampling.h>
|
|
|
|
|
|
namespace vcg
|
|
{
|
|
namespace tri
|
|
{
|
|
|
|
template <class MeshType>
|
|
class PointSampledDistance
|
|
{
|
|
public:
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::BoxType BoxType;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename vcg::GridStaticPtr<typename MeshType::FaceType, ScalarType> GridType;
|
|
|
|
typedef SimpleVolume<SimpleVoxel<ScalarType> > VVSVolume;
|
|
typedef typename vcg::tri::TrivialWalker<MeshType,VVSVolume> VVSWalker;
|
|
typedef typename vcg::tri::MarchingCubes<MeshType, VVSWalker> VVSMarchingCubes;
|
|
|
|
PointSampledDistance(MeshType &_baseMesh)
|
|
:surfTree(0),baseMesh(_baseMesh) {}
|
|
typename KdTree<ScalarType>::PriorityQueue pq;
|
|
GridType surfGrid; // used for fast inside query
|
|
typedef FaceTmark<MeshType> MarkerFace;
|
|
MarkerFace mf;
|
|
vcg::face::PointDistanceBaseFunctor<ScalarType> PDistFunct;
|
|
KdTree<ScalarType> *surfTree; // used for fast inside query
|
|
MeshType &baseMesh;
|
|
MeshType poissonSurfaceMesh;
|
|
ScalarType poissonRadiusSurface;
|
|
|
|
void Init(ScalarType _poissonRadiusSurface=0)
|
|
{
|
|
MeshType montecarloSurfaceMesh;
|
|
if(_poissonRadiusSurface==0) poissonRadiusSurface = baseMesh.bbox.Diag()/50.0f;
|
|
else poissonRadiusSurface = _poissonRadiusSurface;
|
|
ScalarType meshArea = Stat<MeshType>::ComputeMeshArea(baseMesh);
|
|
int MontecarloSurfSampleNum = 10 * meshArea / (poissonRadiusSurface*poissonRadiusSurface);
|
|
tri::MeshSampler<MeshType> sampler(montecarloSurfaceMesh);
|
|
tri::SurfaceSampling<MeshType,tri::MeshSampler<MeshType> >::Montecarlo(baseMesh, sampler, MontecarloSurfSampleNum);
|
|
montecarloSurfaceMesh.bbox = baseMesh.bbox; // we want the same bounding box
|
|
poissonSurfaceMesh.Clear();
|
|
tri::MeshSampler<MeshType> mps(poissonSurfaceMesh);
|
|
typename tri::SurfaceSampling<MeshType,tri::MeshSampler<MeshType> >::PoissonDiskParam pp;
|
|
pp.geodesicDistanceFlag=false;
|
|
|
|
tri::SurfaceSampling<MeshType,tri::MeshSampler<MeshType> >::PoissonDiskPruning(mps, montecarloSurfaceMesh, poissonRadiusSurface,pp);
|
|
vcg::tri::UpdateBounding<MeshType>::Box(poissonSurfaceMesh);
|
|
|
|
printf("Surface Sampling radius %f - montecarlo %ivn - Poisson %ivn\n",poissonRadiusSurface,montecarloSurfaceMesh.vn,poissonSurfaceMesh.vn);
|
|
VertexConstDataWrapper<MeshType> ww(poissonSurfaceMesh);
|
|
if(surfTree) delete surfTree;
|
|
surfTree = new KdTree<ScalarType>(ww);
|
|
|
|
surfGrid.SetWithRadius(baseMesh.face.begin(),baseMesh.face.end(),poissonRadiusSurface);
|
|
mf.SetMesh(&baseMesh);
|
|
}
|
|
// Compute the signed distance from the surface exploting both a kdtree and a ugrid
|
|
// for a query point p first we use the kdtree with a good poisson sampling of the surface;
|
|
// to get the nearest point on the surface, then if the point is far from the surface we can use the point point distance, while if it is near (e.g. less than 3*poisson radius) we rely on point face distance with a grid.
|
|
ScalarType DistanceFromSurface(const CoordType &q, CoordType &closestP)
|
|
{
|
|
ScalarType squaredDist;
|
|
unsigned int ind;
|
|
surfTree->doQueryClosest(q,ind,squaredDist);
|
|
ScalarType dist = sqrt(squaredDist);
|
|
if( dist > 3.0f*poissonRadiusSurface)
|
|
{
|
|
// CoordType dir = surfTree->getNeighbor(0) - p;
|
|
CoordType dir = this->poissonSurfaceMesh.vert[ind].P() - q;
|
|
const CoordType &surfN = this->poissonSurfaceMesh.vert[ind].N();
|
|
if(dir* surfN > 0) dist= -dist;
|
|
closestP=this->poissonSurfaceMesh.vert[ind].P();
|
|
return dist;
|
|
}
|
|
|
|
ScalarType _maxDist = this->poissonRadiusSurface*3.0f;
|
|
dist=_maxDist;
|
|
FacePointer f=surfGrid.GetClosest(PDistFunct,mf,q,_maxDist,dist,closestP);
|
|
assert(f);
|
|
assert (dist >=0);
|
|
CoordType dir = closestP - q;
|
|
if(dir*f->cN() > 0) dist = -dist;
|
|
|
|
return dist;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
/** Compute a well distributed set of samples (seeds) inside a watertight mesh.
|
|
*
|
|
* The main idea is that we have start from a poisson disk distribution and we improve it using Lloyd relaxation.
|
|
* To make things simpler and more controllable we estabilish since the beginning a Domain where we can choose the points.
|
|
*
|
|
*/
|
|
|
|
|
|
|
|
template< class MeshType>
|
|
class VoronoiVolumeSampling
|
|
{
|
|
public:
|
|
typedef typename tri::VoronoiProcessing<MeshType>::QuadricSumDistance QuadricSumDistance;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::BoxType BoxType;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename vcg::GridStaticPtr<typename MeshType::FaceType, ScalarType> GridType;
|
|
|
|
typedef SimpleVolume<SimpleVoxel<ScalarType> > VVSVolume;
|
|
typedef typename vcg::tri::TrivialWalker<MeshType,VVSVolume> VVSWalker;
|
|
typedef typename vcg::tri::MarchingCubes<MeshType, VVSWalker> VVSMarchingCubes;
|
|
|
|
class Param
|
|
{
|
|
public:
|
|
Param()
|
|
{
|
|
elemType=1;
|
|
isoThr=0.1;
|
|
surfFlag=false;
|
|
voxelSide=0;
|
|
}
|
|
|
|
int elemType; // the type of element
|
|
ScalarType isoThr;
|
|
ScalarType voxelSide;
|
|
bool surfFlag;
|
|
};
|
|
|
|
VoronoiVolumeSampling(MeshType &_baseMesh)
|
|
:seedTree(0),baseMesh(_baseMesh),cb(0),restrictedRelaxationFlag(false),psd(_baseMesh)
|
|
{
|
|
tri::RequirePerFaceMark(baseMesh);
|
|
tri::UpdateBounding<MeshType>::Box(baseMesh);
|
|
tri::UpdateNormal<MeshType>::PerFaceNormalized(baseMesh);
|
|
}
|
|
|
|
KdTree<ScalarType> *seedTree; // used to accumulate barycenter in relaxation
|
|
KdTree<ScalarType> *seedDomainTree; // used to accumulate barycenter in relaxation
|
|
typename KdTree<ScalarType>::PriorityQueue pq;
|
|
|
|
|
|
MeshType &baseMesh; // The base mesh for which we compute all
|
|
MeshType seedMesh;
|
|
MeshType montecarloVolumeMesh; // we use this mesh as volume evaluator and to choose
|
|
MeshType seedDomainMesh; // where we choose the seeds (by default is the montecarlo volume mesh)
|
|
vcg::CallBackPos *cb;
|
|
math::MarsenneTwisterRNG rng;
|
|
bool restrictedRelaxationFlag;
|
|
PointSampledDistance<MeshType> psd;
|
|
|
|
// Build up the needed structure for efficient point in mesh search.
|
|
// It uses a poisson disk sampling of the surface plus a
|
|
// kdtree to speed up query point closest on surface for points far from surface.
|
|
// It initializes the surfGrid, surfTree and poissonSurfaceMesh members
|
|
void Init(ScalarType _poissonRadiusSurface=0)
|
|
{
|
|
psd.Init(_poissonRadiusSurface);
|
|
tri::SurfaceSampling<MeshType,tri::MeshSampler<MeshType> >::SamplingRandomGenerator()=rng;
|
|
|
|
}
|
|
|
|
|
|
|
|
ScalarType DistanceFromVoronoiSeed(const CoordType &p_point)
|
|
{
|
|
ScalarType squaredDist;
|
|
unsigned int ind;
|
|
seedTree->doQueryClosest(p_point,ind,squaredDist);
|
|
return math::Sqrt(squaredDist);
|
|
}
|
|
|
|
ScalarType DistanceFromVoronoiFace(const CoordType &p_point)
|
|
{
|
|
|
|
seedTree->doQueryK(p_point,2,pq);
|
|
|
|
std::vector<std::pair<ScalarType, CoordType> > closeSeedVec;
|
|
CoordType p0= this->seedMesh.vert[pq.getIndex(0)].P();
|
|
CoordType p1= this->seedMesh.vert[pq.getIndex(1)].P();
|
|
Plane3<ScalarType> pl; pl.Init((p0+p1)/2.0f,p0-p1);
|
|
return fabs(SignedDistancePlanePoint(pl,p_point));
|
|
}
|
|
|
|
/*
|
|
* Function: scaffolding
|
|
* ----------------------------
|
|
* calculates the distance between the point P and the line R
|
|
* (intersection of the plane P01 P02)
|
|
*
|
|
* p_point: point to calculate
|
|
* p_tree: KdTree of the mesh of point
|
|
* p_m: Mesh of points ( surface and inside )
|
|
*
|
|
* returns: distance between the point P and the line R
|
|
*/
|
|
|
|
ScalarType DistanceFromVoronoiInternalEdge(const CoordType &p_point)
|
|
{
|
|
seedTree->doQueryK(p_point,3,pq);
|
|
std::vector<std::pair<ScalarType, CoordType> > closeSeedVec;
|
|
CoordType p0= this->seedMesh.vert[pq.getIndex(0)].P();
|
|
CoordType p1= this->seedMesh.vert[pq.getIndex(1)].P();
|
|
CoordType p2= this->seedMesh.vert[pq.getIndex(2)].P();
|
|
|
|
Plane3<ScalarType> pl01; pl01.Init((p0+p1)/2.0f,p0-p1);
|
|
Plane3<ScalarType> pl02; pl02.Init((p0+p2)/2.0f,p0-p2);
|
|
Line3<ScalarType> voroLine;
|
|
|
|
// Calculating the line R that intersect the planes pl01 and pl02
|
|
vcg::IntersectionPlanePlane(pl01,pl02,voroLine);
|
|
// Calculating the distance k between the point p_point and the line R.
|
|
CoordType closestPt;
|
|
ScalarType closestDist;
|
|
vcg::LinePointDistance(voroLine,p_point,closestPt, closestDist);
|
|
|
|
return closestDist;
|
|
}
|
|
|
|
ScalarType DistanceFromVoronoiSurfaceEdge(const CoordType &p_point, const CoordType &surfPt)
|
|
{
|
|
seedTree->doQueryK(p_point,3,pq);
|
|
pq.sort();
|
|
assert(pq.getWeight(0) <= pq.getWeight(1));
|
|
|
|
CoordType p0= this->seedMesh.vert[pq.getIndex(0)].P();
|
|
CoordType p1= this->seedMesh.vert[pq.getIndex(1)].P();
|
|
CoordType p2= this->seedMesh.vert[pq.getIndex(2)].P();
|
|
|
|
Plane3<ScalarType> pl01; pl01.Init((p0+p1)/2.0f,p0-p1);
|
|
Plane3<ScalarType> pl02; pl02.Init((p0+p2)/2.0f,p0-p2);
|
|
Plane3<ScalarType> pl12; pl12.Init((p1+p2)/2.0f,p1-p2);
|
|
Line3<ScalarType> voroLine;
|
|
|
|
|
|
// Calculating the line R that intersect the planes pl01 and pl02
|
|
vcg::IntersectionPlanePlane(pl01,pl02,voroLine);
|
|
// Calculating the distance k between the point p_point and the line R.
|
|
CoordType closestPt;
|
|
ScalarType voroLineDist;
|
|
vcg::LinePointDistance(voroLine,p_point,closestPt, voroLineDist);
|
|
|
|
Plane3<ScalarType> plSurf; plSurf.Init(surfPt, surfPt - p_point);
|
|
Line3<ScalarType> surfLine;
|
|
// Calculating the line R that intersect the planes pl01 and pl02
|
|
|
|
ScalarType surfLineDist;
|
|
vcg::IntersectionPlanePlane(pl01,plSurf,surfLine);
|
|
vcg::LinePointDistance(surfLine,p_point,closestPt, surfLineDist);
|
|
|
|
return min(voroLineDist,surfLineDist);
|
|
}
|
|
|
|
|
|
ScalarType DistanceFromVoronoiCorner(const CoordType &p_point)
|
|
{
|
|
seedTree->doQueryK(p_point,4,pq);
|
|
std::vector<std::pair<ScalarType, CoordType> > closeSeedVec;
|
|
CoordType p0= this->seedMesh.vert[pq.getIndex(0)].P();
|
|
CoordType p1= this->seedMesh.vert[pq.getIndex(1)].P();
|
|
CoordType p2= this->seedMesh.vert[pq.getIndex(2)].P();
|
|
CoordType p3= this->seedMesh.vert[pq.getIndex(3)].P();
|
|
|
|
Plane3<ScalarType> pl01; pl01.Init((p0+p1)/2.0f,p0-p1);
|
|
Plane3<ScalarType> pl02; pl02.Init((p0+p2)/2.0f,p0-p2);
|
|
Plane3<ScalarType> pl03; pl03.Init((p0+p3)/2.0f,p0-p3);
|
|
Line3<ScalarType> voroLine;
|
|
|
|
// Calculating the line R that intersect the planes pl01 and pl02
|
|
vcg::IntersectionPlanePlane(pl01,pl02,voroLine);
|
|
CoordType intersectionPt;
|
|
vcg::IntersectionLinePlane(voroLine,pl03,intersectionPt);
|
|
|
|
return vcg::Distance(p_point,intersectionPt);
|
|
}
|
|
|
|
|
|
void BarycentricRelaxVoronoiSamples(int relaxStep)
|
|
{
|
|
bool changed=false;
|
|
assert(montecarloVolumeMesh.vn > seedMesh.vn*20);
|
|
int i;
|
|
for(i=0;i<relaxStep;++i)
|
|
{
|
|
|
|
std::vector<std::pair<int,CoordType> > sumVec(seedMesh.vn,std::make_pair(0,CoordType(0,0,0)));
|
|
|
|
// First accumulate for each seed the coord of all the samples that are closest to him.
|
|
for(typename MeshType::VertexIterator vi=montecarloVolumeMesh.vert.begin();vi!=montecarloVolumeMesh.vert.end();++vi)
|
|
{
|
|
unsigned int seedInd;
|
|
ScalarType sqdist;
|
|
seedTree->doQueryClosest(vi->P(),seedInd,sqdist);
|
|
sumVec[seedInd].first++;
|
|
sumVec[seedInd].second+=vi->cP();
|
|
}
|
|
|
|
changed=false;
|
|
for(size_t i=0;i<seedMesh.vert.size();++i)
|
|
{
|
|
if(sumVec[i].first == 0) tri::Allocator<MeshType>::DeleteVertex(seedMesh,seedMesh.vert[i]);
|
|
else
|
|
{
|
|
CoordType prevP = seedMesh.vert[i].P();
|
|
seedMesh.vert[i].P() = sumVec[i].second /ScalarType(sumVec[i].first);
|
|
seedMesh.vert[i].Q() = sumVec[i].first;
|
|
if(restrictedRelaxationFlag)
|
|
{
|
|
unsigned int seedInd;
|
|
ScalarType sqdist;
|
|
seedDomainTree->doQueryClosest(seedMesh.vert[i].P(),seedInd,sqdist);
|
|
seedMesh.vert[i].P() = seedDomainMesh.vert[seedInd].P();
|
|
}
|
|
if(prevP != seedMesh.vert[i].P()) changed = true;
|
|
}
|
|
}
|
|
tri::Allocator<MeshType>::CompactVertexVector(seedMesh);
|
|
|
|
// Kdtree for the seeds must be rebuilt at the end of each step;
|
|
VertexConstDataWrapper<MeshType> vdw(seedMesh);
|
|
delete seedTree;
|
|
seedTree = new KdTree<ScalarType>(vdw);
|
|
if(!changed)
|
|
break;
|
|
}
|
|
// qDebug("performed %i relax step on %i",i,relaxStep);
|
|
}
|
|
|
|
// Given a volumetric sampling of the mesh, and a set of seeds
|
|
void QuadricRelaxVoronoiSamples(int relaxStep)
|
|
{
|
|
bool changed=false;
|
|
assert(montecarloVolumeMesh.vn > seedMesh.vn*20);
|
|
int i;
|
|
for(i=0;i<relaxStep;++i)
|
|
{
|
|
QuadricSumDistance dz;
|
|
std::vector<QuadricSumDistance> dVec(montecarloVolumeMesh.vert.size(),dz);
|
|
tri::UpdateQuality<MeshType>::VertexConstant(seedMesh,0);
|
|
|
|
// Each voronoi region has a quadric representing the sum of the squared distances of all the points of its region.
|
|
// First Loop:
|
|
// For each point of the volume add its distance to the quadric of its region.
|
|
for(typename MeshType::VertexIterator vi=montecarloVolumeMesh.vert.begin();vi!=montecarloVolumeMesh.vert.end();++vi)
|
|
{
|
|
unsigned int seedInd;
|
|
ScalarType sqdist;
|
|
seedTree->doQueryClosest(vi->P(),seedInd,sqdist);
|
|
dVec[seedInd].AddPoint(vi->P());
|
|
seedMesh.vert[seedInd].Q() +=1;
|
|
}
|
|
|
|
// Second Loop: for each region we search in the seed domain the point that has minimal squared distance from all other points in that region.
|
|
// We do that evaluating the quadric in each point
|
|
std::vector< std::pair<ScalarType,int> > seedMinimaVec(seedMesh.vert.size(),std::make_pair(std::numeric_limits<ScalarType>::max(),-1 ));
|
|
for(typename MeshType::VertexIterator vi=seedDomainMesh.vert.begin();vi!=seedDomainMesh.vert.end();++vi)
|
|
{
|
|
unsigned int seedInd;
|
|
ScalarType sqdist;
|
|
seedTree->doQueryClosest(vi->P(),seedInd,sqdist);
|
|
|
|
ScalarType val = dVec[seedInd].Eval(vi->P());
|
|
if(val < seedMinimaVec[seedInd].first)
|
|
{
|
|
seedMinimaVec[seedInd].first = val;
|
|
seedMinimaVec[seedInd].second = tri::Index(seedDomainMesh,*vi);
|
|
}
|
|
}
|
|
changed=false;
|
|
for(int i=0;i<seedMesh.vert.size();++i)
|
|
{
|
|
CoordType prevP = seedMesh.vert[i].P() ;
|
|
if(seedMinimaVec[i].second == -1) tri::Allocator<MeshType>::DeleteVertex(seedMesh,seedMesh.vert[i]);
|
|
seedMesh.vert[i].P() = seedDomainMesh.vert[seedMinimaVec[i].second].P();
|
|
if(prevP != seedMesh.vert[i].P()) changed = true;
|
|
}
|
|
tri::Allocator<MeshType>::CompactVertexVector(seedMesh);
|
|
|
|
// Kdtree for the seeds must be rebuilt at the end of each step;
|
|
VertexConstDataWrapper<MeshType> vdw(seedMesh);
|
|
delete seedTree;
|
|
seedTree = new KdTree<ScalarType>(vdw);
|
|
if(!changed)
|
|
break;
|
|
}
|
|
// qDebug("performed %i relax step on %i",i,relaxStep);
|
|
}
|
|
|
|
|
|
ScalarType ImplicitFunction(const CoordType &p, const Param &pp)
|
|
{
|
|
CoordType closest;
|
|
ScalarType surfDist = this->psd.DistanceFromSurface(p,closest);
|
|
|
|
ScalarType elemDist;
|
|
switch(pp.elemType)
|
|
{
|
|
case 0: elemDist = DistanceFromVoronoiSeed(p) - pp.isoThr; break;
|
|
case 1: elemDist = DistanceFromVoronoiSurfaceEdge(p,closest) - pp.isoThr; break;
|
|
case 2: elemDist = DistanceFromVoronoiFace(p) - pp.isoThr; break;
|
|
case 3: elemDist = DistanceFromVoronoiCorner(p) - pp.isoThr; break;
|
|
case 4: elemDist = DistanceFromVoronoiInternalEdge(p) - pp.isoThr; break;
|
|
default: assert(0);
|
|
}
|
|
ScalarType val;
|
|
if(pp.surfFlag)
|
|
val = std::max(-elemDist,surfDist);
|
|
else
|
|
val = std::max(elemDist,surfDist);
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Function: BuildScaffoldingMesh
|
|
* ----------------------------
|
|
* Build a mesh that is the scaffolding of the original mesh.
|
|
* uses an implicit function and a voronoi3d diagram consisting of the set of inside and
|
|
* surface points of the original mesh m
|
|
*
|
|
* m: original mesh
|
|
* surVertex: mesh of surface points
|
|
* PruningPoisson: mesh of inside and surface points, it's the voronoi3d diagram
|
|
* n_voxel: number of voxels for the greater side
|
|
*/
|
|
void BuildScaffoldingMeshOld(MeshType &scaffoldingMesh, const Param &pp)
|
|
{
|
|
VVSVolume volume;
|
|
const Point3i sizInt = Point3i::Construct(baseMesh.bbox.Dim()/pp.voxelSide)+Point3i(1,1,1);
|
|
int t0=clock();
|
|
BoxType bb = BoxType::Construct(baseMesh.bbox);
|
|
bb.Offset(pp.voxelSide+pp.isoThr*2.0f);
|
|
volume.Init(sizInt,bb);
|
|
for(ScalarType i=0;i<sizInt[0];i++)
|
|
for(ScalarType j=0;j<sizInt[1];j++)
|
|
for(ScalarType k=0;k<sizInt[2];k++)
|
|
{
|
|
CoordType p;
|
|
volume.IPiToPf(Point3i(i,j,k),p);
|
|
ScalarType val = ImplicitFunction(p,pp);
|
|
volume.Val(i,j,k) = val;
|
|
}
|
|
int t1=clock();
|
|
VVSWalker walker;
|
|
VVSMarchingCubes mc(scaffoldingMesh, walker);
|
|
walker.template BuildMesh <VVSMarchingCubes>(scaffoldingMesh, volume, mc,0);
|
|
int t2=clock();
|
|
printf("Fill Volume (%3i %3i %3i) %5.2f\n", sizInt[0],sizInt[1],sizInt[2],float(t1-t0)/CLOCKS_PER_SEC);
|
|
printf("Marching %i tris %5.2f\n", scaffoldingMesh.fn,float(t2-t1)/CLOCKS_PER_SEC);
|
|
}
|
|
|
|
void BuildScaffoldingMesh(MeshType &scaffoldingMesh, const Param &pp)
|
|
{
|
|
VVSVolume volume;
|
|
const Point3i sizInt = Point3i::Construct(baseMesh.bbox.Dim()/pp.voxelSide)+Point3i(1,1,1);
|
|
int t0=clock();
|
|
BoxType bb = BoxType::Construct(baseMesh.bbox);
|
|
bb.Offset(pp.voxelSide+pp.isoThr*2.0f);
|
|
volume.Init(sizInt,bb);
|
|
for(int i=0;i<sizInt[0];i+=4)
|
|
for(int j=0;j<sizInt[1];j+=4)
|
|
for(int k=0;k<sizInt[2];k+=4)
|
|
{
|
|
CoordType p;
|
|
volume.IPiToPf(Point3i(i,j,k),p);
|
|
ScalarType val = ImplicitFunction(p,pp);
|
|
volume.Val(i,j,k) = val;
|
|
}
|
|
ScalarType diagThr = sqrt(3.0)*4.1*pp.voxelSide;
|
|
for(int i=0;i<sizInt[0];i+=2)
|
|
for(int j=0;j<sizInt[1];j+=2)
|
|
for(int k=0;k<sizInt[2];k+=2)
|
|
{
|
|
if(((i%4)==0) && ((j%4)==0) && ((k%4)==0)) continue;
|
|
const ScalarType nearVal = volume.Val((i/4)*4,(j/4)*4,(k/4)*4);
|
|
if(fabs(nearVal) < diagThr)
|
|
{
|
|
CoordType p;
|
|
volume.IPiToPf(Point3i(i,j,k),p);
|
|
ScalarType val = ImplicitFunction(p,pp);
|
|
volume.Val(i,j,k) = val;
|
|
}
|
|
else volume.Val(i,j,k) = nearVal;
|
|
}
|
|
|
|
diagThr = sqrt(3.0)*2.1*pp.voxelSide;
|
|
for(int i=0;i<sizInt[0];i++)
|
|
for(int j=0;j<sizInt[1];j++)
|
|
for(int k=0;k<sizInt[2];k++)
|
|
{
|
|
if(((i%2)==0) && ((j%2)==0) && ((k%2)==0)) continue;
|
|
const ScalarType nearVal = volume.Val((i/2)*2,(j/2)*2,(k/2)*2);
|
|
if(fabs(nearVal) < diagThr)
|
|
{
|
|
CoordType p;
|
|
volume.IPiToPf(Point3i(i,j,k),p);
|
|
ScalarType val = ImplicitFunction(p,pp);
|
|
volume.Val(i,j,k) = val;
|
|
}
|
|
else volume.Val(i,j,k) = nearVal;
|
|
}
|
|
|
|
|
|
|
|
int t1=clock();
|
|
VVSWalker walker;
|
|
VVSMarchingCubes mc(scaffoldingMesh, walker);
|
|
walker.template BuildMesh <VVSMarchingCubes>(scaffoldingMesh, volume, mc,0);
|
|
int t2=clock();
|
|
printf("Fill Volume (%3i %3i %3i) %5.2f\n", sizInt[0],sizInt[1],sizInt[2],float(t1-t0)/CLOCKS_PER_SEC);
|
|
printf("Marching %i tris %5.2f\n", scaffoldingMesh.fn,float(t2-t1)/CLOCKS_PER_SEC);
|
|
}
|
|
|
|
|
|
void OptimizeIsosurf(MeshType &m, const Param &pp)
|
|
{
|
|
int t0=clock();
|
|
int flipCnt=0;
|
|
tri::Allocator<MeshType>::CompactEveryVector(m);
|
|
tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
for(int i=0;i<m.fn;++i)
|
|
{
|
|
for(int j=0;j<3;++j)
|
|
{
|
|
FaceType &f=m.face[i];
|
|
if(face::CheckFlipEdge(f,j))
|
|
{
|
|
CoordType midOld = (f.P0(j)+f.P1(j))/2.0;
|
|
FaceType *fop = f.FFp(j);
|
|
int foi= f.FFi(j);
|
|
CoordType midNew = (f.P2(j)+fop->P2(foi))/2.0;
|
|
|
|
ScalarType oldVal = ImplicitFunction(midOld,pp);
|
|
ScalarType newVal = ImplicitFunction(midNew,pp);
|
|
if(fabs(oldVal)-fabs(newVal) > pp.voxelSide/4.0)
|
|
{
|
|
face::FlipEdge(f,j);
|
|
flipCnt++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
int t1=clock();
|
|
printf("Optimize Isosurf performed %i edge flip in %5.2f s\n",flipCnt,float(t1-t0)/CLOCKS_PER_SEC);
|
|
}
|
|
|
|
/** Given a surface sampling it adds to the montecarloVolumeMesh, a number of near surface samples.
|
|
* For each surface it try to add a sample generated as a point in the half ball of <radius> centered on the sample.
|
|
*/
|
|
|
|
void RefineMontecarloVolumeSamplingNearSurface(MeshType &surfaceSamplingMesh, ScalarType radius, int perSampleNum)
|
|
{
|
|
|
|
}
|
|
|
|
void BuildMontecarloVolumeSampling(int montecarloSampleNum)
|
|
{
|
|
montecarloVolumeMesh.Clear();
|
|
|
|
int trialNum=0;
|
|
CoordType closest;
|
|
while(montecarloVolumeMesh.vn < montecarloSampleNum)
|
|
{
|
|
CoordType point = math::GeneratePointInBox3Uniform(rng,baseMesh.bbox);
|
|
trialNum++;
|
|
ScalarType d = this->psd.DistanceFromSurface(point,closest);
|
|
if(d<0){
|
|
vcg::tri::Allocator<MeshType>::AddVertex(montecarloVolumeMesh,point);
|
|
montecarloVolumeMesh.vert.back().Q() = fabs(d);
|
|
}
|
|
if(cb && (montecarloVolumeMesh.vn%1000)==0)
|
|
cb((100*montecarloVolumeMesh.vn)/montecarloSampleNum,"Montecarlo Sampling...");
|
|
}
|
|
printf("Made %i Trials to get %i samples\n",trialNum,montecarloSampleNum);
|
|
tri::UpdateBounding<MeshType>::Box(montecarloVolumeMesh);
|
|
}
|
|
|
|
/*
|
|
* Function: BuildVolumeSampling
|
|
* ----------------------------
|
|
* Build and prepare the seed set.
|
|
* This is the starting point for the subsequent relaxation calls.
|
|
* You can insert some initial seeds into the seed set and they will be preserved
|
|
*
|
|
*
|
|
*/
|
|
void BuildVolumeSampling(int montecarloSampleNum, ScalarType &poissonRadius, int randSeed)
|
|
{
|
|
if(montecarloSampleNum >0)
|
|
this->BuildMontecarloVolumeSampling(montecarloSampleNum);
|
|
if(this->seedDomainMesh.vn == 0)
|
|
tri::Append<MeshType,MeshType>::MeshCopy(seedDomainMesh,montecarloVolumeMesh);
|
|
|
|
std::vector<CoordType> seedPts;
|
|
tri::PoissonPruning(seedDomainMesh,seedPts,poissonRadius,randSeed);
|
|
tri::BuildMeshFromCoordVector(this->seedMesh,seedPts);
|
|
|
|
// Kdtree must be rebuilt at the end of each step;
|
|
VertexConstDataWrapper<MeshType> vdw(seedMesh);
|
|
if(seedTree) delete seedTree;
|
|
seedTree = new KdTree<ScalarType>(vdw);
|
|
|
|
VertexConstDataWrapper<MeshType> vdw2(seedDomainMesh);
|
|
if(seedDomainTree) delete seedTree;
|
|
seedDomainTree = new KdTree<ScalarType>(vdw);
|
|
}
|
|
|
|
}; // end class
|
|
|
|
|
|
} // end namespace vcg
|
|
} // end namespace vcg
|
|
#endif // VORONOI_VOLUME_SAMPLING_H
|